任云生 李京謀 郝宇杰 徐文坦



摘要: 矽卡巖型白鎢礦礦床是吉黑東部重要的鎢礦類型,以黑龍江省遜克縣翠宏山鎢多金屬礦床和吉林省汪清縣白石砬子鎢礦床為典型代表。為確定區內矽卡巖型鎢礦床中的成礦流體特征及成礦機制,選取2個代表性礦床中的白鎢礦單礦物進行了原位微區微量元素分析。結果表明:翠宏山鎢多金屬礦床中的白鎢礦具有左傾型的稀土元素配分模式和弱的正Eu異常,形成于富Na、Nb的流體環境中,白鎢礦中REE3+通過2Ca2+=REE3++Na+和Ca2++W6+=REE3++Nb5+機制替換Ca2+;白石砬子鎢礦床中的白鎢礦具有右傾型的稀土元素配分模式和正Eu異常,形成于貧Na、Nb的流體環境中,白鎢礦中REE3+通過3Ca2+=2REE3++□Ca(□是Ca的空位)機制替換Ca2+。兩礦床中白鎢礦EuN與Eu*N之間明顯的相關關系及較高的Mo質量分數表明,吉黑東部矽卡巖型鎢礦床中白鎢礦的成礦流體均為氧化性流體。在協變關系圖解中,翠宏山和白石砬子礦床中的白鎢礦與各自成礦巖體在Y和Ho質量分數之間的良好相關性、Y/Ho和La/Ho值協變關系中的明顯差異性,揭示2個礦床的初始成礦流體來源于巖漿,在流體演化過程中發生了水巖反應和流體混合作用;2個礦床中白鎢礦Eu異常均高于其各自成礦巖體的Eu異常,進一步指示流體演化過程中發生了水巖反應。巖漿熱液上升運移過程中的流體混合作用和水巖反應是吉黑東部矽卡巖型鎢礦床白鎢礦沉淀富集的主要機制。
關鍵詞 :成礦流體;成礦機制;原位微量元素;白鎢礦;矽卡巖型鎢礦床;翠宏山鎢多金屬礦床;白石砬子鎢礦床;吉黑東部
doi :10.13278/j.cnki.jjuese.20230232
中圖分類號: P611.1;P575.3
文獻標志碼:A
In-Situ Trace Elements Characteristics of the Scheelite and Metallogenic Significance on Skarn Tungsten Deposits in Eastern Jilin and Heilongjiang Province, NE China
Ren Yunsheng1,2,Li Jingmou2,Hao Yujie3,Xu Wentan1
1. School of Earth Science, Institute of Disaster Prevention,Langfang 065201, Hebei, China
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
3. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, ?Changchun 130061, China
Abstract:
The skarn-type scheelite deposit is an important type of tungsten deposits in eastern Jilin and Heilongjiang of Northeast (NE) China. The large-scale Cuihongshan Wo-polymetallic deposit in Xunke area of Heilongjiang Province and medium-scale Baishilazhi scheelite deposit in Wangqing area of Jilin Province are two representative skarn deposits. To determine their ore-forming fluid characteristics and metallogenic mechanism, scheelite single minerals were selected from these two representative deposits for in-situ LA-ICP-MS trace elements analysis. The results show that the scheelite in Cuihongshan deposit was formed in a Na- and Nb-rich ore-forming fluid system with left-dipped rare earth element (REE) distribution patterns and weak positive Eu anomalies. The substitution of REE3+ for Ca2+ in scheelite from Cuihongshan deposit can be accounted for the substitution mechanism: 2Ca2+ = REE3+ + Na+ and Ca2+ + W6+ = REE3+ + Nb5+. The scheelite in Baishilazi deposit was formed in a Na- and Nb-poor ore-forming fluid system with right-dipped REE distribution patterns and positive Eu anomalies. The substitution mechanism of REE3+ for Ca2+ in scheelite of Baishilazi deposit is 3Ca2+ = 2REE3+ + □Ca (where □ is a site vacancy). The obvious correlation between EuN and Eu*N and the high Mo content in scheelite samples indicates that the ore-forming fluids in two skarn-type tungsten (-polymetallic) deposits in eastern Jilin and Heilongjiang are oxidizing fluids. The Eu anomalies of scheelite in these two deposits are higher than those of their ore-forming intrusions, indicating that water-rock reaction occurred during the fluid evolution. The obvious correlation of Y and Ho contents between the scheelite in different deposits and their ore-forming intrusions, as well as the differences between Y/Ho and La/Ho, reveal that their initial ore-forming fluids are derived from magmatism, and water-rock reaction and fluid mixing occurred during the fluid evolution. Due to data from this studies and previous references, it can be concluded that the water-rock reaction and fluid mixing during ascending of the magmatic hydrothermal are major mechanisms of scheelite mineralization in the skarn-type tungsten (-polymetallic) deposit in eastern Jilin and Heilongjiang.
