趙冰 梁玉蕾 苑麗
摘要:細菌耐藥性的持續發展是全世界公共衛生難題,結果導致臨床醫學和畜牧業防控耐藥菌感染日益困難,不僅嚴重威脅了人類健康,而且制約了畜牧業的健康持續發展。異質性耐藥是細菌耐藥發展的中間環節,在一定條件下能發展為穩定耐藥菌,從而進一步加重細菌耐藥;同時還會導致臨床用藥治療失敗,延長病程或影響養殖業的經濟效益。本文從異質性耐藥菌的分類、危害、檢測方法與判定標準、流行病學特征及形成機制進行綜述,以期為畜牧業臨床診斷與研究異質性耐藥菌提供理論依據,并為有效遏制細菌耐藥發展提供幫助。
關鍵詞:異質性耐藥;形成機制;判定標準;流行病學特征;動物源細菌;檢測方法
中圖分類號:R378? ? ? ? 文獻標志碼:A? ? ? ? ?文章編號:1001-8751(2023)03-0173-05
Reviews on Heteroresistance of Bacteria Isolated from Animals
Zhao Bing,? ?Liang Yu-lei ,? ?Yuan Li
(College of Veterinary Medicine, Henan Agricultural University,? ? Zhengzhou? ?450046)
Abstract: The continuous development of bacterial resistance is a global public health problem. As a result, it is increasingly difficult to prevent and control drug-resistant bacterial infections in human medicine and animal husbandry, which not only seriously threatens human health, but also restricts the healthy and sustainable development of animal husbandry. Heteroresistance (HR) is an intermediate stage in the development of antibiotic resistance, which can develop into stable drug-resistant bacteria under certain conditions, thus further aggravating bacterial resistance. At the same time, it will lead to the failure of clinical drug treatment, prolong the course of disease or affect the economic benefits of stockbreeding. This article reviews the classification, harm, detection methods and criteria, epidemiological characteristics and formation mechanism of heteroresistant bacteria, in order to provide a theoretical basis for clinical diagnosis and research of heteroresistant bacteria in animal husbandry, as well as provide help for effectively curbing the development of drug resistance.
