謝曄, 萬琪, 慕靜然, 駱延, 曾俊偉
基質金屬蛋白酶參與神經病理性疼痛的研究進展*
謝曄, 萬琪, 慕靜然, 駱延, 曾俊偉
(遵義醫科大學生理學教研室,貴州 遵義 563000)
基質金屬蛋白酶;神經病理性疼痛;脊髓;背根神經節;炎癥
神經病理性疼痛是一種常見的臨床癥狀,主要由神經系統損傷引起。近年研究表明,基質金屬蛋白酶(matrix metalloproteinases, MMPs)是一類鈣、鋅依賴水解酶,其不僅可切割水解組織蛋白,也可降解炎癥因子、趨化因子以及神經遞質受體等,在腦損傷、神經退行性疾病以及膠質瘤的病變過程中發揮作用。近年來,在針對神經病理性疼痛患者進行的臨床研究以及在動物模型進行的痛覺機制研究中,觀察到在感覺傳導通路上分布的MMPs參與了神經病理性疼痛的發生與維持。本文就這方面的研究進展進行綜述,為研發新藥用于臨床鎮痛治療提供參考資料。
MMPs的分子結構包括N端酶原前肽結構域、金屬蛋白酶催化結構域、可變長度的連接區和C端類血凝蛋白結構域。依據催化區結構和催化底物不同,可將MMPs分為膠原酶、明膠酶、溶血素、基質溶素、膜型MMPs和其他MMPs。研究表明,MMP-1、-2、-3、-8、-9、-14等幾種MMPs廣泛表達在神經系統,參與了神經病理性疼痛的發生與維持。其中,MMP-1和MMP-8屬于膠原酶,存在N-末端激活劑結構域、富含甘氨酸的接頭和肽酶結構域;MMP-2和MMP-9屬于明膠酶,在催化結構域有3個II型纖連蛋白重復序列;MMP-3屬于溶血素,具有類血紅蛋白結構域,通過鉸鏈區域連接到催化結構域;MMP-14屬于膜型MMPs,具有跨膜結構域和胞質結構域[1-4]。另外,金屬蛋白酶組織抑制劑(tissue inhibitors of metalloproteinases, TIMPs)是一種內源性MMPs抑制劑,包括TIMP-1、-2、-3和-4,可通過其N末端結構域與MMPs結合從而降低其切割降解能力。其中,TIMP-1可抑制MMP-9活性;TIMP-2可抑制MMP-2活性;TIMP-3可抑制MMP-1、-2、-3、-9、-14活性;TIMP-4可抑制MMP-2和MMP-14活性[5-6]。
2.1MMPs促進疼痛的臨床數據分析研究表明,在神經病理性疼痛患者的腦脊液、血清以及病變組織中,檢測到MMPs的含量出現異常。基因生物學分析顯示,基因多態性變異增加與患者疼痛程度相關,攜帶rs17997502G/2G基因型的椎間盤突出癥患者疼痛強度更高,手術治療效果較差,疼痛緩解率低[7]。在腰椎間盤突出的神經病理性疼痛患者進行手術治療,檢測到取出的纖維環和髓核病變組織中,未活化或已活化的MMP-3都比MMP-1更多,將病變組織與地塞米松共孵育后MMP-1和MMP-3活性明顯下降;將病變組織與白細胞介素1β(interleukin-1β, IL-1β)中和抗體或腫瘤壞死因子抑制劑共孵育后MMP-3活性下降,但不影響MMP-1活性,該研究推測,減輕病變組織的炎癥反應有助于MMP-1和MMP-3的活性恢復正常;與之相似,另一項隨機雙盲交叉試驗觀察到,在17例肥胖導致骨關節炎的疼痛患者血清中MMP-3、IL-1β和IL-6含量增加,給予抗炎治療后MMP-3、IL-1β和IL-6含量下降,其上升或下降的程度與痛覺評分正相關[8]。與同齡健康人群相比,在患有腰椎手術失敗綜合征的24名疼痛患者血清中MMP-2、TIMP-1和TIMP-2含量增加,由此推測MMP-2可能參與了神經病理性疼痛的長期維持[9]。而且,與同齡健康人群相比,在14名65歲以上骨關節炎疼痛患者腦脊液中,未活化和已活化的MMP-2含量明顯增多[10]。這些臨床研究初步提示,MMPs的異常表達可能與神經炎癥一起參與了神經病理性疼痛的發生與維持。