Key words:
ore-forming fluid; metallogenic mechanism; in-situ trace elements; scheelite; skarn-type tungesten deposit; Cuihongshan Wo-polymetallic deposit;Baishilazhi scheelite deposit;Eastern Jilin and Heilongjiang Provinces
0 引言
鎢礦作為我國優勢礦產資源,廣泛分布在我國華南、江南等地,形成了以矽卡巖型白鎢礦礦床和石英脈型黑鎢礦礦床為主的南嶺鎢礦集中區[1-4]和以斑巖-矽卡巖型鎢礦床為主的江南鎢成礦帶[5-8]。近年來,我國東北地區的吉黑兩省東部地區(吉黑東部)也相繼發現了多個鎢礦床,資源類型多為白鎢礦礦床,成因類型主要包括中溫熱液脈型(吉林省琿春地區的楊金溝、五道溝等)和矽卡巖型(黑龍江省翠宏山、羊鼻山和吉林省汪清白石砬子等),其中不乏大—中型礦床,顯示出良好的成礦潛力和找礦前景[9-15]。
翠宏山大型鎢多金屬礦床(WO3資源量9.5萬t[16])和白石砬子中小型鎢礦床(WO3資源量>2 800 t[17])是吉黑東部近年來發現的兩個矽卡巖型鎢礦床。近年來,在2個礦床的成礦地質條件、礦化蝕變特征、成礦流體、鎢及其伴生金屬的成因類型以及成礦時代等方面積累了較豐富的研究資料和成果[16,18-24]。但由于傳統流體包裹體測試和H-O同位素測試樣品多為石英、方解石等脈石礦物,其測試結果具有多解性和不確定性,雖然普遍認為此類礦床的成礦流體主要來自中酸性侵入體,但在成礦流體性質、演化過程以及流體中白鎢礦富集機制等方面缺乏深入研究。白鎢礦(CaWO3)作為熱液型礦床中常見的含Ca礦物,Mo、Nb和REE等元素可以在白鎢礦形成過程中替代Ca,從而在白鎢礦中具有較高的質量分數[25]。因此,對白鎢礦中Mo和稀土元素質量分數、Eu異常及其標準化配分模式的研究,可以有效示蹤成礦流體來源、性質及演化等特征,進而揭示礦床成因及成礦機制[9,12,26-28]。基于此,本文在吉黑東部成礦地質背景和代表性矽卡巖型鎢礦床地質特征研究的基礎上,選取翠宏山和白石砬子礦床中的白鎢礦開展LA-ICP-MS原位微區成分分析,并結合前人流體包裹體顯微測溫和H-O同位素的系統研究,綜合揭示吉黑東部矽卡巖型鎢礦床成礦流體特征和成礦機制。
1 成礦地質背景
吉黑東部地區地處興蒙造山帶東段(圖1a),夾持于西伯利亞板塊和華北板塊之間[30-31],主要包括那丹哈達地體、佳木斯地塊—興凱地體以及松嫩—張廣才嶺地塊的東緣。古生代以來,該地區經歷了古亞洲洋的俯沖閉合、古太平洋向歐亞大陸俯沖以及不同構造體制的疊置轉換[32-36],不同時期的構造巖漿活動頻繁而強烈,為各種內生金屬成礦作用提供了良好的地質條件,形成了大量的銅、金、鎢、鉬、鉛鋅等內生金屬礦床,在成礦區劃上構成了小興安嶺—張廣才嶺成礦帶、佳木斯—興凱成礦帶和延邊成礦帶等成礦區帶。其中翠宏山鎢多金屬礦床和白石砬子鎢礦床分別位于小興安嶺—張廣才嶺成礦帶和延邊成礦帶。
小興安嶺—張廣才嶺成礦帶隸屬于松嫩—張廣才嶺地塊東北緣,東、西側分別與佳木斯地塊和興安地塊相鄰。區內地層出露面積較小,主要包括下元古界變質火山-沉積建造、寒武系碳酸鹽巖建造、奧陶系陸源碎屑巖-碳酸鹽巖-火山巖建造、泥盆系—二疊系火山碎屑沉積建造以及中—新生代火山-沉積建造[37-38]。巖漿活動大致可分為前寒武紀、加里東期、海西期及印支晚期—燕山早期4個期次,巖石類型以花崗質巖石為主[38-40]。構造以NE向褶皺和NE、NW、及SN向斷裂為主[38]。區內礦產資源以斑巖型鉬礦、淺成低溫熱液型金(銅)礦和矽卡巖型鎢-鉛-鋅-鐵多金屬礦為主,成礦時代集中在燕山期[37,41]。
延邊成礦帶位于吉林省延邊地區,西側與松嫩—張廣才嶺地塊相連,北部與佳木斯地塊相鄰。區內主要出露上古生界淺變質巖和中生界陸相火山-沉積巖系地層。區內巖漿活動主要可分為海西期、印支期和燕山期3個期次,以花崗質巖石分布最為廣泛,另有少量基性—超基性巖石。構造主要為EW、NS、NE和NW向斷裂和褶皺構造。成礦帶內礦產資源以金、銅、鎢、鉛、鋅等為主,礦床成因類型主要包括斑巖型、矽卡巖型、淺成低溫熱液型和中溫熱液脈型礦床,成礦時代多為海西期和燕山期[13,41-44]。
2 礦床地質特征
翠宏山鎢多金屬礦床地處黑龍江省遜克縣,位于小興安嶺—張廣才嶺成礦帶北端(圖1a)。礦區及外圍主要出露下寒武統鉛山組結晶灰巖、大理巖等,其東西兩側與侵入巖接觸,形成矽卡巖和礦化蝕變帶,是主要的賦礦圍巖;上二疊統—下三疊統五道嶺組凝灰巖呈角度不整合于鉛山組之上[20]。礦區構造主要為NE與NNW向兩組共軛斷裂,其中NNW向斷裂也是花崗巖侵入體與鉛山組地層接觸帶,是主要的控礦構造。礦區巖漿巖分布廣泛,主要為海西期白崗質碎裂花崗巖、二長花崗巖等,印支期黑云母花崗巖和燕山期二長花崗巖、花崗閃長巖和花崗斑巖(圖1b),其中燕山期二長花崗巖與成礦關系密切[24](圖1c)。白石砬子鎢礦床地處吉林省汪清縣(圖1a),位于延邊成礦帶內。礦區及外圍地層主要出露古生界青龍村群,巖性為大理巖、黑云母石英片巖。區內構造主要發育NE、NW和近SN向斷裂和構造破碎蝕變帶。礦區巖漿巖主要為燕山期石英閃長巖和花崗斑巖等(圖1d)。
本次研究的2個礦床的鎢礦體均產自燕山期侵入巖和大理巖的接觸帶內,礦體形態多呈似層狀、透鏡狀和脈狀等。翠宏山鎢多金屬礦床目前已發現主礦體11條,其中Ⅲ號礦體為主要的鎢鉬礦體,產于二長花崗巖和大理巖的接觸帶和巖體內,走向NNW,傾向SW,傾角約85°[18](圖1b、c)。白石砬子鎢礦床由2條礦體組成,主要產于石英閃長巖和大理巖接觸帶中,總體走向為NE,傾向NW,傾角變化不一,介于30°~70°之間(圖1d),鎢平均品位為0.5%~1.0%,部分可達3.98%[19]。
翠宏山鎢多金屬礦床中鎢的礦石類型主要為鎢礦石和鎢鉬礦石,礦石礦物主要為白鎢礦,另有輝鉬礦和磁黃鐵礦等金屬礦物。礦石結構包括半自形—?他形晶粒狀結構、交代浸蝕結構和乳滴狀結構等;礦石構造以塊狀、浸染狀、脈狀等為主(圖2)。白石砬子鎢礦床原生礦石為含白鎢礦石榴子石矽卡巖,礦石礦物主要為白鎢礦,可見黃銅礦、磁黃鐵礦和黃鐵礦等金屬礦物。礦石結構以自形—他形晶粒狀結構、交代浸蝕結構和交代殘余結構為主;礦石構造包括浸染狀、脈狀和網脈狀構造(圖2)。