Key words: heteroresistance;? ?formation mechanism;? ?criteria;? ?epidemiological characteristics;? ?bacteria isolated from animal;? ?detection methods
通常情況下,細菌表型耐藥與其攜帶的耐藥質粒、耐藥基因或突變、調控系統或多藥外排系統突變等之間存在明顯的相關性和可預測性[1]。然而,異質性耐藥(Heteroresistance,HR)細菌的日益增加打破了這一常規。早在1947年,人們就在一株流感嗜血桿菌中發現了異質性耐藥現象,約20年后,學者們又在一株葡萄球菌中觀察到類似現象。但是,直到1970年,人們才將此現象正式命名為異質性耐藥[2]。HR是細菌耐藥的一種特殊類型,是同一個宿主的分離菌或一個克隆菌群對同一個藥物的敏感性存在顯著差異,從而出現敏感和耐藥程度明顯不同的細菌亞群共存的特殊菌群[3]。當選用美國臨床實驗室標準化協會(Clinical and laboratory standards institute,CLSI)或歐洲藥敏試驗委員會(The European committee on antimicrobial susceptibility testing,EUCAST)篩選的“敏感”藥物治療時,會出現病程延長、反復感染和治療失敗等后果,給臨床有效防控造成困擾,并影響養殖業的經濟效益和健康發展。同時,HR菌是敏感菌進化為耐藥菌的重要途徑之一,在抗菌藥選擇性壓力下,此類菌株能轉變為穩定耐藥菌株。因此,研究HR菌的表型特征及形成機制對解決當今世界嚴重的細菌耐藥難題具有重大意義。
1 HR菌的分類
HR菌的本質是細菌對同一個藥物的敏感性有顯著差異,在整個HR細菌群體中數量較多的稱為優勢亞群,一般占到整個菌群的90% ~ 99%,其他的稱為次要亞群[2]。按來源可將其分為多克隆HR菌和單克隆HR菌。前者是指細菌從同一宿主的相同感染部位同時或先后分離獲得,盡管屬于同一種細菌,但它們的遺傳背景明顯不同。后者是指在單一克隆細菌培養液中含有敏感/耐藥程度明顯不同的亞群[3]。
按各亞群的耐藥表型可將HR菌分為3種類型[2-4]:(1)各亞群均對某一藥物耐藥,但耐藥程度有明顯差異;CLSI檢測耐藥,改用其他藥物治療。(2)各亞群均對某一藥物敏感,但敏感程度明顯不同,其中優勢亞群敏感性最高;CLSI檢測敏感,且該藥物治療有效;但在該藥物的持續選擇性壓力下,次要亞群有發展為耐藥菌的潛能。(3)各亞群對某一藥物的敏感/耐藥程度明顯不同,其中優勢亞群敏感,次要亞群(可能不止一種)呈現不同程度的耐藥(故又叫耐藥亞群);治療初期CLSI檢測對該藥敏感,但選用該藥治療無效。其中最后一種易用藥失敗,對臨床危害最大。
按各亞群是否能在沒有抗菌藥的選擇性壓力下持續存在,將HR菌的亞群分為穩定耐藥亞群和不穩定耐藥亞群。前者是指在不含抗菌藥的培養基內持續培養40~50代后,該亞群仍然保持原有的耐藥特性,而后者是指在不含抗菌藥的培養基內持續培養后,該亞群的耐藥可發生逆轉,甚至重新恢復對該抗菌藥的敏感性,臨床中較為常見[3,5]。
2 HR菌的危害
近年來研究發現,多數病原菌對抗菌藥均能產生HR[3,6-8],HR菌對臨床的危害主要包括以下兩種。
2.1 在藥物選擇性壓力下,HR菌能發展為穩定耐藥菌
當生長環境中存在抗菌藥時,異質性耐藥菌中敏感的優勢亞群被抑殺,而耐藥亞群會迅速生長,從而逐漸替代敏感亞群發展為優勢菌群,進而異質性耐藥菌成為穩定耐藥菌[9-12]。2020年,Band等[9]通過評估臨床分離的耐碳青霉烯類腸桿菌對β-內酰胺類抗生素的HR比例,證明對β-內酰胺類抗生素的HR隨著抗生素的使用而發展,并逐漸被耐藥所取代。但是,當生長環境中不含抗菌藥時,異質性耐藥菌各耐藥亞群的發展趨勢尚不明晰。如果耐藥亞群的生長適應性代價與優勢亞群差異不大,各亞群間組成比例是保持恒定還是會發生改變?如果耐藥亞群的生長適應性代價較大,其生長速度會明顯低于優勢亞群,當完全被后者替代后,該異質性耐藥菌可能會重新逆轉為敏感菌。但是,逆轉的敏感菌是否仍然保持異質的特性?而且當再次接觸抗菌藥后能否或需要多長時間會再次成為異質性耐藥菌?目前尚未見有相關報道。