2.2MMPs促進疼痛的外周機制
2.2.1MMPs在背根神經節(dorsal root ganglion, DRG)促進疼痛的機制通過免疫組織化學染色、免疫細胞化學染色及免疫熒光雙標等形態學技術檢測到,在DRG主要表達有MMP-1、-2、-3、-9、-13、-14、-24和-28。其中,MMP-1和MMP-13表達在βIII-微管蛋白陽性神經元[11-12];MMP-2和MMP-9表達在快傳導的A型和慢傳導的C型神經元;MMP-2和MMP-14表達在衛星細胞[13];MMP-3表達在大直徑DRG神經元;MMP-24表達在A型神經元。免疫熒光雙標技術檢測到,MMP-9與內皮素受體、α-氨基-3-羥基-5-甲基-4-異噁唑丙酸受體(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor, AMPAR)、μ阿片受體(mu opioid receptor, MOR)和Mas相關基因C(Mas-related gene C, MrgC)受體共表達于DRG神經元,其中內皮素受體、AMPAR和MOR激活促進MMP-9表達,但MrgC受體激活抑制MMP-9表達[14]。
研究觀察到,在脊神經結扎、糖尿病神經病理性疼痛、切口痛或化療痛等多種大鼠/小鼠模型,分布在DRG的MMP-1、-2、-3、-9和-24表達上調,下調這些MMPs的表達或抑制其活性具有鎮痛效應[15]。這些MMPs在DRG促進病理痛發生與維持的機制有以下幾種:
2.2.1.1促進外周神經損傷與功能障礙在糖尿病神經病理性疼痛和坐骨神經損傷的疼痛大鼠,位于DRG的MMP-9和MMP-14表達及活性均上調,可以參與切割髓鞘堿性蛋白(myelin basic protein, MBP)導致其降解,其降解片段進一步誘導施萬細胞MMP-14表達增加,神經沃勒樣變性,坐骨神經纖維直徑減小,軸突功能障礙;MMP-14還可以促進MMP-2的切割與活化,促進疼痛的發生與維持;相反,基因敲除或在坐骨神經損傷位點進行神經內注射MMP-14抑制劑可以逆轉MBP降解,維持坐骨神經纖維和髓鞘穩態,從而緩解神經病理性疼痛[16-17]。
2.2.1.2促進DRG氧自由基和炎癥因子生成在坐骨神經結扎、足底切口以及紫杉醇/奧沙利鉑照射的化療痛以及嗎啡耐受的疼痛大鼠/小鼠,DRG分布的MMP-2、-3和-9的表達及活性均上調,活性氧(reactive oxygen species, ROS)、IL-1β、IL-6、腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)及誘導型一氧化氮合酶(inducible nitric oxide synthase, iNOS)生成增多,提示這些MMPs可能通過加強DRG的炎癥反應促進痛覺敏化。隨后的研究表明,在DRG神經元,MMP-2和MMP-9通過促進細胞外信號調節激酶(extracellular signal-regulated kinase, ERK;與MMP-2共定位)和p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38 MAPK;與MMP-9共定位)磷酸化導致IL-1β生成增加[13, 18];MMP-3和MMP-9的活化促進DRG巨噬細胞產生大量ROS;另外,MMP-2/9既可以降解施萬細胞膜中的Ⅳ型膠原蛋白,導致血液中的巨噬細胞穿過施萬細胞基底層釋放TNF-α,也可以直接切割pro-TNF-α,促進其與腫瘤壞死因子受體1結合,促進神經損傷區域的炎癥反應,導致神經病理性疼痛。