2個矽卡巖型鎢(多金屬)礦床的礦體圍巖中普遍發育矽卡巖化、硅化、絹云母化、綠泥石化和碳酸鹽化等蝕變。此外,翠宏山鎢多金屬礦床中還發育陽起石化、綠簾石化和螢石化,在空間上與鎢鉬礦體密切相關[20]。
根據礦物組合、礦物交生關系、礦石組構及圍巖蝕變特征(表1),結合前人資料[18,20-21],本文將吉黑東部矽卡巖型鎢(多金屬)礦床的成礦期次劃分為矽卡巖期和石英-硫化物期。其中:翠宏山鎢多金屬礦床的矽卡巖期又可分為矽卡巖階段、磁鐵礦階段和白鎢礦階段;白石砬子鎢礦床的矽卡巖期可分為矽卡巖階段和白鎢礦階段。2個礦床的石英-硫化物期都可進一步分為硫化物階段和碳酸鹽階段,翠宏山鎢多金屬礦床硫化物階段發育大量輝鉬礦、黃鐵礦、黃銅礦、方鉛礦、閃鋅礦和磁黃鐵礦;白石砬子鎢礦床硫化物階段發育黃鐵礦、黃銅礦和磁黃鐵礦,相對缺少輝鉬礦。
3 樣品描述和實驗方法
本次對采自2個礦區的27件白鎢礦單礦物樣品開展原位微區LA-ICP-MS微量元素分析。其?中,翠宏山鎢多金屬礦床樣品(編號CHS01—12)采自礦區露天采坑內的Ⅲ號鎢鉬礦體;白石砬子鎢礦床樣品(編號BS01—15)采自礦區平硐內的含白鎢礦石榴子石矽卡巖礦石。取樣位置分別見圖1b、d。
將所選樣品磨制成光片,在顯微鏡下選出晶形較大、裂隙和包裹體較少的白鎢礦顆粒,在自然資源部東北亞礦產資源評價重點實驗室進行LA-ICP-MS原位分析。實驗儀器、測試參數和數據處理流?程為:1)激光剝蝕系統為德國COMPEx公司生產的GeoLasPro型193 nm ArF準分子激光器,搭配美國Agilent 7900型電感耦合等離子體質譜儀;2)實驗采用He作為剝蝕物質的載氣,儀器最佳化的參考物質采用美國國家標準技術研究院研制的人工合成硅酸鹽玻璃NIST 610;3)通過單點剝蝕的采樣方式,以直徑為44 μm、剝蝕頻率為7 Hz的激光束斑進行各個數據的采集,打點位置見圖2 i、k、l。各元素的積分時間為6 ms,分析了43Ca、56Fe、89Y、93Nb、95Mo、118Sn、139La、140Ce、141Pr、143Nd、147Sm、151Eu、155Gd、159Tb、163Dy、165Ho、166Er、169Tm、173Yb、175Lu、208Pb、209Bi同位素組合;4)分析過程中,在采用NITS612作為未知樣監控數據質量的前提下,每4個樣品點測試1個標準樣品NIST 610和1個監控樣品NIST 612,每個分析點的氣體背景采集時間為20 s,信號采集時間為40 s,沖洗時間為30 s,檢出限為10-9;5)采用NIST 610外部校正法及Ca元素作內標進行白鎢礦原位微區分析,CaO采用理論值(白鎢礦CaWO4中WO3和CaO理論質量分數分別為80.6%及19.4%);6)用Glitter軟件處理原始數據,并計算樣品稀土元素質量分數。
4 測試結果
翠宏山鎢多金屬礦床和白石砬子鎢礦床中白鎢礦的LA-ICP-MS稀土元素分析結果見表2。翠宏山礦床白鎢礦稀土總量(w(ΣREE))為(7.23~30.07)×10-6(平均為16.86×10-6),w(ΣREE+Y)為(23.21~100.77)×10-6(平均為49.42×10-6);LREE/HREE和(La/Yb)N分別為0.05~0.93和0.01~0.57,表明其REE組成中重稀土元素相對輕稀土更富集,球粒隕石標準化配分曲線(圖3a)也表明其REE配分曲線為左傾型;δEu值為0.63~2.88,平均為1.48,除CHS09、CHS11和CHS12外均表現為正Eu異常;δCe值為0.94~1.08,平均為1.02,無明顯Ce異常。
白石砬子礦床白鎢礦中的稀土總量(w(ΣREE))為(29.74~1 054.68)×10-6(平均為202.83×10-6),w(ΣREE+Y)為(30.30~1 379.23)×10-6(平均為284.76×10-6);LREE/HREE和(La/Yb)N分別為3.66~77.34和5.34~102.36,表明其REE組成明顯富集輕稀土元素,球粒隕石標準化配分曲線(圖3b)也表明REE配分曲線明顯呈右傾型;δEu值為1.10~4.78,平均為2.53,均表現為明顯的正Eu異常;δCe值為0.42~0.87,平均為0.61,表現出較明顯的負Ce異常。
5 討論
5.1 白鎢礦中稀土元素的替代機制
在白鎢礦(CaWO4)晶格中,Ca2+ 和W6+呈八次配位,稀土元素(REE3+)要以類質同像替代Ca2+進入白鎢礦中,必須遵循電價平衡,并主要通過3種機制進行替代:2Ca2+=REE3++Na+(機制1);Ca2++W6+=REE3++Nb5+(機制2);3Ca2+=2REE3++□Ca(其中□是Ca的空位;機制3)。不同的替代機制會影響白鎢礦具有不同的稀土元素配分模式[47-48]。其中,機制1、2中Ca位點的大小對REE 3+的替代具有控制作用,白鎢礦的稀土元素配分模式主要受白鎢礦晶體結構控制。機制1的替換方式發生在富Na條件下,由于中稀土元素(MREEs)與Ca2+具有相似的離子半徑,MREEs會優先進入白鎢礦晶格,所形成的白鎢礦有較高的Na和MREEs質量分數,呈現“駝峰狀”的稀土元素配分模式。機制2發生在富Nb條件下,由于離子半徑的影響,MREEs或HREEs(特別是Dy)會優先于LREEs進入白鎢礦晶格。對于機制3,Ca的空位對REE 3+的離子半徑沒有限制,這種情況下白鎢礦稀土元素配分模式主要繼承并反映成礦流體的稀土元素組成[47]。