2.2 HR菌感染會導致治療失敗
在臨床病例中分離鑒定的異質性耐藥菌,由于菌群中的優勢亞群仍為敏感菌,耐藥亞群所占比例很低,所以采用CLSI/EUCAST推薦的藥敏試驗獲得的MIC值是抗菌藥抑制優勢亞群的最小濃度,篩選出的敏感藥物僅能抑殺異質性耐藥菌中敏感的優勢亞群,對占少數的耐藥亞群(不超過10%)不僅不能抑制,反而還提供了一個促進其生長繁殖的有利環境,且最終會導致病程延長和抗菌藥治療失敗[3-4,13-14]。2017年,Band團隊[14]在研究黏菌素異質性耐藥陰溝腸桿菌感染小鼠的治療試驗中發現,在持續給藥治療過程中,耐藥亞群由最初的<10%迅速增殖到了80%,并導致黏菌素治療失敗。2020年,Zhang等[15]發現阿米卡星和美羅培南異質性耐藥的肺炎克雷伯菌導致了小鼠感染模型治療失敗。
3 HR菌的判定標準及檢測方法
盡管臨床菌株中異質性耐藥現象時有發生,但迄今為止國際上尚無統一、公認的判定標準。2015年,El-Halfawy和Valvano提出當細菌能在不低于含有4倍MIC值藥物的培養基上生長時,即為該藥的異質性耐藥菌[2]。2019年,Andersson等[3]建議異質性耐藥菌的判定標準不僅要符合上述條件,而且檢出頻率應不低于1×10-7 CFU/mL。
由于CLSI/EUCAST推薦的藥敏檢測方法并不能鑒定細菌是否為異質性耐藥菌,為臨床及時有效監控造成困難。目前,異質性耐藥菌檢測方法主要包括三種:紙片擴散法、Etest法和群體分析法(Population analysis profiling,PAP)[3,16]。前兩種方法均為初篩,當抑菌圈中出現有散在菌落時即為疑似異質性耐藥菌。方法簡便、直觀;但可信度較低,還不能確定異質性耐藥菌中各耐藥亞群的耐藥程度及亞群數量。第三種方法能定量分析,但步驟繁瑣,耗時耗力,且技術性強,臨床推廣應用困難[3,17]。同時,上述三種方法還須借助繪制藥物的殺菌動力學曲線才能將異質性耐藥菌和持留菌進行有效區分[18]。
4 HR菌的流行病學特征
盡管異質性耐藥菌的流行特征已有一些報道,但截至目前,研究主要局限在醫院感染分離菌,如葡萄球菌、鏈球菌、結核分枝桿菌和腸球菌等革蘭陽性菌[3,7,19-21];銅綠假單胞菌、鮑曼不動桿菌、陰溝腸桿菌、沙門菌、幽門螺桿菌等革蘭陰性菌[8,22-25]。同時,僅有少量文獻涉及到大腸埃希菌,且仍為醫院感染分離[10,26,27]。涉及到的抗菌藥多為人用重要或新型藥物,如阿莫西林、頭孢地洛,頭孢吡肟、哌拉西林/他唑巴坦和碳青霉烯類等β-內酰胺類[10,22,28-30],慶大霉素、妥布霉素、阿米卡星和奈替米星等氨基糖苷類[31],氟喹諾酮類[21]及萬古霉素[7]、替加環素[8]、黏菌素[6,32]、利福平[33]、磷霉素[27]和磺胺甲噁唑/甲氧芐啶[19]等。目前動物源分離菌的HR報道較少,主要涉及到豬源大腸埃希菌、雞源金黃色葡萄球菌、沙門菌、鮑曼不動桿菌和牛源葡萄球菌[34-38]。本課題組2018年在12株豬源大腸埃希菌中發現了黏菌素HR菌[34],2020年又在4株對磷霉素敏感的雞源大腸埃希菌中發現了磷霉素HR菌[39],說明目前獸醫臨床分離菌中已有異質性耐藥菌的存在,解釋了臨床通過CLSI/EUCAST選用抗菌藥治療失敗的原因;同時也表明研究獸醫臨床分離菌對抗菌藥異質性耐藥的迫切性和必要性。
5 HR菌的形成機制
5.1 穩定耐藥亞群形成的機制