因此,在外周神經損傷、足底切口、化療痛以及嗎啡耐受的疼痛大鼠/小鼠,鞘內注射MMP-2/9抑制劑、MMP-9抑制劑Ⅲ、TIMP1(抑制MMP-9活化)或MMP-9中和抗體可以通過抑制ERK和p38 MAPK活化、減少氧自由基和炎癥因子生成,從而發揮鎮痛效應[19-21]。其中,DRG分布的肥大細胞蛋白酶1(mast cell protease-1, Mcpt-1)可以切割MMP-3導致其激活;神經元或巨噬細胞釋放高遷移率族蛋白B1,激活Toll樣受體4/磷脂酰肌醇3-激酶/蛋白激酶B通路,導致MMP-9激活[22]。
2.3MMPs促進疼痛的中樞機制
2.3.1MMPs在脊髓背角促進疼痛的機制脊髓背角是疼痛信息整合的關鍵部位,接收來自感覺神經纖維輸入的傷害性信息。免疫組織化學染色、免疫細胞化學染色及免疫熒光雙標等形態學技術檢測到,MMP-2、-3、-7、-9、-12、-13、-14、15、16、-17和-24表達在脊髓背角。其中MMP-9[16]表達在神經元、小膠質細胞和星形膠質細胞;MMP-17和MMP-24[23]主要表達在神經元和小膠質細胞;MMP-24在初級傳入神經末梢也有表達;MMP-2、-7、-10、-12、-14、15、-16和-25主要表達在小膠質細胞[24]。在多種疼痛動物模型,分布于脊髓背角的MMP-2、-9和-24表達上調,下調這3種MMPs的表達或抑制其活性具有鎮痛效應[15],TIMP1和TIMP2通過抑制MMP-9和MMP-2的活性,從而抑制背角膠質細胞活性,疼痛得到緩解。在脊髓背角,MMP-2的表達受到DNA甲基化調控[25];背角炎癥因子、氧自由基和1-磷酸鞘氨醇受體2(sphingosine-1-phosphate receptor 2,)基因敲除可促進MMP-9表達上調[26-28];而大麻素CB2受體激活可以抑制背角MMP-2/9表達,減輕痛敏[29]。
目前研究表明,MMP-2、-9和-24在脊髓背角促進神經病理性疼痛發生與維持的機制有以下幾種:
2.3.1.1提高感覺神經元興奮性在大鼠關節腔內注射膠原酶之后,DRG神經元MMP-1表達增加,經過初級傳入終末到達脊髓背角,促進P物質釋放,導致背角神經元興奮性增強,大鼠機械痛閾降低[12]。在嗎啡依賴小鼠,出現熱痛敏和機械痛敏癥狀后,鞘內給予MMP-9抑制劑可下調背角神經元MMP-9表達/活性,NR1、ERK、蛋白激酶C(protein kinase C, PKC)、鈣/鈣調蛋白依賴性蛋白激酶II(calcium/calmodulin-dependent protein kinase II, CaMKII)和環磷腺苷效應元件結合蛋白(cAMP-response element binding protein, CREB)磷酸化程度恢復正常,痛敏癥狀緩解;但鞘內注射外源性MMP-9則痛敏癥狀加重,背角NR1/NR2B以及下游ERK1/2、CaMKII和CREB磷酸化增強,提示MMP-9的表達/活性增強通過作用于神經元-甲基-D-天冬氨酸(-methyl-D-aspartic acid, NMDA)受體導致感覺神經元興奮性增強。另外,在嗎啡耐受小鼠,脊髓背角的MMP-2和MMP-9可以切割EphB1受體,促進其與配體ephrinB2結合,EphB1受體磷酸化增強,招募含SH2結構域的Src并與NMDA受體結合,NR1和NR2B亞單位磷酸化增強,CaMKII、CREB及ERK磷酸化增加,背角神經元興奮性增加,實驗動物出現痛覺過敏。
