江蘇省無錫市新吳區旺莊實驗小學 姚莉莉
所謂深度學習,是指學生在教師的引導下,圍繞具有挑戰性的學習任務,全身心地積極參與、經歷體驗、獲得發展的高度投入的有意義的學習過程。而數學發現學習,則是指教師基于發現學習的理論,結合數學學科的特點和當前教學改革的重點開展的學習活動,通過創設有意義的學習情境,激發學生的學習興趣和動機,讓學生提出要解決的問題和設想,并通過獨立或與他人合作參與特定的數學活動,探索解決問題的策略。
作為發現學習支架和實現深度學習的路徑,教師通過設計“三單”——“課前研學單”“課中歷學單”“課后拓學單”,能夠引領學生進行深度學習和發現學習。借助“一課三學”支架,最終形成以學為中心、互動生成、深度發現、情智共融的發現數學課。下面筆者以“用字母表示數”一課為例,談談具體的操作與實踐。
開展深度學習的課堂教學的前提是準確、全面的學情分析,不僅包括對知識的分析,更包括對學生現有思維路徑的整體把握。知道學生“想什么”“怎么想”的教學才能突破學生思維的生長節點。因此,在正式授課前,教師首先引導學生進行“課前研學”。顧名思義,課前研學是一個安排在課前的學生自主學習的過程,學生根據已有的知識經驗,對本節課的新授知識或部分新授知識展開自主思考,“研學單”則可以看成是一個簡單的課前測試,便于教師基于學生研學的實際情況有目的、有針對性地開展課堂教學。
學生在學習“用字母表示數”前,大多是用數字表示數的。換而言之,本節課的學習是一個從“用數字表示數”到“用字母表示數”的發展過程,這個認知鏈的節點是數字從“確定”到“不確定”的過渡。學生在日常生活中已經先于學校課程接觸了用字母表示確定的數,如撲克牌中的A、J、Q、K分別表示1、11、12、13。在五年級之前的數學課中,學生又學習了用符號表示一個特定的數和用字母表示運算律。
由于“用字母表示數”是全新內容,學生并沒有相關經驗需要復習或是喚醒,在此基礎上,本課的教學設計,就不再從常規的用字母表示特定的數、一般的數起步,而是直接從用含有字母的式子表示數量關系開始。那么,課前研學應該怎么設計呢?筆者是這樣安排的:
(1)猜一猜:這兩輛車是同一輛汽車嗎?
(2)關于汽車車牌,你知道哪些知識? 這個車牌里的兩個B表示的意思一樣嗎?根據學生的認知情況,教師相機介紹:第二個B只是代替數字進行編號,保證每一輛車都有自己唯一的號碼。
(3)思考:你知道車牌中為什么一般不用字母O和I嗎?繼而指出:因為O和0,I和1相似,容易混淆,所以車牌中不用這兩個字母。
建構主義認為,學習是學習者在一定的社會文化環境中,利用原有知識經驗主動加工處理新信息、建構新知的過程。課前談話“車牌的秘密”讓學生感悟字母可以代替數字進行編號,在特定的情境中表示特定的意義,且由于“O”和“0”過于相似,因此車牌中不使用字母“O”,通過這一問題喚醒學生對字母認知的已有經驗,為后續教學埋下伏筆。
課中歷學,顧名思義即課中開展的教學活動,學生通過教師精心設計的一個或多個歷學活動,經歷動手操作、自主探索、合作交流等過程,從而自主完成發現式學習。教師通過精心設計問題情境,引發學生的認知沖突,讓學生在深度探究的歷學活動和任務中豐富和完善知識和經驗,同時關注對學生的持續性評價。教師通過引導學生改變學習方式,以學生核心素養培養為重點、以學生的整體發展為目標,借助一個或多個富有挑戰性的歷學活動,促進深度學習的發生。
魏書生老師曾說:民主管理在某種意義上就是多數人參與政治,參與決策,參與比較復雜的工作。實施民主管理的前提就是尊重學生,與學生平等相待,既做老師又做朋友,建立新型的師生關系。還要采取一些措施,如共同制定班級管理制度,實施班、組長輪值制等,增強學生班級的主人翁意識。
用字母表示數的優勢不僅在于簡潔,而且在于由特殊到一般,更在于準確和無歧義。用字母表示數是小學生學習一般抽象思維的開始,無論是從形式上還是從思想上,認識抽象的字母表示數都不是一蹴而就的。基于此,筆者設計了如下歷學單:

圖1
學生獨立完成歷學單后,進行全班交流,重點交流以下兩個問題:
(1)三角形個數和小棒根數有什么關系?
(2)怎樣用一句話概括出所有的擺法?
通過多次試教,筆者發現學生的表示方法主要有以下幾種:

圖2
接著,引導學生思考:比較這些不同的表示方法,你更喜歡哪一種?為什么?在此過程中,教師要引導學生進一步思考哪一種表示方法更能清楚地概括出小棒根數和三角形個數之間的關系。
通過對幾種表示方法進行比較,教師要引導學生發現:當兩個量有關聯時,最后一種方法用n表示三角形個數,n×3表示小棒根數的方法更合適。在全班展示和交流的過程中,教師要引導學生對不同表達方式進行層層對比,抽絲剝繭,使他們經歷從特殊到一般、從具體到抽象的認知過程。學生在感知、感悟、比較、思辨的過程中,逐步體會用字母表示數的本質——當數不斷變化時,用字母可以概括性地表示它,從而體會用字母表示數的嚴謹性、概括性、簡潔性。
思考:如果用b表示已行路程,那么剩下路程應該怎么表示呢?(圖3)此時大多數學生會想到由于已行路程的變化,剩下路程也會跟著變化,所以多數學生會想到用另一個不同的字母來表示剩下路程。(圖4)這時教師追問:“這個c能讓人一眼看出它和已行路程b之間的關系嗎?” 學生從這一問題出發,就能發現用c表示并不合適,從而引發認知沖突,最終得出應該用(4.5-b)表示剩下路程。(圖5)筆者的教學并沒有就此止步,而是提出兩個問題:1.可以這樣表示嗎?2.前面我們都能算出已行路程,這里怎么算不出來了呢?學生的回答很精彩。有的學生說:“前面我們用n×3這個含有字母的式子表示小棒根數,這里當然也能用(4.5-b)這個式子表示剩下路程。”還有的學生說:“前面已行路程都是已知的,所以我們能用總路程減去已行路程得到剩下路程,現在已行路程未知,所以用(4.5-b)表示剩下路程,也非常清楚。”在此基礎上,繼續比較等號兩邊的(4.5-b)表示的意義有什么不同。此時,大多數學生都能肯定地說出等號左邊的(4.5-b)表示的是已行路程和剩下路程之間的關系,等號右邊的(4.5-b)表示的是剩下路程這個數量。此時,教師相機小結:(4.5-b)既表示剩下路程這個變化的數量,還表示已行路程和剩下路程之間不變的數量關系。(圖6)

圖3

圖4

圖5

圖6
接下來,在根據字母的取值口算相關字母式的值時,教師要引導學生關注隨著已行路程的變化,剩下路程也會隨之變化,體會變量之間的關聯性,滲透代數思維,體現函數思想。教師通過情境變式賦予“4.5-b”更加豐富的現實原型,讓學生感悟字母式所具有的模型意義。
數學學習不是簡單地學習一個知識點、解決一個問題,而是培養一種數學思維,逐步提高和完善學生發現和提出問題、分析和解決問題的能力。因此,教師應創造性地進行作業設計,通過不同形式的練習、不同層次的拓學活動,引導學生親歷思考、實踐、探索的過程,從而達到鞏固拓展、深化思維的目的。課后拓學是在學生掌握新知后,通過各種形式和不同層次的研學活動,引導學生對知識進行回顧、總結、反思和再發現的過程。與以往的課堂練習不同的是,拓學一定要體現“拓展性”,即拓學的內容不能僅僅是基礎性的練習,還應有對學生綜合應用能力的拓展。
在多次試教過程中筆者發現,不管前半節課如何生動有趣,課堂討論如何熱烈,在進行簡寫教學時,學生還是表現得不夠積極,究其原因主要有兩點:(1)本課知識點多且教學任務重;(2)用字母表示數的簡寫本身具有很高的抽象性和枯燥性,即使是采用自學模式,學生仍未表現出濃厚的學習積極性。因此,筆者把教材中關于用字母表示數的規則制作成一個和本課主題人物有關的視頻動畫,在即時練環節把口答、筆算形式調整成和多功能智能屏的互動,結果大大提高了學生學習的積極性,課堂學習氛圍也掀起了一個高潮。學生在試錯的同時,筆者再啟發學生思考:什么樣的算式才能簡寫?學生很快就能發現只有含有字母的乘法算式才能省略乘號進行改寫。教師在此基礎上進行總結:在含有字母的乘法算式中,乘號可以省略不寫,且數字要寫在字母前面。
在全課小結后,筆者安排了第二個拓學活動—— “預測身高”。主題人物小愛出場引出話題:“只要提供你父母的身高,我就能預測你未來的身高哦。”在預測了幾個學生未來的身高后,教師揭曉身高預測的奧秘,學生的情緒從興奮轉為震撼,感受到字母在公式應用中的神奇和便捷之處。
代數思維強調用代數的眼光去觀察問題,這種意識的養成依賴于不間斷的符號化操作。對于數學符號,不僅要“懂”,還要會“用”。在兩個不同層次的拓學活動中讓學生感知運用符號表示數或數量關系就是“用”符號的重要方面。通過精心設計的兩個拓學活動,學生在不同情境中鞏固了用字母表示數的知識,進一步發展了代數思維。
在所有的核心素養中,學習、思維和創新是核心。因此,教師要將培養學生的思維能力和創新能力作為日常教學的重點。根據教學內容的特點,教師可借助“一課三學”理念下的“一課三單”,溝通知識的“生長點”和“延伸點”,把每堂課教學的知識置于整體知識的體系中,引導學生感受數學的整體性,從而達到培養學生的數學素養和終身素養的目的。