目前,穩定耐藥亞群形成的機制包含三種方式:一是耐藥亞群發生了穩定的遺傳學突變。如細菌基因組或質粒中耐藥基因的堿基發生移碼、插入或缺失等變異[3]。2008年,Matteo等[28]發現幽門螺桿菌對阿莫西林的異質性耐藥是由于青霉素結合蛋白PBP-1A發生了突變。2020年,Morales-León等[39]在研究肺炎克雷伯菌的黏菌素異質性耐藥形成機制時發現,PhoPQ和MgrB中存在多種突變是其穩定耐藥亞群形成的主要原因。二是非特異性耐藥基因的表達發生改變。如多藥外排泵的表達上調、膜孔蛋白相關基因缺失或表達下調等[3]。2011年,Lee 等[40]在檢測鮑曼不動桿菌的亞胺培南異質性耐藥菌時發現,多數異質性耐藥菌攜帶的β-內酰胺酶(blaADC-29)啟動子區插入了ISAba1,而ISAba1自身攜帶的啟動子又明顯升高了blaADC-29的表達量,從而產生異質性耐藥。本課題組在研究豬源大腸埃希菌對黏菌素的異質性耐藥形成機制時發現,PmrB 蛋白的93位氨基酸變異可顯著上調雙組分信號轉導系統PmrAB的表達量,從而導致穩定耐藥亞群的產生[34]。在研究雞源大腸埃希菌對磷霉素的HR形成機制時發現,編碼磷霉素轉運蛋白GlpT的基因glpT表達量顯著下降是導致耐藥亞群敏感性降低的主要原因[39]。三是耐藥亞群的生長適應性代價與優勢亞群差異不明顯[40,42]。
5.2 不穩定耐藥亞群的形成機制
目前發現不穩定耐藥亞群形成的機制有兩種:一是耐藥基因的突變誘導了其他代償性變異。臨床中,有部分耐藥基因的突變會提高細菌的生長適應性代價。當生存環境中缺少抗菌藥時,較高的生長適應性代價會誘導細菌發生其他代償性的變異,從而盡可能降低自身的生長代價;而生長代價的降低常常伴隨著菌株的耐藥程度下降,結果就形成了對抗菌藥耐藥有明顯差異的亞群。此種機制已在氨基糖苷類、替加環素、碳青霉烯類和磺胺-抗菌增效劑等異質性耐藥菌中發現[5,8,41,43]。二是細菌本身發生了非穩定性耐藥突變。如耐藥基因通過串聯擴增來增加其拷貝數,從而上調其表達量[3,5]。2018年,Schechter等[30]發現大腸埃希菌中TEM-1型β-內酰胺酶在基因組中的串聯擴增是導致該菌對哌拉西林/他唑巴坦異質性耐藥的主要原因。2019年,Nicoloff等[5]發現一株頭孢吡肟異質性耐藥鼠傷寒沙門菌,且證實其形成機制與細菌攜帶的blaCARB-2基因發生了串聯擴增有關。由于基因的串聯擴增不穩定,易于丟失,所以由此獲得的耐藥亞群也不穩定。當生存環境中缺少抗菌藥時,基因的串聯擴增消失,亞群的耐藥表型丟失并逆轉為敏感。
6 展望
盡管HR現象很早就已發現,但是,由于其各亞群的組成在不同條件下是動態變化的,再加上國際上判定標準不統一,且檢測手段繁瑣,所以目前國內外有關動物源HR菌的研究較少,尤其是形成分子機制的文獻更少。為遏制動物源分離菌耐藥的持續發展,深入系統研究HR菌的產生機制是至關重要的,希望能引起相關學者專家的重視。
參 考 文 獻
Hughes D, Andersson D I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 374-391.
EI-Halfawy O M, Valvano M A. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clin Microbiol Rev, 2015, 28(1): 191-207.
Andersson D I, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17(8): 479-496.
Band V I, Weiss D S. Heteroresistance: A cause of unexplained antibiotic treatment failure?[J]. PLoS Pathog, 2019, 15(6): e1007726.
Nicoloff H, Hjort K, Levin B R, et al. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification[J]. Nat Microbiol, 2019, 4(3): 504-514.