2.3.1.2促進背角星型膠質細胞和小膠質細胞激活在后肢慢性缺血、脊神經結扎以及糖尿病神經病理性疼痛的大鼠/小鼠,均檢測到背角MMP-2和MMP-9表達上調,星形膠質細胞標志物膠質細胞激活,膠質細胞原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)和小膠質細胞標志物離子鈣結合銜接分子1 (ionized calcium binding adapter molecule-1, Iba-1)表達上調。研究表明,在脊髓背角,MMP-2和MMP-9既可以促進c-Jun氨基末端激酶1/2、ERK以及Wnt/β-Catenin通路磷酸化導致星形膠質細胞激活[30],也可以促進p38MAPK磷酸化導致小膠質細胞激活。因此,鞘內注射MMP-2抑制劑APR100、-siRNA、MMP-9抑制劑或-siRNA可下調背角MMP-9表達/活性,抑制背角膠質細胞激活和隨后的炎癥因子生成,發揮鎮痛效應[16, 30-31]。
2.3.1.3促進其他神經活性物質發揮作用,促進痛覺敏化脊髓背角分布的MMP-2、-3的-9可切割IL-1β前體序列成為具有活性的IL-1β,作用于背角神經元,促進NMDA受體激活,PKC磷酸化增強,導致痛覺敏化[32];MMP-2和MMP-9切割C-X3-C基序趨化因子1(C-X3-C motif chemokine 1,CX3CL1)前體序列,其從膜蛋白轉變為游離蛋白,促進CX3CL1與小膠質細胞CX3CL1受體的結合,激活磷脂酶C/PKC/RAS/絲裂原活化蛋白激酶激酶/P38信號促進小膠質細胞釋放更多的炎癥因子,導致痛覺敏化[33]。因此,抑制脊髓背角MMP-2、-3和-9的活性可以抑制炎癥因子發揮作用,減輕痛覺敏化。此外,MMP-24既可以促進Aβ纖維末梢從背角III-VI層發芽并侵襲到Ⅱ層,也可以直接切割肥大細胞中的N-鈣粘蛋白,促進肥大細胞IL-1β和TNF-α釋放,加強痛覺敏化。研究觀察到,在脊神經結扎[34]或自身免疫性腦脊髓炎[35]的疼痛小鼠,在中腦導水管灰質(periaqueductal gray, PAG)分布有食欲素受體1陽性的神經元,其下行纖維到達脊髓背角,可以抑制背角MMP-9、iNOS和IL-12的表達,并上調轉化生長因子β和MBP的表達,有助于減輕背角的神經炎癥,恢復神經元胞外微環境穩態,起到鎮痛作用。
2.3.2MMPs在脊髓上水平促進疼痛的機制脊髓水平以上包括腦干、間腦和大腦皮層,參與處理來自脊髓上行的疼痛信息并進行整合,產生痛覺感受。免疫組織化學染色、免疫細胞化學染色及免疫熒光雙標等形態學技術觀察到,MMP-2、-3、-8和9表達于多個腦區,可能參與了神經病理性疼痛的發生與維持。其中,MMP-2和MMP-9表達于大腦皮層、杏仁核和海馬等部位[36]。在顳下頜注射弗氏完全佐劑誘導的面部疼痛大鼠,杏仁核、海馬、下丘腦和中腦導水管周圍灰質星形膠質細胞分布的MMP-2和MMP-9表達上調,有可能與星形膠質細胞活化有關[36]。MMP-9敲除或鞘內注射MMP-9抑制劑或側腦室注射GM6001可降低嗎啡耐受疼痛小鼠中腦分布的MMP-9活性及表達,增強嗎啡鎮痛效應,延長嗎啡鎮痛維持時間[37]。