



[摘要] 目的 研究山東漢族人群內收蛋白2(ADD2)基因rs3755351位點單核苷酸多態性與重度子癇前期遺傳易感性的關系。
方法 選取山東地區1 184例重度子癇前期病人(病例組)和1 421例健康對照者(對照組)作為研究對象,將病例組病人進一步分為早發型重度子癇前期(EOSP)和晚發型重度子癇前期(LOSP)兩個亞組。提取外周血DNA,采用TaqMan探針PCR技術檢測ADD2基因rs3755351位點基因型分布和等位基因頻率。
結果
病例組ADD2基因rs3755351位點AA、AC、CC基因型的頻率分別為10.81%、43.67%和45.52%,A、C等位基因的頻率分別為32.64%和67.36%,與對照組相比,差異均無統計學意義(P>0.05)。EOSP組與對照組相比較,rs3755351位點的等位基因頻率差異有顯著性(χ2=6.394,P<0.05),但基因型頻率差異無統計學意義(P>0.05)。EOSP組與LOSP組、LOSP組與對照組比較,rs3755351位點的基因型和等位基因頻率差異均無統計學意義(P>0.05)。
結論 山東漢族人群ADD2基因rs3755351位點的單核苷酸多態性可能與子癇前期的嚴重程度有關,該基因是EOSP的易感基因之一。
[關鍵詞] 先兆子癇;ADD2基因;多態性,單核苷酸;疾病遺傳易感性
[中圖分類號] R714.244;R363.25
[文獻標志碼] A
[文章編號] 2096-5532(2023)01-0097-04
doi:10.11712/jms.2096-5532.2023.59.024
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20230302.1736.003.html;2023-03-03 15:43:36
RELATIONSHIP BETWEEN SINGLE NUCLEOTIDE POLYMORPHISM AT RS3755351 IN ADD2 GENE AND GENETIC SUSCEPTIBILITY TO SEVERE PREECLAMPSIA IN HAN POPULATION OF SHANDONG PROVINCE, CHINA
YANG Zhencui, XU Longqiang, LIU Shuhui, ZONG Jinbao
(Department of Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
; [ABSTRACT] "Objective "To study the relationship between single nucleotide polymorphism at rs3755351 in the beta-adducin gene (ADD2) and genetic susceptibility to severe preeclampsia in the Han population of Shandong province, China.
Methods
A total of 1 184 patients with severe preeclampsia (case group) and 1 421 healthy controls (control group) from Shandong province were included. The case group was further divided into early-onset severe preeclampsia (EOSP) and late-onset severe preeclampsia (LOSP) subgroups. DNA was extracted from peripheral blood. TaqMan PCR was used to analyze the genotype and allele frequencies at rs3755351 in the ADD2 gene.
Results "In the case group, the frequencies of AA, AC, and CC genotypes at rs3755351 in the ADD2 gene were 10.81%, 43.67%, and 45.52%, respectively, and the frequencies of alleles A and C were 32.64% and 67.36%, respectively, with no significant differences from those in the control group (Pgt;0.05). The EOSP group differed significantly from the control group in the allele frequency of rs3755351 (χ2=6.394,Plt;0.05), but not in the genotype frequency (Pgt;0.05). There were no significant differences in the genotype and allele frequencies of rs3755351 between the EOSP and LOSP groups, nor between the LOSP and control groups.
Conclusion "The single nucleotide polymorphism at rs3755351 in the ADD2 gene may be related to the severity of preeclampsia among the Shandong Han population. This gene is a susceptibility gene for EOSP.