前人對翠宏山鎢多金屬礦床氧化物階段和鎢鉬礦體中石英流體包裹體的研究結果表明[21-22],白鎢礦階段,成礦流體鹽度介于3.85%~42.18%之間,表明成礦流體內Na+質量分數較高,暗示稀土元素(REE3+)通過機制1以類質同像替代Ca2+進入白鎢礦中。本次分析結果表明,翠宏山鎢多金屬礦床的白鎢礦中w(Nb)((10.83~173.45)×10-6,表2)較高,與w(ΣREE+Y-Eu)值相近且呈現出正相關關系(圖4),符合機制2化學式關系,表明部分稀土元素(REE3+)通過機制2替代Ca2+進入白鎢礦中。翠宏山鎢多金屬礦床的稀土元素配分模式呈現出左傾的特點(圖3a),MREEs和HREEs相對富?集,不同于其他地區典型矽卡巖型礦床(如安徽東顧山[49]、云南都龍[50]、贛東北朱溪[51])較平坦或右傾的白鎢礦稀土元素配分模式。這種配分模式可能是由于流體中存在大量比Na+半徑更大的K+,使半徑更大的REE3+優先替代Ca2+晶格空位,或流體中存在大量的Nb5+替代了白鎢礦中的W6+[47]。綜合前述白鎢礦階段成礦流體的Na+質量分數及白鎢礦Nb質量分數,本文認為替代機制1和2共同作用于翠宏山鎢多金屬礦床的白鎢礦中。
白石砬子鎢礦床的稀土元素配分模式與上述安徽東顧山、云南都龍、贛東北朱溪等典型矽卡巖礦床白鎢礦的稀土元素配分模式相似,具有右傾的特點。白鎢礦階段成礦流體中Na+質量分數(成礦流體鹽度為2.6%~10.9% [21])和Nb質量分數((0.53~31.03)×10-6,表2)都較低,w(Nb)明顯低于w(ΣREE+Y-Eu)(圖4),表示白鎢礦形成過程沒有發生機制1和2的替代機制。因此,白石砬子鎢礦床的白鎢礦稀土元素主要以機制3方式替代。在圖3b中,白石砬子鎢礦床白鎢礦與成礦石英閃長巖都呈現出LREEs富集、HREEs虧損的右傾型模式,相似的稀土元素配分模式同樣證明了白石砬子鎢礦床的白鎢礦稀土元素以機制3方式替代。然而,白石砬子鎢礦床白鎢礦的(La/Yb)N(平均為23.22)和LREE/HREE(平均為12.45)都高于其成礦石英閃長巖的(La/Yb)N(平均為14.32)和LREE/HREE(平均為10.81),表明白鎢礦形成過程中輕重稀土元素發生了分異。研究表明,先于白鎢礦形成的矽卡巖礦物(如石榴子石、輝石等)常常相對富集HREEs而虧損LREEs[52-53],導致剩余流體中的HREEs相對虧損,LREEs相對富集,從而使后結晶的礦物較原始成礦流體發生輕重稀土的分異。因此,白石砬子鎢礦床中白鎢礦的稀土元素具有更高的(La/Yb)N及LREE/HREE值,可能是受到先形成的石榴子石、輝石等矽卡巖礦物的影響。
5.2 成礦流體來源及性質
由于Y和Ho的離子半徑與電荷接近,故具有相似的地球化學行為,并且在單一熱液系統中相對穩定,可以用來指示成礦流體來源[5,54-55]。在Y和Ho質量分數協變關系圖(圖5a)中,翠宏山鎢多金屬礦床中的白鎢礦與成礦二長花崗巖之間、白石砬子鎢礦床中的白鎢礦與成礦石英閃長巖之間均具有明顯的正相關性,表明兩礦床中白鎢礦的成礦流體均主要來自巖漿熱液。此外,有研究[56]表明,同期結晶的礦物中Y/Ho與La/Ho的值變化存在相關性,恒定的Y/Ho值也表明結晶環境相對穩定,因此同期結晶的礦物在Y/Ho-La/Ho圖(圖5b)中會呈水平分布。翠宏山鎢多金屬礦床和白石砬子鎢礦床白鎢礦都與其各自成礦相關巖體的樣品點不在同一水平分布,這表明盡管白鎢礦來源于巖漿,但在白鎢礦形成過程中,成礦流體應該經歷了強烈的水巖反應或流體混合作用。在野外地質觀察中,2個礦床的成礦巖體中的斜長石都發生了絹云母化,同樣表明成礦流體經歷了水巖反應。流體包裹體的H-O同位素組成也表明翠宏山鎢多金屬礦床(δD:-129.3‰~-107.4‰, δ18OH2O:-3.5‰~1.9‰)和白石砬子鎢礦床(δD:-102.4‰~-90.8‰, δ18OH2O:2.4‰~3.1‰)的成礦流體主要為巖漿水和大氣降水的混合[16,21]。
白鎢礦中Eu的價態和Mo的質量分數可以指示成礦流體的氧化還原性質[57-59]。不同于其他相對穩定的REE3+,Eu元素因在不同的氧化還原環境中具有可變價而常表現出與其他REE3+不同的 地球化學特征[60-62],并且白鎢礦作為一種特殊的含Ca礦物,其Ca2+既可以被Eu3+替代,又可以被Eu2+離子替代[63]。如果Eu以Eu3+的形式進入白鎢礦晶格中,EuN與Eu*N會有明顯的正相關關系;若Eu以Eu2+的形式出現,則Eu2+對白鎢礦中Ca2+的置換不受價態平衡控制,其置換行為與Sm3+、Gd3+元素不一致,故EuN與Eu*N無明顯相關性[47]。對于Mo元素,當流體中氧逸度較低時,Mo會以輝鉬礦形式與白鎢礦相伴產出;當氧逸度較高時,Mo會以+6價存在于流體中。
本次研究中,翠宏山鎢多金屬礦床中白鎢礦δEu值為0.63~2.88,平均為1.48,白石砬子鎢礦床中白鎢礦δEu值為1.10~4.78,平均為2.53。在EuN-Eu*N圖(圖6)中,2個礦床白鎢礦樣品的EuN與Eu*N都沿著1∶1線呈明顯的正相關關系,表明Eu主要以Eu3+形式存在,成礦流體為氧化性。流體包裹體的激光拉曼光譜分析也表明,2個礦床白鎢礦階段的成礦流體均沒有大量CH4等還原性氣體的存在[16,21-22]。此外,翠宏山鎢多金屬礦床白鎢礦Mo質量分數為(21 790.37~44 677.06)×10-6,白石砬子鎢礦床白鎢礦Mo質量分數為(273.02~1 098.31)×10-6,都具有較高的Mo質量分數,且與江西永平、安徽百丈崖等鎢礦床Mo質量分數[59,64]相似。綜上所述,白鎢礦中Eu的價態和Mo質量分數均表明,吉黑東部矽卡巖型鎢礦床白鎢礦階段成礦流體以氧化性流體為主。
對吉黑東部代表性中溫熱液脈型白鎢礦礦床楊金溝礦床中白鎢礦微量元素組成的研究顯示,其白鎢礦的EuN與Eu*N沒有明顯的正相關關系,其Mo質量分數普遍較低,表明中溫熱液脈型白鎢礦礦床的成礦流體以還原性流體為主[9,15]。本次研究表明2個矽卡巖鎢(多金屬)礦床的成礦流體都為氧化性流體。在中溫熱液脈型白鎢礦礦床中,白鎢礦多與其他金屬硫化物伴生,且流體包裹體的激光拉曼光譜分析顯示成礦流體中有CH4和N2等還原性氣體的存在[21];在矽卡巖型白鎢礦礦床中,白鎢礦形成于矽卡巖期的白鎢礦階段,相對缺少金屬硫化物,成礦流體中缺少還原性氣體[21]。因此,吉黑東部2種不同成因類型白鎢礦礦床的成礦流體性質判別的差異性,與礦床地質特征相符。這說明成礦流體性質的判別有助于明確礦床成因,同時也驗證了依靠Eu的價態和Mo質量分數判別成礦流體性質的可靠性。
5.3 成礦機制