此外,MMP-3表達于大腦皮層和海馬[38-39]。在前扣帶皮層分布的MMP-3可以切割NMDA受體,增強谷氨酸受體突觸傳遞效能,促進外周神經損傷后的痛覺敏化[40];MMP-8則主要表達于海馬[41]。小鼠脛骨骨折后,伴隨著痛覺過敏癥狀,海馬MMP-8表達上調,促進神經元細胞外基質成分降解,糖胺聚糖、蛋白聚糖、透明質酸合成酶(hyaluronan synthase, HAS)2、HAS3、HAPLN1及TIMP2表達下調,導致細胞外基質剛度下降,海馬神經元樹突復雜性降低;但基因敲減可通過穩定海馬神經元細胞外基質成分,維持海馬神經元的正常形態和功能從而發揮鎮痛效應[41]。
綜合以往研究,在外周神經損傷后,MMP-2和MMP-9在DRG、脊髓背角和PAG參與痛覺敏化;而MMP-3在DRG和海馬參與痛覺敏化。這種單一MMP在多位點參與神經痛形成與維持的現象使得研發針對該種MMP的鎮痛藥物具有潛在的可能性。目前已開發出三類合成MMPs抑制劑:經典Zn2+結合類、新型Zn2+結合類和非Zn2+結合類。巴馬司他是一類含有鋅螯合基團的MMPs抑制劑,可抑制關節痛大鼠軟骨蛋白降解與炎癥反應,緩解后爪腫脹與疼痛反應。腹腔注射廣譜MMPs抑制劑GM6001(廣譜MMP抑制劑)可抑制背角神經元和膠質細胞分布的MMP-2、9、17和24表達,抑制DRG神經元MBP降解和脊髓P物質釋放,阻止巨噬細胞通過血-脊髓屏障浸潤脊髓并抑制膠質細胞活化,緩解坐骨神經結扎大/小鼠神經病理性疼痛[23]。此外,MMPs中和抗體同樣抑制MMPs表達,腹腔注射MMP-9中和抗體抑制坐骨神經擠壓小鼠巨噬細胞向神經受損部位募集和遷移。盡管已發現或合成了部分MMPs抑制劑作為臨床候選藥物,但存在特異性不高、副作用較大且生物利用度低的缺點。
在藥物研發的過程中,無論是研發MMPs抑制劑或者是相關的中和抗體,都需要極高的生物制藥制造工藝,從而限制其走向臨床。我國對中草藥的開發與使用已有上千年時間,近年對天然產物的提取和優化工藝水平顯著提升,多種植物來源的MMPs抑制劑成為研究的一個熱點。在外周神經損傷后,脊髓背角分布的MMP-9迅速上升可能與早期神經痛的發生有關,稍遲的MMP-2表達上升可能與神經痛的長期維持有關[21],研發同時具有MMP-2和MMP-9活性抑制效應的藥物或許有望獲得更好的鎮痛效應。如異葒草苷灌胃、腹腔注射川芎嗪/芍藥苷甚至電針“足三里”穴位均可減輕外周神經損傷導致的疼痛,其脊髓背角MMP2/9的表達下降,炎癥因子生成減少,從而發揮鎮痛效應[32, 42-43]。表沒食子兒茶素沒食子酸酯(C22H18O10)作為天然MMPs抑制劑可降低椎間盤細胞MMP-1、-3和-13表達,減輕神經炎癥和氧化應激,緩解髓核誘導的大鼠神經根性疼痛[44]。
綜上所述,表達于DRG、脊髓背角和多個腦區的MMPs參與了神經病理性疼痛的發生與維持,其機制主要包括MMPs促進膠質細胞激活導致氧化應激與炎癥因子生成,并促進感覺神經元興奮性增強等。在以往的動物實驗中,口服或者鞘內給予某些MMPs抑制劑能夠有效減弱實驗動物的神經病理性疼痛癥狀。深入探討MMPs參與神經病理性疼痛的機制有助于加速新藥研發,解決神經病理性疼痛的治療難題。
[1]劉莉, 馬沁梅, 于嘉霖, 等. 基質金屬蛋白酶對結核肉芽腫形成及免疫調控作用的研究進展[J]. 中國病理生理雜志, 2022, 38(6):1113-1119.