Kapel N, Caballero J D, MacLean R C. Localized pmrB hypermutation drives the evolution of colistin heteroresistance[J]. Cell Rep, 2022, 39(10): 110929.
Bathavatchalam Y D, Solaimalai D, Amladi A, et al. Vancomycin heteroresistance in Staphylococcus haemolyticus: elusive phenotype[J]. Future Sci OA, 2021, 7(7): Fso710.
Jo J, Ko K S. Tigecycline heteroresistance and resistance mechanism in clinical isolates of Acinetobacter baumannii[J]. Microbiol Spectr, 2021, 9(2): e0101021.
Band V I, Weiss D S. Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance[J]. PLoS Biol, 2021, 19(7): e3001346.
Sun J D, Huang S F, Yang S S, et al. Impact of carbapenem heteroresistance among clinical isolates of invasive Escherichia coli in Chongqing, southwestern China[J]. Clin Microbiol Infect, 2015, 21(5):469. e1-10.
Wang X, Kang Y, Luo C, et al. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination[J].MBio, 2014, 5(1): e00942-13.
Hjort K, Nicoloff H, Andersson D I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica[J]. Mol Microbiol, 2016, 102(2): 274-289.
Band V I, Crispell E K, Napier B A, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1(6): 16053.
Band V I, Satola S W, Burd E M, et al. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. MBio, 2018, 9(2): e02448-17.
Zhang F, Ding M, Yan X, et al. Carbapenem-resistant K. pneumoniae exhibiting clinically undetected amikacin and meropenem heteroresistance leads to treatment failure in a murine model of infection[J]. Microb Pathog, 2021, 160: 105162.
張亞會, 李文茹, 謝小保. 銅綠假單胞菌異質性耐藥的研究進展[J]. 微生物學通報, 2022, 49(3): 1167-1176.
Liu H, Jia X, Zou H, et al. Detection and characterization of tigecycline heteroresistance in E. cloacae: clinical and microbiological findings[J]. Emerg Microbes Infect, 2019, 8(1): 564-574.
Dewachter L, Fauvart M, Michiels J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance[J]. Mol Cell, 2019, 76(2): 255-267.
Nurjadi D, Chanthalangsy Q, Zizmann E, et al. Phenotypic detection of hemin-inducible trimethoprim-sulfamethoxazole heteroresistance in Staphylococcus aureus[J]. Microbiol Spectr, 2021, 9(2): e0151021.
Li P, Wei Y, Li G, et al. Comparison of antimicrobial efficacy of eravacycline and tigecycline against clinical isolates of Streptococcus agalactiae in China: In vitro activity, heteroresistance, and cross-resistance[J]. Microb Pathog, 2020, 149: 104502.
Rigouts L, Miotto P, Schats M, et al. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations[J]. Sci Rep, 2019, 9(1): 11760.
Jia X, Ma W, He J, et al. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia[J]. Int J Antimicrob Agents, 2020, 55(3): 105832
Mashaly G E, Mashaly M E. Colistin-heteroresistance in carbapenemase-producing Enterobacter species causing hospital-acquired infections among Egyptian patients[J]. J Glob Antimicrob Resist, 2021, 24: 108-113.
Zhang C Z, Zhang Y, Ding X M, et al. Emergence of ciprofloxacin heteroresistance in foodborne Salmonella enterica serovar Agona[J]. J Antimicrob Chemother, 2020, 75(10): 2773-2779.
Arévalo-Jaimes B V, Rojas-Rengifo D F, Jaramillo C A, et al. Genotypic determination of resistance and heteroresistance to clarithromycin in Helicobacter pylori isolates from antrum and corpus of colombian symptomatic patients[J]. BMC Infect Dis, 2019, 19(1): 546.
Liao W, Lin J, Jia H, et al. Resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China[J]. Infect Drug Resist, 2020, 13: 3551-3561.