前人[16,21-22]對翠宏山鎢多金屬礦床和白石砬子鎢礦床流體包裹體H-O同位素組成的研究表明,在白鎢礦形成階段,成礦流體經歷了巖漿水和大氣降水的混合作用。本次研究中,翠宏山鎢多金屬礦床白鎢礦的δEu值為0.63~2.88,(平均1.48),白石砬子鎢礦床白鎢礦的δEu值為1.10~4.78(平均為2.53),基本都為正Eu異常。翠宏山鎢多金屬礦床中與白鎢礦成礦有關的二長花崗巖的δEu值為0.72~0.76,(平均為0.74),為弱的負Eu異常;白石砬子鎢礦床中與白鎢礦成礦有關的石英閃長巖的δEu值為0.96~1.38(平均為1.16),為弱的正Eu異常。2個礦床中白鎢礦的δEu值都高于其成礦巖體,這指示成礦過程中發生了強烈的水巖反應[28,50]。強烈的水巖反應會造成成礦巖體和碳酸鹽巖地層中的長石分解釋放出大量的Eu,從而使白鎢礦結晶過程中具有更高的Eu異常。因此,本文認為流體混合作用和水巖反應在白鎢礦形成過程中具有重要作用。
綜合本文研究和前人資料[16-24],將吉黑東部矽卡巖型鎢(多金屬)礦床白鎢礦的成礦過程總結如下。受礦區內NE和NNW向斷裂構造控制,翠宏山鎢多金屬礦床成礦巖體二長花崗巖和白石砬子鎢礦床成礦巖體石英閃長巖巖漿沿斷裂上升侵位至碳酸鹽巖地層,伴隨著巖漿的結晶分異作用,翠宏山礦區形成了富Na、K、Nb、Mo和W等元素的氧化性初始成礦流體,白石砬子礦區形成了相對貧Na、Nb和富W、Mo的氧化性初始成礦流體。在初始成礦流體運移過程中,與碳酸鹽巖地層及接觸帶發生強烈水巖反應,釋放出大量的Eu和Ca等成礦元素。同時,隨著大氣降水的不斷混入,成礦流體溫度降低并卸載成礦元素,促使WO42-和Ca2+結合沉淀,并在成礦巖體與碳酸鹽巖地層接觸帶附近形成白鎢礦礦體。
6 結論
1)翠宏山鎢多金屬礦床的白鎢礦具有左傾型的稀土元素配分模式,稀土元素通過2Ca2+=REE3++Na+和Ca2++W6+=REE3++Nb5+機制替換Ca2+;白石砬子鎢礦床的白鎢礦具有右傾型的稀土元素配分模式,稀土元素通過3Ca2+=2REE3++□Ca機制替換Ca2+。
2)以翠宏山和白石砬子礦床為代表的吉黑東部矽卡巖型鎢(多金屬)礦床白鎢礦的EuN與Eu*N之間明顯的相關關系及較高的Mo質量分數,指示其成礦流體均為氧化性流體。水巖反應導致長石分解釋放出的Eu致使白鎢礦的δEu值明顯高于其成礦巖體的δEu值。
3)翠宏山鎢多金屬礦床的白鎢礦與成礦巖體二長花崗巖、白石砬子鎢礦床白鎢礦與成礦巖體石英閃長巖在
w(Y)-w(Ho)圖中
都具有良好的相關性,指示吉黑地區鎢(多金屬)礦床初始成礦流體來源于巖漿。白鎢礦與成礦巖體
在Y/Ho-La/Ho圖中
的差異性,進一步表明流體演化過程中發生的水巖反應和流體混合作用,是白鎢礦富集成礦的主要機制。
參考文獻(References) :
[1]
Zhao P L, Yuan S D, Mao J W, et al. Geochronological and Petrogeochemical Constraints on the Skarn Deposits in Tongshanling Ore District, Southern Hunan Province: Implications for Jurassic Cu and W Metallogenic Events in South China[J]. Ore Geology Reviews, 2016, 78: 120-137.
[2] ?袁順達. 南嶺鎢錫成礦作用幾個關鍵科學問題及其對區域找礦勘查的啟示[J]. 礦物巖石地球化學通報,2017,36(5): 736-749,696.
Yuan Shunda. Several Crucial Scientific Issues Related to the W-Sn Metallogenesis in the Nanling Range and Their Implications for Regional Exploration: A Review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5):736-749, 696.
[3] ?Yuan S D, Williams-Jones A E, Mao J W, et al. The Origin of the Zhangjialong Tungsten Deposit, South China: Implications for W-Sn Mineralization in Large Granite Batholiths[J]. Economic Geology, 2018, 113(5): 1193-1208.
[4] ?Yuan S D, Williams-Jones A E, Romer R L, et al. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China[J]. Economic Geology, 2019, 114(5): 1005-1012.
[5] ?Liu B, Li H, Wu Q H, et al. Fluid Evolution of Triassic and Jurassic W Mineralization in the Xitian Ore Field, South China: Constraints from Scheelite Geochemistry and Microthermometry[J]. Lithos, 2019, 330/331: 1-15.
[6] ?Su H M, Jiang S Y. A Comparison Study of Tungsten-Bearing Granite and Related Mineralization in the Northern Jiangxi-Southern Anhui Provinces and Southern Jiangxi Province in South China[J]. Science China Earth Sciences, 2017, 60(11): 1942-1958.