Liu L, Ma QM, Yu JL, et al. Progress in effects of matrix metalloproteinases on formation and immune regulation of tuberculous granuloma[J]. Chin J Pathophysiol, 2022, 38(6):1113-1119.
[2] Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24):9739.
[3] Wang T, Ye W, Wang Y, et al. Protease inhibitor-dependent inhibition of light-induced stomatal opening. Front Plant Sci, 2021, 12:735328.
[4] Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147:1-73.
[5]何秀娟, 劉青武, 陳佳, 等. 基質金屬蛋白酶在慢性創面中的研究進展[J]. 醫學研究雜志, 2021, 50(8):155-157, 161.
He XJ, Liu QW, Chen G, et al. Research progress on the role of matrix metalloproteinases in chronic wounds[J]. J Med Res, 2021, 50(8):155-157, 161.
[6]梁坤, 耿鑫, 劉艷芬. 五味子多糖調控PI3K/AKT/mTOR信號通路對哮喘小鼠氣道重塑的影響[J]. 中國病理生理雜志, 2022, 38(7):1210-1218.
Liang K, Geng X, Liu YF. Schisandra polysaccharide regulates airway remodeling through PI3K/AKT/mTOR signaling pathway in asthmatic mice[J]. Chin J Pathophysiol, 2022, 38(7):1210-1218.
[7] Jacobsen LM, Schistad EI, Storesund A, et al. The MMP1 rs1799750 2G allele is associated with increased low back pain, sciatica, and disability after lumbar disk herniation[J]. Clin J Pain, 2013, 29(11):967-971.
[8] Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis[J]. Nutrients, 2017, 9(9):949.
[9] Kamieniak P, Bielewicz J, Kurzepa J, et al. Serum level of metalloproteinase-2 but not metalloproteinase-9 rises in patients with failed back surgery syndrome after spinal cord stimulation[J]. Neuromodulation, 2019, 22(3):262-268.
[10] Guo SL, Han CT, Jung JL, et al. Cystatin C in cerebrospinal fluid is upregulated in elderly patients with chronic osteoarthritis pain and modulated through matrix metalloproteinase 9-specific pathway[J]. Clin J Pain, 2014, 30(4):331-339.
[11] Mahmoodazdeh A, Shafiee SM, Sisakht M, et al. Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress[J]. Iran J Basic Med Sci, 2020, 23(9):1197-1206.
[12] Ita ME, Ghimire P, Welch RL, et al. Intra-articular collagenase in the spinal facet joint induces pain, DRG neuron dysregulation and increased MMP-1 absent evidence of joint destruction[J]. Sci Rep, 2020, 10(1):21965.
[13] Gu HW, Xing F, Jiang MJ, et al. Upregulation of matrix metalloproteinase-9/2 in the wounded tissue, dorsal root ganglia, and spinal cord is involved in the development of postoperative pain[J]. Brain Res, 2019, 1718:64-74.
[14] Wang HC, Cheng KI, Chou CW, et al. Intrathecal CGS-26303 pretreatment attenuates spinal nerve ligation-induced neuropathic pain in the spinal cord[J]. World Neurosurg, 2016, 91:532-541.e1.
[15] Chen Y, Zhang Y, Huo Y, et al. Adrenomedullin mediates tumor necrosis factor-α-induced responses in dorsal root ganglia in rats[J]. Brain Res, 2016, 1644:183-191.
[16] Deng X, Ma P, Wu M, et al. Role of matrix metalloproteinases in myelin abnormalities and mechanical allodynia in rodents with diabetic neuropathy[J]. Aging Dis, 2021, 12(7):1808-1820.