[KEY WORDS] "pre-eclampsia; ADD2 gene; polymorphism, single nucleotide; genetic
子癇前期(PE)是一種以妊娠期高血壓和蛋白尿為特征的妊娠特異性疾病,全球發病率為3%~5%,嚴重危害母嬰健康[1]。在巴西,高血壓疾病是導致孕產婦圍生期死亡的主要原因,占所調查孕產婦死因的25%[2]。另外,高血壓還與胎兒死亡、新生兒死亡、宮內生長受限和早產的風險增加有關[3]。研究表明,內皮細胞損傷、氧化應激、遺傳因素和營養因素等與PE的發病有關[4]。內收蛋白(ADD)是
一種細胞膜骨架蛋白,由α、β、γ 等3個亞基組成異源二聚體。這3個亞基分別由基因ADD1、ADD2以及ADD3所編碼[5]。有文獻報道,ADD的遺傳變異與高血壓及相關疾病有關,且其基因多態性與高血壓的易感性密切相關[6-8]。基于此,我們推測ADD2基因的遺傳變異可能與PE有關。因此,本研究探討了山東漢族人群ADD2基因rs3755351位點的單核苷酸多態性與重度PE遺傳易感性的關系,旨在為闡明PE的發病機制提供新的思路。現將結果報告如下。
1 對象和方法
1.1 研究對象
選取2014年1月—2016年1月青島大學附屬醫院、山東省立醫院、濱州醫學院附屬醫院的重度PE病人1 184例(病例組)和正常孕婦1 421例(對照組)作為研究對象。病例組只納入孕周大于28周的重度PE病人,PE診斷均符合《妊娠期高血壓疾病診治指南(2020)》的標準[9]。根據發生重度PE的早晚,將病例組病人分為早發型重度PE(EOSP,指妊娠34周以前發生的重度PE)和晚發型重度PE(LOSP,≥34周發生的重度PE)[10]。本研究獲青島大學附屬醫院倫理委員會批準,所有研究對象均簽署知情同意書。
1.2 研究方法
1.2.1 外周血DNA提取 采集所有研究對象外周肘靜脈血2 mL,EDTA抗凝,凍存于-80 ℃冰箱。用天根血液基因組DNA提取試劑盒(離心柱式)提取400 μL外周血基因組DNA,-20 ℃保存備用。
1.2.2 ADD2基因分型分析 應用美國ABI公司合成的TaqMan探針,采用TaqMan探針PCR技術對ADD2基因的rs3755351位點進行單核苷酸多態性分析。rs3755351位點檢測前引物序列為5′-TGTGTTCAGCGACAGTATCTCTTTA-3′,后引物序列為5′-GGACTAGTGACTTGGGAGCCAC-TTA-3′。實時熒光定量PCR反應體系共7 μL,由1.75 μL 2×MIX溶液、0.05 μL 20×SNP探針、1.00 μL模板DNA和4.20 μL的去離子水組成。將上述反應體系放入C1000TM熱循環儀和CFX96TM實時系統(BIO-RAD,Hercules,CA)中進行擴增,條件如下:95 ℃變性10 min,95 ℃退火15 s,60 ℃延伸1 min,共45個循環。熒光信號在60 ℃延伸時進行捕捉。采用Bio-Rad CFX Manager 3.0軟件進行基因型判別。為驗證TaqMan探針法的準確性,隨機抽取兩組的20份DNA樣本進行Sanger測序,結果顯示兩種方法的一致性為100%。
1.3 統計學分析
使用SPSS 24.0軟件進行統計學分析。計量數據以±s表示,兩組比較采用t檢驗;兩組計數資料的比較采用卡方檢驗。以P<0.05為差異有統計學意義。
2 結" 果
2.1 臨床資料比較
與對照組相比,病例組的收縮壓和舒張壓明顯升高,入院孕周和分娩孕周明顯提前,胎兒出生體質量明顯降低(t=-38.91~54.64,P<0.01)。見表1。EOSP組與對照組相比,年齡、孕期體質量增加、高血壓家族史、凝血功能、肝腎功能等指標差異均有統計學意義(χ2=7.74~167.95,P<0.05);對妊娠結局進行分析,EOSP組胎兒窘迫、胎兒宮內生長受限、死胎、死產、新生兒死亡的發生率均顯著高于對照組,差異具有統計學意義(χ2=8.31~99.37,P<0.05)。見表2。
2.2 病例組與對照組基因型和等位基因頻率比較
病例組和對照組ADD2基因rs3755351位點的基因型分布符合Hardy-Weinberg平衡定律(P>0.05)。兩組基因型和等位基因頻率比較差異均無統計學意義(χ2=3.345、3.308,P>0.05)。見表3。
2.3 EOSP組、LOSP組與對照組基因型和等位基因頻率比較
EOSP組與對照組比較,rs3755351位點的等位基因頻率差異有顯著性(χ2=6.394,P<0.05),但基因型頻率差異無統計學意義(χ2=1.065,P>0.05)。EOSP組與LOSP組比較、LOSP組與對照組比較,rs3755351位點的基因型和等位基因頻率差異均無統計學意義(χ2=0.010~4.018,P>0.05)。見表4。
3 討" 論