Lucas A E, Ito R, Mustapha M M, et al. Frequency and mechanisms of spontaneous fosfomycin nonsusceptibility observed upon disk diffusion testing of Escherichia coli[J]. J Clin Microbiol, 2018, 56(1): e01368-17 .
Matteo M J, Granados G, Olmos M, et al. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates[J]. J Antimicrob Chemother, 2008, 61(3): 474-477.
Karakonstantis S, Rousaki M, Kritsotakis E I. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance[J]. Antibiotics (Basel ), 2022, 11(6): 723.
Schechter L M, Creely D P, Garner C D, et al. Extensive gene amplification as a mechanism for piperacillin-tazobactam resistance in Escherichia coli[J]. mBio, 2018, 9(2): e00583-18.
Stojowska-Sw?drzyńska K, ?upkowska A, Kuczyńska-Wi?nik D, et al. Antibiotic heteroresistance in Klebsiella pneumoniae[J]. Int J Mol Sci, 2021, 23(1): 449.
Wang Y, Ma X, Zhao L, et al. Heteroresistance is associated with in vitro regrowth during colistin treatment in carbapenem-resistant Klebsiella pneumoniae[J]. Front Microbiol, 2022, 13: 868991.
Ng K C S, Supply P, Cobelens F G J, et al. How well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis? [J]. J Clin Microbiol, 2019, 57(11): e00717-19.
Kuang Q, He D, Sun H, et al. R(93)P Substitution in the PmrB HAMP domain contributes to colistin heteroresistance in Escherichia coli isolates from swine[J]. Antimicrob Agents Chemother, 2020, 64(11): e01509-20.
Zwe Y H, Chin S F, Kohli G S, et al. Whole genome sequencing (WGS) fails to detect antimicrobial resistance (AMR) from heteroresistant subpopulation of Salmonella enterica[J]. Food Microbiol, 2020, 91: 103530.
Mello P L, Pinheiro L, Martins L A, et al. Short communication: β-Lactam resistance and vancomycin heteroresistance in Staphylococcus spp. isolated from bovine subclinical mastitis[J]. J Dairy Sci, 2017, 100(8): 6567-6571.
Sancak B, Yagci S, Gür D, et al. Vancomycin and daptomycin minimum inhibitory concentration distribution and occurrence of heteroresistance among methicillin-resistant Staphylococcus aureus blood isolates in Turkey[J]. BMC Infect Dis, 2013, 13: 583.
?a?lan E, Nigiz ?, Sancak B, et al. Resistance and heteroresistance to colistin among clinical isolates of Acinetobacter baumannii[J]. Acta Microbiol Immunol Hung, 2020, 67(2): 107-111.
Zhao B, Han H, He K, et al. Decreased cyclic-AMP caused by ATP contributes to fosfomycin heteroresistance in avian Escherichia coli[J].J Antimicrob Chemother, 2022, 78(1):216-224.
Morales-León F, Lima CA, González-Rocha G, et al. Colistin heteroresistance among extended spectrum β-lactamases-producing Klebsiella pneumoniae[J]. Microorganisms, 2020, 8(9): 1279.
Lee H Y, Chen C L, Wang S B, et al. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: mechanism and clinical implications[J]. Int J Antimicrob Agents, 2011, 37(4): 302-308.
Cannatelli A, Giani T, D'Andrea M M, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin[J]. Antimicrob Agents Chemother, 2014, 58(10): 5696-5703.
Fernández Cuenca F, Sánchez Mdel C, Caballero-Moyano F J, et al. Prevalence and analysis of microbiological factors associated with phenotypic heterogeneous resistance to carbapenems in Acinetobacter baumannii[J]. Int J Antimicrob Agents, 2012, 39(6): 472-477.
收稿日期:2022-09-02
作者簡介:趙冰,碩士,主要從事細菌分離及耐藥機制研究。
*通訊作者:苑麗,教授,主要研究細菌耐藥機制及耐藥逆轉。