[17] Hong S, Remacle AG, Shiryaev SA, et al. Reciprocal relationship between membrane type 1 matrix metalloproteinase and the algesic peptides of myelin basic protein contributes to chronic neuropathic pain[J]. Brain Behav Immun, 2017, 60:282-292.
[18] Rojewska E, Popiolek-Barczyk K, Jurga AM, et al. Involvement of pro- and antinociceptive factors in minocycline analgesia in rat neuropathic pain model[J]. J Neuroimmunol, 2014, 277(1/2):57-66.
[19] Kwan M Y, Choo A, Hanania T, et al. Biomarker analysis of orally dosed, dual active, matrix metalloproteinase (MMP)-2 and MMP-9 Inhibitor, AQU-118, in the spinal nerve ligation (SNL) rat model of neuropathic pain[J]. Int J Mol Sci, 2019, 20(4):811.
[20] Tonello R, Lee SH, Berta T. Monoclonal Antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice[J]. J Pain, 2019, 20(5):515-527.
[21] Zhang Y, Wang K, Lin M, et al. Inhibition of morphine tolerance by MrgC receptor via modulation of interleukin-1β and matrix metalloproteinase 9 in dorsal root ganglia in rats[J]. Eur J Pharmacol, 2017, 815:10-17.
[22] Gu H, Wang C, Li J, et al. High mobility group box-1-toll-like receptor 4-phosphatidylinositol 3-kinase/protein kinase B-mediated generation of matrix metalloproteinase-9 in the dorsal root ganglion promotes chemotherapy-induced peripheral neuropathy[J]. Int J Cancer, 2020, 146(10):2810-2821.
[23] Liou JT, Sum DC, Liu FC, et al. Spatial and temporal analysis of nociception-related spinal cord matrix metalloproteinase expression in a murine neuropathic pain model[J]. J Chin Med Assoc, 2013, 76(4):201-210.
[24] Asano K, Nakamura T, Funakoshi K. Early mobilization in spinal cord injury promotes changes in microglial dynamics and recovery of motor function[J]. IBRO Neurosci Rep, 2022, 12:366-376.
[25] Wang H, Shen YJ, Li XJ, et al. DNMT3b SUMOylation mediated MMP-2 upregulation contribute to paclitaxel induced neuropathic pain[J]. Neurochem Res, 2021, 46(5):1214-1223.
[26] Sun L, Xu Q, Zhang W, et al. The involvement of spinal annexin A10/NF-κB/MMP-9 pathway in the development of neuropathic pain in rats[J]. BMC Neurosci, 2019, 20(1):28.
[27] Li J, Xu L, Deng X, et al. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases[J]. Pain, 2016, 157(8):1711-1723.
[28] Gu Q, Hou JC, Fang XM. S1PR2 deficiency enhances neuropathic pain induced by partial sciatic nerve ligation[J]. Turk J Med Sci, 2019, 49(1):412-421.
[29] Burston JJ, Sagar DR, Shao P, et al. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint[J]. PLoS One, 2013, 8(11):e80440.
[30] Tian G, Luo X, Tang C, et al. Astrocyte contributes to pain development via MMP2-JNK1/2 signaling in a mouse model of complex regional pain syndrome[J]. Life Sci, 2017, 170:64-71.
[31] Miranpuri GS, Schomberg DT, Alrfaei B, et al. Role of matrix metalloproteinases 2 in spinal cord injury-induced neuropathic pain[J]. Ann Neurosci, 2016, 23(1):25-32.
[32] Jiang L, Pan CL, Wang CY, et al. Selective suppression of the JNK-MMP2/9 signal pathway by tetramethylpyrazine attenuates neuropathic pain in rats[J]. J Neuroinflammation, 2017, 14(1):174.
[33] Poniatowski ?A, Wojdasiewicz P, Krawczyk M, et al. Analysis of the role of CX3CL1 (fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: insight into recent advances in actions of neurochemokine agents[J]. Mol Neurobiol, 2017, 54(3):2167-2188.