[7] ?Li X Y, Gao J F, Zhang R Q, et al. Origin of the Muguayuan Veinlet-Disseminated Tungsten Deposit,South China: Constraints from In-Situ Trace Element Analyses of Scheelite[J]. Ore Geology Reviews, 2018, 99: 180-194.
[8] ?Wu S H, Sun W D, Wang X D. A New Model for Porphyry W Mineralization in a World-Class Tungsten Metallogenic Belt[J]. Ore Geology Reviews, 2019, 107: 501-512.
[9] ?任云生,趙華雷,雷恩,等. 延邊楊金溝大型鎢礦床白鎢礦的微量和稀土元素地球化學特征與礦床成因[J]. 巖石學報, 2010, 26(12): 3720-3726.
Ren Yunsheng, Zhao Hualei, Lei En, et al. Trace Element and Rare Earth Element Geochemistry of the Scheelite and Ore Genesis of the Yangjingou Large Scheelite Deposit in Yanbian Area, Northeast China[J]. Acta Petrologica Sinica, 2010, 26(12): 3720-3726.
[10] ?任云生,雷恩,趙華雷,等. 延邊楊金溝大型白鎢礦礦床流體包裹體特征及成因探討[J]. 吉林大學學報(地球科學版),2010,40(4):764-772.
Ren Yunsheng, Lei En, Zhao Hualei, et al. Characteristics of Fluid Inclusions and Ore Genesis of Yangjingou Large Scheelite Deposit in Yanbian Area, NE China[J]. Journal of Jilin University (Earth Science Edition), 2010,40(4):764-772.
[11] ?任云生,鞠楠,趙華雷,等. 延邊東部五道溝脈型白鎢礦礦床地質特征及流體包裹體[J]. 吉林大學學報(地球科學版), 2011,41(6):1736-1744.
Ren Yunsheng, Ju Nan, Zhao Hualei, et al. Geological Characteristics and Fluid Inclusions of Wudaogou Lode Deposit in Eastern Yanbian, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2011,41(6):1736-1744.
[12] ?Hao Y J, Ren Y S, Zhao H L, et al. Metallogenic Mechanism and Tectonic Setting of Tungsten Mineralization in the Yangbishan Deposit in Northeastern China[J]. Acta Geologica Sinica(English Edition), 2018,92(1):241-267.
[13] ?Chen C, Ren Y S, Wu T T, et al. Genesis and Mineralization Age of the Quartz-Vein-Type Scheelite Deposits in Eastern Yanbian, Northeast China: Constraints on the Regional Tectonic Setting[J]. Geological Journal, 2019, 54:639-655.
[14] ?Hao Y J, Ren Y S, Yang Q, et al. Fluid and Ore Sources of the Tungsten Mineralization in the Yangbishan Iron-Tungsten Deposit, Heilongjiang Province, North-Eastern China: Constraints from Fluid Inclusions, Sulphide S-Pb Isotopes and Scheelite C-H-O-Sm-Nd Isotopes[J]. Geological Journal, 2020,55(5):3957-3976.
[15] ?Li J M, Ren Y S, Hao Y J, et al. Ore-Forming Fluids Characteristics of Quartz-Vein Type Scheelite Deposits in Eastern Yanbian, NE China: Evidence from in Situ LA-ICP-MS Rare Earth Elements of Yangjingou and Sidaogou Deposits[J]. Resource Geology, 2022, 2(1):e12295.
[16] ?任亮. 小興安嶺地區矽卡巖型鐵銅(鉬)多金屬礦床成巖成礦機理與成礦模式研究[D].長春:吉林大學, 2017.
Ren Liang. Study on the Diagenesis Mechanisms and Metallogenic Model of Skarn-Type Fe-Cu (Mo) Polymetallic Deposit in the Lesser Xingan Range, NE China[D]. Changchun: Jilin University, 2017.
[17] ?白文強. 吉林白石砬子白鎢礦礦床成因及找礦標志研究[J]. 河北北方學院學報(自然科學版),2016,32(11):30-34.
Bai Wenqiang. Ore-Genesis and Prospecting Criteria of Baishilazi Scheelite Deposit in Jilin Province[J]. Journal of Hebei North University (Natural Science Edition), 2016, 32(11): 30-34.
[18] ?劉志宏. 黑龍江省翠宏山鎢鉬鋅多金屬礦床地質特征及成因[D]. 長春:吉林大學,2009.
Liu Zhihong. Geological Characteristic and Origin of Deposit in Cuihongshan W, Mo, Zn Polymetatic Deposit[D]. Changchun: Jilin University,2009.
[19] ?趙華雷,任云生,鞠楠,等. 延邊白石砬子鎢礦床成礦巖體的年代學與地球化學特征[J]. 吉林大學學報(地球科學版),2011,41(6):1726-1735, 1744.
Zhao Hualei, Ren Yunsheng, Ju Nan, et al. Geochronology and Geochemistry of Metallogenic Intrusion in Baishilazi Tungsten Deposit of Eastern Yanbian Area, Northeast China[J]. Journal of Jilin University (Earth Science Edition),2011,41(6):1726-1735,1744.
[20] ?郝宇杰,任云生,趙華雷,等. 黑龍江省翠宏山鎢鉬多金屬礦床輝鉬礦Re-Os同位素定年及其地質意義[J]. 吉林大學學報(地球科學版),2013,43(6):1840-1850.
Hao Yujie, Ren Yunsheng, Zhao Hualei, et al. Re-Os Isotopic Dating of the Molybdenite from the Cuihongshan W-Mo Polymetallic Deposit in Heilongjiang Province and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2013,43(6):1840-1850.
[21] ?趙華雷. 吉黑東部鎢礦成因及成礦地球動力學背景[D]. 長春:吉林大學,2014.
Zhao Hualei. Ore Genesis and Geodynamic Settings of Tungsten Deposits in Eastern Jilin and Heilongjiang Provinces[D]. Changchun: Jilin University,2014.
[22] ?劉禹銘. 小興安嶺地區翠宏山鐵銅多金屬礦床成礦作用研究[D]. 長春:吉林大學,2021.
Liu Yuming. Study on Metallogenesis of Cuihongshan Fe-Cu Polymetallic Deposit in Lesser Xingan Range[D]. Changchun: Jilin University,2021.
[23] ?Hu X L, Ding Z J, He M C, et al. Two Epochs of Magmatism and Metallogeny in the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China: Constrains from U-Pb and Re-Os Geochronology and Lu-Hf Isotopes[J]. Journal of Geochemical Exploration, 2014,143:116-126.
