孫 強,閆國兵,陳永洪,蔡振華*,楊芒生,楊建勇
(1.廣東電網有限責任公司, 廣東 廣州 510620;2.廣東電網有限責任公司茂名供電局, 廣東 茂名 525100)
RTK即實時動態差分技術,是基于載波相位觀測值的實時動態定位技術。在RTK作業模式下,基準站通過數據鏈將其觀測值和觀測站坐標信息一起傳送給移動站。移動站不僅通過數據鏈接收來自基準站的RTCM 數據,還要通過自身板卡及天線采集GPS 觀測數據,并在系統內組成差分觀測值進行實時處理,同時給出厘米級定位結果,歷時不足1 s。將RTK 技術應用于無人機大幅提高了無人機的定位精度,可以實現更精確的飛行,得到更高精度的遙感測量結果,為輸電線路工程的驗收提供了一種更先進的方式[1-7]。
目前,應用RTK無人機進行輸電線路工程的驗收的研究還少見報道。本文研究了基于RTK無人機的桿塔安裝質量快速檢查技術,以廣東省云浮市西南500 kV架空輸電線路的驗收為例,介紹了RTK無人機在桿塔安裝質量快速檢查方面的應用,可為相關研究工作提供參考。
基于RTK無人機的桿塔安裝質量快速檢查,使用帶RTK 功能的無人機獲取桿塔的高分辨率光學影像,通過PPK 空三解算獲取每幅影像的高精度外方位元素,恢復出影像之間的相對關系,并依據雙相機立體量測原理利用影像對構建立體量測環境,進行桿塔安裝質量的幾何檢查。該方法涉及到的主要技術點有數字相機檢校、基于PPK 的空三解算和雙相機立體量測等。
相機檢校是無人機遙感中至關重要的一個步驟,相機檢校是否精確,會直接影響后續測圖及三維重建精度[8]。通常在作業前對相機進行檢校,檢校方法采用專業檢校場進行。由于相機是以中心投影方式進行成像,理想情況下,地物點、投影中心、像點在同一直線上。然而實際上,所有的相機光學系統都存在或多或少的非線性畸變。因此,檢校的主要內容有相機內方位元素和光學畸變系數。為了補償相機光學系統的非線性畸變,通常在中心投影的成像方程中引入畸變模型,然后基于控制點或其他方法求解畸變系數來對圖像進行校正[8-9]。
目前,常用的數字相機畸變模型為包含徑向畸變和切向畸變的Brown模型[10]。

相機檢校時,將相機置于控制場中拍攝一定數量的檢校影像,并依據多片后方交會原理進行整體平差。由于公式(1)為非線性數學模型,無法直接解算,需對其進行線性化,按照泰勒公式展開,可得到單相機多片聯合檢校的誤差方程為:
當獲取一定數量的控制點坐標及與之對應的像點坐標后,即可迭代求解。迭代開始時,外方位及內方位元素初始值可采用直接線性變換(direct linear transformation,DLT)解算[10],光學畸變系數初始值可直接設置為0。迭代求解過程中,未知數的所有角元素改正值均小于某一極小閾值時,迭代結束,未知數取所有迭代改正值之和。
PPK 技術是最早的GPS動態差分技術方式,又稱半動態法、準動態相對定位法、走走停停(Go and Stop)法。其工作原理是利用一臺進行同步觀測的基準站接收機和至少一臺流動接收機,對GPS衛星進行同步觀測;也就是基準站保持連續觀測,初始化后的流動站遷站至下一個待定點,在遷站過程中需要保持對衛星的連續跟蹤,以便將整周模糊度傳遞至待定點。基準站和流動站同步接收的數據在計算機中進行線性組合,形成虛擬的載波相位觀測量,確定接收機之間的相對位置,最后引入基準站的已知坐標,從而獲得流動站的三維坐標[11]。PPK 技術可以為無人機影像的空三解算提供高精度的初始值,得到較為準確的影像外方位元素。
利用PPK解算方法,可獲取影像曝光時刻高精度的空間位置信息,將其作為觀測量參與區域網平差,有效解決了低空攝影測量隊地面控制點的依賴問題,可使攝影測量需要的野外作業大量減少[12]。基于PPK的光束法區域網平差模型為:
對于桿塔安裝中一些具體幾何量的量測采用雙相機立體量測的方法進行。當完成基于PPK的空三解算之后,即可獲取每一張影像的投影矩陣。
式中,Kj為第j張影像的內矩陣,由相機的內方位元素組成;Rj為第j張影像的旋轉矩陣;tj=-Rjcj且cj是第j張影像的投影中心。

將公式(6)整理變形整理,可得公式(7):
公式(7)用矩陣形式可表示為:
式中,
公式(8)即為雙像立體量測的誤差方程。當分別量測左、右影像上對應地物點的像點坐標之后,將其代入公式(8),按照間接平差原理直接解算,即可獲取物方點的物方坐標。
實驗區位于廣東省云浮市西南,云浮市地勢西南高,東北低,丘陵是云浮市主要地貌,多沿山地邊緣發育,高丘陵海拔250~450 m,低丘陵海拔100~250 m。低丘陵坡度平緩,多為15~20°。本次實驗為500 kV架空輸電線路,塔高平均在80 m左右。架空輸電線全長203.23 km,如圖1所示,共包含445個塔桿。