PE是一種妊娠特異性疾病,全球的發病率為3.2%~12.0%,我國的發病率為4.2%[11-12]。有研究表明,妊娠早期胎盤發育受損和螺旋動脈重構受損通常與EOSP有關,而LOSP可能與母體內皮功能障礙有關[13]。一項全面的前瞻性研究表明,PE與心血管疾病死亡獨立相關,并且,與LOSP相比,EOSP胎兒生長受限更嚴重,孕產婦圍生期的發病率和死亡率更高[14],遠期發生心血管疾病死亡的風險也更高[15]。
ADD2基因位于染色體2p13-p14上,有13個外顯子,大小為100 kb。ADD2在大腦、胚胎和腎中表達最高,在維持細胞形態、參與物質運輸、傳遞細胞形態信號、影響和控制細胞增殖方面發揮重要作用[16-18]。例如,敲除ADD2基因的小鼠會表現出以輕度貧血和代償性溶血為特征的表型[19-20]。在小鼠大腦中,ADD2被認為是突觸結構的組成部分,在海馬的突觸可塑性中協調運動和學習記憶過程[21]。在腎臟組織中,ADD2蛋白的突變改變了腎臟Na+-K+-ATP酶內吞作用的動態調節,還通過調節特定足細胞的表達,參與腎小球病變的發展[18,22]。流行病學研究還發現,ADD2可能是鹽敏感型原發性高血壓的易感基因,通過增加腎小管基底膜Na+-K+-
ATP酶活性,增加腎小管上皮細胞對Na+的重吸
收,導致高血壓[5,23]。例如,KATO等[24]在對日本高血壓人群進行大量病例-對照關聯研究中發現,ADD2基因rs3755351位點多態性與高血壓顯著相關。耿啟彬等[25]研究發現,在福建人群中,ADD2基因的rs3755351位點與高血壓遺傳易感性相關,與AC或CC基因型相比,攜帶AA基因型能顯著降低罹患高血壓的風險,但在廣東人群中未發現該位點與高血壓的遺傳易感性相關。在中國藏族人群中,ADD2基因rs3755351位點多態性與藏族高原高血壓的發生有關,是世居藏族人群高原高血壓發生的易感基因之一[26]。
本研究對1 184例重度PE孕婦和1 421例健康孕婦的一般臨床資料分析顯示,與對照組相比,重度PE孕婦收縮壓和舒張壓都升高,入院孕周和分娩孕周均提前,胎兒出生體質量較低,這進一步佐證了孕產婦發生不良結局的風險與PE的嚴重程度相關。基因多態性分析結果顯示,兩組孕婦ADD2基因rs3755351位點的基因型和等位基因頻率差異無顯著意義。LOSP組與EOSP組、LOSP組與對照組比較,rs3755351位點的基因型和等位基因頻率差異均無統計學意義;但EOSP組與對照組相比,rs3755351位點的等位基因頻率差異有統計學意義,而基因型頻率差異無統計學意義。提示山東漢族人群ADD2基因rs3755351位點的單核苷酸多態性可能與PE嚴重程度有關,該基因是EOSP的易感基因之一。由于本研究僅局限于山東地區人群,而基因位點的多態性在不同種族和地域間往往有較大的差異,因此,ADD2基因rs3755351位點與PE易感性的相關性尚需在中國其他地區人群中加以驗證。
[參考文獻]
[1]ARMALY Z, JADAON J E, JABBOUR A, et al. Preeclampsia: novel mechanisms and potential therapeutic approaches[J]. Frontiers in Physiology, 2018,9:973.
[2]COSTA P R F, ASSIS A M O, CUNHA C M, et al. Hypertriglyceridemic waist phenotype and changes in the fasting gly-
cemia and blood pressure in children and adolescents over oneyear follow-up period[J]. Arquivos Brasileiros De Cardiologia, 2017,109(1):47-53.
[3]PAYNE B A, HUTCHEON J A, ANSERMINO J M, et al. A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study[J]. PLoS Medicine, 2014,11(1):e1001589.
[4]YOUNG B C, LEVINE R J, KARUMANCHI S A. Pathoge-
nesis of preeclampsia[J]. Annual Review of Pathology: Me-
chanisms of Disease, 2010,5:173-192.
[5]LI X C, HAI J J, TAN Y J, et al. miR-218 suppresses metastasis and invasion of endometrial cancer via negatively regulating ADD2[J]. European Review for Medical and Pharmacological Sciences, 2019,23(4):1408-1417.