[24] ?Fei X, Zhang Z, Cheng Z, et al. Factors Controlling the Crystal Morphology and Chemistry of Garnet in Skarn Deposits: A Case Study from the Cuihongshan Polymetallic Deposit, Lesser Xingan Range, NE China[J]. American Mineralogist, 2019,104(10):1455-1468.
[25] ?Brugger J, Bettiol A A, Costa S, et al. Mapping REE Distribution in Scheelite Using Luminescence[J]. Mineralogical Magazine, 2000,64:891-903.
[26] ?曾志剛,李朝陽,劉玉平,等. 滇東南南秧田兩種不同成因類型白鎢礦的稀土元素地球化學特征[J]. 地質地球化學,1998, 26(2):34-38.
Zeng Zhigang, Li Chaoyang, Liu Yuping, et al. REE Geochemistry of Scheelite of Two Genetic Types from Nanyangtian, Southeastern Yunnan[J]. Geological Geochemistry, 1998, 26(2):34-38.
[27] ?王曉地,汪雄武,孫傳敏. 甘肅后長川鎢礦白鎢礦Sm-Nd定年及稀土元素地球化學[J]. 礦物巖石,2010,30(1):64-68.
Wang Xiaodi, Wang Xiongwu, Sun Chuanmin. REE Geochemistry of Scheelite and Sm-Nd Dating for the Houchangchuan Scheelite Deposit in Gansu[J]. Mineralogy and Petrology, 2010,30(1):64-68.
[28] ?王輝,豐成友,李榮西,等. 閩西行洛坑鎢礦流體演化過程與成礦機制:白鎢礦原位微量元素、Sr同位素的制約[J]. 巖石學報,2021,37(3):698-716.
Wang Hui, Feng Chengyou, Li Rongxi, et al. Ore-Forming Mechanism and Fluid Evolution Processes of the Xingluokeng Tungsten Deposit, Western Fujian Province: Constraints from In-Situ Trace Elemental and Sr Isotopic Analyses of Scheelite[J]. Acta Petrologica Sinica, 2021, 37(3):698-716.
[29] ?李之彤,趙春荊.吉黑東部晚三疊世巖漿活動及其與板塊構造的關系[J].中國地質科學院院報, 1988, 18: 21-32.
Li Zhitong, Zhao Chunjing. Late Triassic Magmatic Activities in Relation to Plate Tectonics in the Eastern Part of Jilin and Heilongjiang Provinces, Northeast China[J]. Acta Geoscientica Sinica, 1988, 18: 21-32.
[30] ?侯雪剛. 吉黑東部中生代斑巖型鉬礦床的成礦巖體:從成因到成礦[D]. 長春:吉林大學,2017.
Hou Xuegang. Mesozoic Metallogenetic Granitoids from Porphyry Mo Deposit in the Eastern Jilin-Heilongjiang Provinces:Petrogenesis and Molybdenum Mineralization[D]. Changchun: Jilin University, 2017.
[31] ?Wu F Y, Sun D Y, Li H, et al. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology, 2002,187(1/2):143-173.
[32] ?Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011,41(1):1-30.
[33] ?劉永江,張興洲,金巍,等. 東北地區晚古生代區域構造演化[J]. 中國地質, 2010,37(4):943-951.
Liu Yongjiang, Zhang Xingzhou, Jin Wei, et al. Late Paleozoic Tectonic Evolution in Northeast China[J]. Geology in China, 2010,37(4):943-951.
[34] ?曹花花,許文良,裴福萍,等. 華北板塊北緣東段二疊紀的構造屬性:來自火山巖鋯石U-Pb年代學與地球化學的制約[J].巖石學報,2012,28(9):2733-2750.
Cao Huahua, Xu Wenliang, Pei Fuping, et al. Permian Tectonic Evolution of the Eastern Section of the Northern Margin of the North China Plate: Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks[J]. Acta Petrologica Sinica, 2012,28(9):2733-2750.
[35] ?許文良,王楓,裴福萍,等. 中國東北中生代構造體制與區域成礦背景:來自中生代火山巖組合時空變化的制約[J]. 巖石學報,2013,29(2):339-353.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013,29(2):339-353.
[36] ?譚紅艷. 黑龍江小興安嶺—張廣才嶺成礦帶成礦系列及找礦遠景評價[D].北京:中國地質大學(北京),2014.
Tan Hongyan. Metallogenetic Series and Prospecting Assessment in Lesser Xing an Pange-Zhangguangcai Range Metallogenic Belt of Heilongjiang Province [D]. Beijing: China University of Geosciences(Beijing), 2014.
[37] ?王志偉. 小興安嶺—張廣才嶺早古生代火成巖的巖石學與地球化學:對塊體拼合歷史和地殼屬性的制約[D].長春:吉林大學,2017.
Wang Zhiwei. Petrology and Geochemistry of Early Paleozoic Igneous Rocks in the Lesser Xing an-
Zhangguangcai
Ranges: Constrains on the Amalgamation History and Crustal Nature of Massifs[D]. Changchun: Jilin University, 2017.
[38] ?葛茂卉,張進江,劉愷,等.小興安嶺—張廣才嶺地區晚古生代至中生代花崗巖的成因及其地質意義[J].巖石礦物學雜志,2020,39(4):385-405.
Ge Maohui, Zhang Jinjiang, Liu Kai, et al. Petrogenesis of the Late Paleozoic to Mesozoic Granite from the Xiao Xingan Mountains-Zhangguangcai Mountains and Its Geological Implications[J]. Acta Petrologica et Mineralogica,2020,39(4):385-405.
[39] ?張超. 華北板塊北緣東段延邊地區中生代構造演化[D]. 長春:吉林大學,2014.
Zhang Chao. The Mesozoic Tevtonic Evolution of Yanbian Area in the Eastern Segment of Northern Margin of the North China Block[D]. Changchun: Jilin University, 2014.
[40] ?張國賓,陳興凱,趙越,等.張廣才嶺南部中侏羅世似斑狀二長花崗巖年代學、地球化學特征及其地質意義[J].吉林大學學報(地球科學版),2022,52(6):1907-1925.
Zhang Guobin, Chen Xingkai, Zhao Yue, et al. Geochronology, Geochemistry and Geological Significance of the Middle Jurassic Porphyritic Monzogranite in the Southern Zhangguangcai Range, Heilongjiang Province[J]. Journal of Jilin University (Earth Science Edition), 2022,52(6):1907-1925.
[41] ?孫景貴,劉陽,徐智愷,等. 試論中國東北部陸緣晚中生代淺成熱液大規模成礦與深部地質過程對成礦制約[J].吉林大學學報(地球科學版),2023,53(3):651-692.