圖1 測區線路圖
實驗區無人機影像采用大疆Phantom 4 RTK無人機,如圖2所示。該無人機搭載RTK導航定位系統和高性能成像系統,其RTK水平定位精度為1 cm+1 ppm,RTK垂直定位精度為1.5 cm+1 ppm,同時支持PPK后處理。

圖2 大疆Phantom 4 RTK無人機
實驗區內共完成3 個塔桿的無人機影像數據采集,同時為了驗證本文方法的幾何量測精度,在采集無人機影像同時分別布設一定數量的像控點,用于檢核本文空三方法的幾何精度。其詳細信息如表1所示。

表1 實驗區無人機影像信息
首先,按照1.1 節方法完成無人機相機系統的高精度幾何標定。將無人機置于三維控制場中,拍攝一定數量的檢校片,如圖3所示。
圖3a、b為兩張獲取的檢校片,圖3c為控制場的控制點分布圖。利用手動量測方式獲取控制點對應的像點坐標,并基于公式(2)建立誤差方程進行多片聯合幾何檢校,結果如表2所示。

圖3 相機檢校影像及其控制點分布樣例
將表2 平差結果帶入共線條件方程,計算每一個像控點殘差,并統計平差精度如表3所示。

表2 相機檢校結果
分析表3 結果可知,利用室外高精度三維控制場進行Phantom 4 RTK 相機幾何檢校,其像點殘差最大不超過0.141像素,總體中誤差小于0.117像素,遠遠小于常規檢校中誤差小于0.3像素的檢校需求。

表3 相機檢校幾何結果
其次,分析驗證基于PPK的免像控空三精度。此次實驗共采集3個塔桿的無人機影像,基于1.2節所述方法,將表2 幾何的相機幾何檢校參數作為已知值,完成PPK免像控自動空中三角測量。之后,將測量的像控點作為檢查點,檢核空三結果幾何精度。統計結果如表4所示。

表4 像控點檢核PPK空三幾何精度結果/m
分析表4 結果可知,本文所述方法,其總體誤差為0.088 m,總體高程誤差為0.035 m,已經達到塔桿幾何量測精度不超過0.15 m的精度需求。因此,基于PPK方法的免像控空三結果可以保證塔桿幾何量測滿足精度要求。
第三,分析驗證基于免像控空三結果的雙像立體量測精度,完成塔桿安裝幾何質量檢查。
塔桿幾何質量檢查,主要測量金具的間距是否滿足設計要求。本文選取了2 種距離量測與一個角度量測作為驗證,包括放電間隙、絕緣子長度與絕緣子角度的量測(如圖4中的地線放電間隙)。

圖4 地線放電間隙
利用PPK 空三解算結果獲取影像的外方位元素,進而揀選成像較完整的兩張影像構成立體像對。通過手動及影像匹配方法獲取量測物體的像點坐標,進而根據公式(8)建立待量測物點的誤差方程,并解釋得到其三維坐標,如圖5所示。

圖5 基于雙像立體量測的地線放電間隙量測
圖5a 為揀選立體像對的左影像,圖5b 為揀選立體像對的右影像。通過平差運算得到像點20、21的空間三維坐標,進而可以解算像點20、21 之間的間隙,即地線放電間隙的空間距離。如圖中所示,基于雙像立體量測的地線間隙為26.587 cm,根據現場實測其地線間隙為25.699 cm,2 種相差0.888 cm,可以滿足塔桿金具距離測量誤差小于1 cm的精度需求。
對于絕緣子長度量測,本文以耐張塔I 型跳線串作為對象,量測其在豎直方向上的長度,其立體像對影像如圖6所示。

圖6 基于雙像立體量測的絕緣子長度量測
基于雙像立體量測的絕緣子長度為2.48 m,現場實測的長度為2.473 m,相差0.007 m,即0.7 cm,在1 cm的誤差范圍以內。
對于絕緣子角度量測,本文以玻璃絕緣子串作為對象,量測其在豎直平面上,與地球鉛垂線所交的角度,立體像對影像如圖7所示。

圖7 基于雙像立體量測的絕緣子角度量測
基于雙像立體量測的角度為85.139°,現場實測的角度為85.091°,相差0.048°,在需求的0.2°誤差范圍以內。
本文針對輸電線路工程驗收中桿塔安裝質量檢查需求,研究了一種基于RTK無人機的桿塔安裝質量檢查技術。該技術首先基于室外高精度三維控制場完成相機幾何檢校,進而使用帶RTK功能的無人機獲取桿塔的高分辨率光學影像數據,通過PPK空三解算方法獲取每幅影像的高精度外方位元素,最后通過雙像立體量測完成塔桿安裝的幾何質量檢查。通過廣東省云浮市實驗區實驗數據分析可知,該方法是可行、有效的。其金具距離量測誤差小于1 cm,夾角測量誤差小于0.2°,具有較大的實用推廣價值。