[6]NEWTON-CHEH C, JOHNSON T, GATEVA V, et al. Genome-wide association study identifies eight loci associated with blood pressure[J]. Nature Genetics, 2009,41(6):666-676.
[7]LEVY D, EHRET G B, RICE K, et al. Genome-wide association study of blood pressure and hypertension[J]. Nature Genetics, 2009,41(6):677-687.
[8]CHO Y S, GO M J, KIM Y J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits[J]. Nature Gene-
tics, 2009,41(5):527-534.
[9]楊孜,張為遠. 《妊娠期高血壓疾病診治指南(2020)》解讀[J]. 中華婦產科雜志, 2020,55(6):425-432.
[10]REN Z L, GAO Y F, GAO Y, et al. Distinct placental mole-
cular processes associated with early-onset and late-onset preeclampsia[J]. Theranostics, 2021,11(10):5028-5044.
[11]SUN N X, QIN S T, ZHANG L, et al. Roles of noncoding RNAs in preeclampsia[J]. Reproductive Biology and Endocrinology: RBamp;E, 2021,19(1):100.
[12]STAFF A C. The two-stage placental model of preeclampsia: an update[J]. Journal of Reproductive Immunology, 2019,134-135:1-10.
[13]OGGE G, CHAIWORAPONGSA T, ROMERO R, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia[J]. Journal of Perinatal Medicine, 2011,39(6):641-652.
[14]PARA R, ROMERO R, GOMEZ-LOPEZ N, et al. Maternal circulating concentrations of soluble Fas and Elabela in early- and late-onset preeclampsia[J]. The Journal of Maternal-Fetal amp; Neonatal Medicine, 2022,35(2):316-329.
[15]MONGRAW-CHAFFIN M L, CIRILLO P M, COHN B A. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort[J]. Hypertension (Dallas, Tex: 1979), 2010,56(1):166-171.
[16]ZHANG J R, HU W N, LI C Y. A review of the epidemiolo-
gical evidence for adducin family gene polymorphisms and hypertension[J]. Cardiology Research and Practice, 2019,2019:7135604.
[17]KIANG K M Y, LEUNG G K K. A review on adducin from functional to pathological mechanisms: future direction in cancer[J]. BioMed Research International, 2018,2018:3465929.
[18]FERRANDI M, CUSI D, MOLINARI I, et al. alpha- and beta-Adducin polymorphisms affect podocyte proteins and proteinuria in rodents and decline of renal function in human IgA nephropathy[J]. Journal of Molecular Medicine (Berlin, Germany), 2010,88(2):203-217.
[19]PORRO F, COSTESSI L, MARRO M L, et al. The erythrocyte skeletons of beta-adducin deficient mice have altered levels of tropomyosin, tropomodulin and EcapZ[J]. FEBS Letters, 2004,576(1-2):36-40.
[20]MURO A F, MARRO M L, GAJOVI S, et al. Mild spherocytic hereditary elliptocytosis and altered levels of alpha- and gamma-adducins in beta-adducin-deficient mice[J]. Blood, 2000,95(12):3978-3985.
[21]PORRO F, ROSATO-SIRI M, LEONE E, et al. Beta-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the alpha- and gamma-adducin subunits[J]. Genes, Brain, and Behavior, 2010,9(1):84-96.
[22]EFENDIEV R, KRMAR R T, OGIMOTO G, et al. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+, K+-ATPase trafficking in response to GPCR signals and intracellular sodium[J]. Circulation Research, 2004,95(11):1100-1108.
[23]LIU C M, HSU W H, LIN W Y, et al. Adducin family proteins possess different nuclear export potentials[J]. Journal of Biomedical Science, 2017,24(1):30.
[24]KATO N, MIYATA T, TABARA Y, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project[J]. Human Mole-
cular Genetics, 2008,17(4):617-627.
[25]耿啟彬,李媛媛,李紅,等. Beta-adducin(Add2)基因rs3755351多態性與高血壓遺傳易感的相關性研究[J]. 分子診斷與治療雜志, 2013,5(5):301-305.
[26]汪曉洲,劉玉林,姚京豫,等. ADD2基因rs3755351位點多態性與藏、漢民族高原高血壓發生的相關性[J]. 中國高原醫學與生物學雜志, 2020,41(4):233-237.
(本文編輯 馬偉平)