Sun Jinggui, Liu Yang, Xu Zhikai, et al. Large-Scale Epithermal Mineralization of Late Mesozoic and the Constraints of Deep Geological Processes on Mineralization in the Continental Margin of NE China[J]. Journal of Jilin University (Earth Science Edition),2023,53(3):651-692.
[42] ?陳聰. 延邊東部晚古生代—中生代構造演化與區域成礦規律[D]. 長春:吉林大學,2017.
Chen Cong. Late Paleozoic-Mesozoic Tectonic Evolution and Regional Metallogenic Regularity of the Eastern Yanbian Area, NE China[D]. Changchun: Jilin University, 2017.
[43] ?李光速,杜慶祥,韓作振,等.吉林省延邊地區中酸性巖漿巖年齡、成因及其構造意義[J].吉林大學學報(地球科學版),2022,52(4):1174-1202.
Li Guangsu, Du Qingxiang, Han Zuozhen, et al. Geochronology, Petrogenesis and Tectonic Significance of Intermediate-Acid Magmatic Rocks in Yanbian Area, Eastern Jilin[J]. Journal of Jilin University (Earth Science Edition), 2022,52(4):1174-1202.
[44] ?Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: ItsRole in the Evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007,30: 542-556.
[45] ?邵軍,李秀榮,楊宏智. 黑龍江翠宏山鉛鋅多金屬礦區花崗巖鋯石SHRIMP U-Pb測年及其地質意義[J].地球學報,2011,32(2):163-170.
Shao Jun, Li Xiurong, Yang Hongzhi. Zircon SHRIMP U-Pb Dating of Granite in the Cuihongshan Polymetallic Deposit and Its Geological Implications[J]. Acta Geoscientica Sinica,2011, 32(2): 163-170.
[46] ?Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[47] ?Ghaderi M, Palin M J, Campbell H I, et al. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia[J]. Economic Geology, 1999,94(3):423-437.
[48] ?Sylvester P J, Ghaderi M. Trace Element Analysis of Scheelite by Excimer Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (ELA-ICP-MS) Using a Synthetic Silicate Glass Standard[J]. Chemical Geology, 1997,141(1):49-65.
[49] ?聶利青,周濤發,張千明,等. 安徽東顧山鎢礦床白鎢礦主微量元素和Sr-Nd同位素特征及其對成礦作用的指示[J]. 巖石學報,2017,33(11):3518-3530.
Nie Liqing, Zhou Taofa, Zhang Qianming, et al. Trace Elements and Sr-Nd Isotopes of Scheelites: Implications for the Skarn Tungsten Mineralization of the Donggushan Deposit, Anhui Province, China[J]. Acta Petrologica Sinica, 2017,33(11):3518-3530.
[50] ?葉霖,鮑談,劉玉平,等. 云南都龍錫鋅礦床中白鎢礦微量元素及稀土元素地球化學[J]. 南京大學學報(自然科學),2018,54(2):245-258.
Ye Lin, Bao Tan, Liu Yuping, et al. The Trace and Rare Earth Elements in Scheelites and Their Implication for the Mineralization in Dulong Sn-Zn Polymetal Ore Deposit, Yunnan Province[J]. Journal of Nanjing University (Natural Science), 2018,54(2):245-258.
[51] ?Yuan L L, Chi G X, Wang M Q, et al. Characteristics of REEs and Trace Elements in Scheelite from the Zhuxi W deposit, South China: Implications for the Ore-Forming Conditions and Processes[J]. Ore Geology Reviews, 2019, 109: 585-597.
[52] ?Graunch R I. Rare Earth Elements in Metamorphic Rocks[J]. Reviews in Mineralogy, 1989,21(8):147-167.
[53] ?Bea F, Montero P, Garuti G,et al. Pressure-Dependence of Rare Earth Element Distribution in Amphibolite-and Granulite-Grade Garnets: A LA-ICP-MS Study[J]. Geostandads & Geostandards Newsletters, 1997,21(2):253-270.
[54] ?Bau M, Moeller P. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite[J]. Mineralogy & Petrology, 1992,45(3):231-246.
[55] ?Irber W. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
[56] ?Bau M, Dulski P. Comparative Study of Yttrium and Rare Earth Behaviors in Fluorine-Rich Hydrothermal Fluids[J]. Contributions to Mineralogy & Petrology, 1995,119(2):213-223.
[57] ?Hsu L C, Galli P E. Origin of the Scheelite-Powellite Series of Minerals[J]. Economic Geology, 1973,68:681-696.
[58] ?Brugger J, Lahaye Y, Costa S. Inhomogeneous Distribution of REE in Scheelite and Dynamics of Archaean Hydrothermal Systems (Mt. Charlotte and Drysdale Gold Deposits, Western Australia) [J]. Contributions to Mineralogy & Petrology, 2000, 139: 251-264.
[59] ?Song G X, Qin K Z, Li G M,et al. Scheelite Elemental and Isotopic Signatures: Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China[J]. American Mineralogist, 2014, 99:303-317.
[60] ?Bau M. Rare Earth Element Mobility During Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium[J]. Chemical Geology, 1991, 93:219-230.
[61] ?Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallographica, 1976,32(5):751-767.
[62] ?Brugger J, Etschmann B, Pownceby M, et al. Oxidation State of Europium in Scheelite: Tracking Fluid-Rock Interaction in Gold Deposits[J]. Chemical Geology, 2008, 257: 26-33.
[63] ?Blundy J, Wood B. Prediction of Ccrystal-Melt Partition Coefcients from Elastic Moduli[J]. Nature, 1994,372:452-454.
[64] ?蘇薔薇,毛景文,宋世偉,等. 江西永平Cu-W礦床白鎢礦地球化學特征及其對礦床成因的指示[J]. 礦床地質,2020,39(4):631-646.
Su Qiangwei, Mao Jingwen, Song Shiwei, et al. Trace Element Geochemistry of Scheelites from Yongping Cu-W Deposit in Jiangxi: Implications for Ore Genesis[J]. Mineral Deposits, 2020,39(4):631-646.
收稿日期: 2023-09-17
作者簡介: ?任云生(1968—),男,教授,博士生導師,主要從事成礦規律與成礦預測方面的研究,E-mail:rys@cidp.edu.cn
通信作者: ?李京謀(1996—),男,博士研究生,主要從事礦床地球化學方面的研究,E-mail:3001210042@email.cugb.edu.cn
基金項目: ?國家重點研發計劃項目(2017YFC0601304)
Supported by the National Key R&D Program of China (2017YFC0601304)