




中圖分類號:O156.4 文獻標志碼:A
文章編號:2095-6991(2023)01-0001-06
參考文獻:
[1] DELIGNE P.La Conjecture de Weil I[J].Inst Hautes tudes Sci Publ Math,1974,43:273-307.
[2] RAM M M.Oscillations of Fourier coefficients of Modular forms[J].Mathematische Annalen,1983,262:431-446.
[3] MEHER J,SHANKHADHAR K,VISWANADHAM G K.A short note on sign changes[J].Proc Indian Acad Sci,2013,123(3):315-320.
[4] LAO H X,SANKARANARAYANAN A.The average behaviour of Fourier coefficients of cusp forms over sparse sequences[J].Proceedings of the American Mathematical Society,2009,137(8):2557-2565.
[5] KOHNEN W,MARTIN Y.Sign changes of Fourier coefficients of cusp forms supported on prime power indices[J].International Journal of Number Theory,2014,10(8):1921-1927.
[6] BANERJEE S,PANDEY M K.Signs of Fourier coe-fficients of cusp form at sum of two squares[J].Proc Indian Acad Sci,2020,130(2):9.
[7] ZHAI S.Average behavior of Fourier coefficients of cusp forms over sum of two squares[J].Journal of Number Theory,2013,133:3862-3876.
[8] BOURGAIN J.Decoupling,exponential sums and the Riemann zeta function[J].Journal of the American Mathematical Socciety,2017,30(1):205-224.
[9] GOOD A.The square mean of Dirichlet series associated with cusp forms[J].Mathematika, 1982,29(2):278-295.
[10] NUNES R M.On the subconvexity estimate for self-dual GL(3) L-functions in the taspect[EB].2017,arXiv preprints,arXiv :1703.04424v1.
[11] XU C R.General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares[J].Journal of Number Theory,2022,236:214-229.
[12] L G.Average behavior of Fourier coefficients of cusp forms[J].Proceedings of the American Mathematical Society,2009,137(6):1961-1969.
[13] MATSUMOTO K.The mean-values and the universality of Rankin–Selberg L-functions[J].Number Theory,2001:201-221.
[14] IWANIEC H,KOWALSKI E.Analytic Number Theory[M].Rhode Island:American Mathematical Society,2004:63-66.
[責任編輯:趙慧霞]
作者簡介:劉暉(1996-),女,河南鄭州人,在讀碩士,研究方向:數論.E-mail:912892166@qq.com.