[34] Cristino L, Luongo L, Imperatore R, et al. Orexin-A and endocannabinoid activation of the descending antinociceptive pathway underlies altered pain perception in leptin signaling deficiency[J]. Neuropsychopharmacology, 2016, 41(2):508-520.
[35] Fatemi I, Shamsizadeh A, Ayoobi F, et al. Role of orexin-A in experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2016, 291:101-109.
[36] Nascimento GC, De Paula BB, Gerlach RF, et al. Temporomandibular inflammation regulates the matrix metalloproteinases MMP-2 and MMP-9 in limbic structures[J]. J Cell Physiol, 2021, 236(9):6571-6580.
[37] Nakamoto K, Kawasaki S, Kobori T, et al. Involvement of matrix metalloproteinase-9 in the development of morphine tolerance[J]. Eur J Pharmacol, 2012, 683(1/2/3):86-92.
[38] Hohjoh H, Horikawa I, Nakagawa K, et al. Induced mRNA expression of matrix metalloproteinases MMP-3, MMP-12, and MMP-13 in the infarct cerebral cortex of photothrombosis model mice[J]. Neurosci Lett, 2020, 739:135406.
[39] Russell NH, Black RT, Lee NN, et al. Time-dependent hemeoxygenase-1, lipocalin-2 and ferritin induction after non-contusion traumatic brain injury[J]. Brain Res, 2019, 1725:146466.
[40] Matsuura T, Li XH, Tao C, et al. Effects of matrix metalloproteinase inhibitors on-methyl-D-aspartate receptor and contribute to long-term potentiation in the anterior cingulate cortex of adult mice[J]. Mol Pain, 2019, 15:1744806919842958.
[41] Tajerian M, Hung V, Nguyen H, et al. The hippocampal extracellular matrix regulates pain and memory after injury[J]. Mol Psychiatry, 2018, 23(12):2302-2313.
[42] Zhang G, Liu N, Zhu C, et al. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice[J]. Int Immunopharmacol, 2019, 75:105753.
[43] Fan YX, Hu L, Zhu SH, et al. Paeoniflorin attenuates postoperative pain by suppressing matrix metalloproteinase-9/2 in mice[J]. Eur J Pain, 2018, 22(2):272-281.
[44] Krupkova O, Sekiguchi M, Klasen J, et al. Epigallocatechin 3-gallate suppresses interleukin-1β-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats[J]. Eur Cell Mater, 2014, 28:372-386.
Progress in role of matrix metalloproteinases in neuropathic pain
XIE Ye, WAN Qi, MU Jingran, LUO Yan, ZENG Junwei
(,,563000,)
Matrix metalloproteinases are known to promote glial cell activation, oxidative stress, inflammatory cytokine production and sensory neuronal hypoexcitability via cleaving substrate proteins such as myelin basic protein, collagen, tumor necrosis factor-α precursor and interleukin-1β. Interaction of matrix metalloproteinases participates in the development and maintenance of neuropathic pain at the level of the dorsal root ganglion neurons, spinal dorsal horn and brain. Therefore, matrix metalloproteinases may be promising targets for the treatment of neuropathic pain. This paper reviews progress made in elucidating the functions and mechanisms of MMPs in neuropathic pain, which may provide useful references for the development of targeted drug therapies in the future.
matrix metalloproteinases; neuropathic pain; spinal cord; dorsal root ganglion; inflammation
R338.2; R363.2
A
10.3969/j.issn.1000-4718.2023.02.022
1000-4718(2023)02-0379-06
2022-07-28
2022-11-14
[基金項目]國家自然科學基金資助項目(No. 31860291);貴州省教育廳創新群體重大研究項目(黔教合KY字[2018]025號)
Tel: 0851-28642721; E-mail: junweizeng@sohu.com
(責任編輯:李淑媛,羅森)