楊藍翔 葉明露



摘 要:在希爾伯特空間中提出了一種自適應慣性投影算法來求解偽單調變分不等式與不動點問題。通過加入自適應步長規則,新算法無需估計映射的Lipschitz系數。這優化了已有的算法,并在相同的假設條件下證明了算法所生成的序列從強收斂到變分不等式解集與不動點解集的交中一點。
關鍵詞:變分不等式;偽單調;不動點;自適應步長;慣性投影算法
中圖分類號:O224 文獻標志碼:A 文章編號:1673-5072(2023)03-0261-08
參考文獻:
[1] BAIOCCHI C,CAPELO A.Variational andquasivariational inequalities:applications to free boundary problems[M].New York:Wiley,1984.
[2] FACCHINEI F,PANG J S.Finite-dimensional variational inequalities and complementarity problems[M].Berlin:Springer,2003.
[3] KINDERLEHRER D,STAMPACCHIA G.An introduction to variational inequalities and their applications[M].New York:Academic Press,1980.
[4] KONNOV I.Combined relaxation methods for variational inequalities[M].Berlin:Springer,2001.
[5] KONNOV I.Equilibrium models and variational inequalities[M].Amsterdam:Elsevier,2007.
[6] WANG Z B,CHEN Z Y,XIAO Y B,et al.A new projection-type method for solving multi-valued mixed variational inequalities without monotonicity[J].Applicable Analysis,2020,99(9):1453-1466.
[7] GOLDSTEIN A A.Convex programming in Hilbert space[J].Bulletin of the American Mathematical Society,1964,70(5):709-710.
[8] LEVITIN E S,POLYAK B T.Constrained minimization problems[J].USSR Computational Mathematical Physics,1966,6(5):1-50.
[9] KORPELEVICH G M.The extragradient method for finding saddle points and for other problems[J].Ekonomika Matematicheskie Metody,1976,12(4):747-756.
[10]ANTIPIN A S.On a method for convex programs using a symmetrical modification of the Lagrange function[J].Ekonomika i Matematicheskie Metody,1976,12(6):1164-1173.
[11]TSENG P.A modified forward-backward splitting method for maximal monotone mappings[J].SIAM Journal on Control and Optimization,2000,38(2):431-446.
[12]CENSOR Y,GIBALI A,REICH S.The subgradient extragradient method for solving variational inequalities in Hilbert space[J].Journal of Optimization Theory and Applications,2011,148(2):318-335.
[13]陳藝,葉明露.求解偽單調變分不等式的修正投影收縮算法[J].西華師范大學學報(自然科學版),2021,42(3):246-253.
[14]CAI G,DONG Q L,PENG Y.Strong convergence theorems for inertial Tsengs extragradient method for solving variational inequality problems and fixed point problems[J].Optimization Letters,2021,15(4):1457-1474.
[15]LIU H,YANG J.Weak convergence of iterative methods for solving quasimonotone variational inequalities[J].Computational Optimization and Applications,2020,77(2):491-508.
[16]BAUSCHKE H H,COMBETTES P L.Convex analysis and monotone operator theory in Hilbert space[M].New York:Springer,2011.
[17]GOEBEL K,REICH S.Uniformconvexity,hyperbolic geometry,and non-expansive mappings[M].New York:Marcel Dekker,1984.
[18]MAINGE P E.A hybrid extragradient-viscosity method for monotone operators and fixed point problems[J].SIAM Journal on Control and Optimization,2008,479(3):1499-1515.
[19]XU H K.Iterative algorithms for nonlinear operators[J].Journal of the London Mathematical Society,2002,66(1):240-256.
Abstract:In this paper,a self-adaptive inertial projection algorithm is proposed for solving pseudomonotone variational inequalities and fixed-point problems in Hilbert space.The adding of a self-adaptive step size rule enables the new algorithm to do no estimation of Lipschitz modulus of the mapping.It is an optimization of the existing algorithm.Moreover,under the same assumption,it is proved that the sequence generated by the algorithm can strongly converge to a point in the intersection of the solution sets of variational inequalities and fixed points.
Keywords:variational inequality;pseudomonotone;fixed points;self-adaptive step size;inertial projection algorithm
基金項目:國家自然科學基金面上項目(11871059);國家自然科學基金青年項目(11801455)
作者簡介:楊藍翔(1996—),女,碩士研究生,主要從事優化理論及應用研究。
通信作者:葉明露(1975—),男,博士,教授,碩士生導師,主要從事優化理論及應用研究。E-mail:yml2002cn@aliyun.com
引文格式:楊藍翔,葉明露.一類偽單調變分不等式與不動點問題的自適應慣性投影算法[J].西華師范大學學報(自然科學版),2023,44(3):261-268.