999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

CuI催化的A3-偶聯反應合成鄰羥基苯基丙炔胺類化合物的研究

2023-06-14 02:07:48樊陳莉謝吉娜惠文杰陳浩宇何心偉

樊陳莉 謝吉娜 惠文杰  陳浩宇 何心偉

摘要:丙炔胺類化合物因其具有多個反應位點而在有機合成中具有廣泛的應用。本文發展了一種CuI催化的水楊醛、四氫吡咯和末端炔的A3-偶聯反應合成鄰羥基苯基丙炔胺衍生物的方法。水楊醛和芳基乙炔中無論是吸電子基團還是供電子基團均能較好的適用于該反應,且水楊醛中含有多個取代基時也能得到相應的目標產物,并利用1H,13C NMR和HRMS等手段對目標化合物的結構進行了表征。該合成方法具有操作簡單、合成效率高和取代基容忍性好等優點,為鄰羥基苯基丙炔胺類化合物的合成提供了一種新的合成思路。

關鍵詞:A3-偶聯反應;丙炔胺;水楊醛;苯乙炔

中圖分類號:O626文獻標志碼: A文章編號:1001-2443(2023)02-0138-08

丙炔胺是一類具有廣泛用途的含氮化合物,近年來在藥理和藥物化學領域的應用日益廣泛[1]。優降寧[2]、雷沙吉蘭[3]、司來吉蘭[4]等丙炔胺衍生物被發現在治療帕金森癥和阿爾茲海默癥等精神類疾病中具有很好的效果。此外,丙炔胺類化合物具有多個反應位點,早期通過金屬催化和環加成反應等用于合成脂肪族或芳香族雜環化合物,如吡咯、咪唑、吡唑、喹啉等重要含氮雜環化合物[5-6]。近期,丙炔胺類化合物的多樣性化學轉化在天然產物和功能材料分子合成中也得到了廣泛應用[7-8]。因此,其合成方法也備受關注。結構簡單的丙炔胺化合物可以通過炔基鹵化物或炔酸酯類化合物的氨基化反應得到[9-11]。此外,醛或酮的還原氨化也成為構建丙炔胺骨架常用且高效的合成方法[12]。過去十年,過渡金屬催化的末端炔類化合物對亞胺的加成反應已成為合成丙炔胺的一種較流行的方法[13]。但是,這些方法大多存在反應條件苛刻、反應時間長或使用當量金屬催化劑等缺陷,因此,需要發展簡單、高效的合成丙炔胺類化合物的方法。

醛或酮與氨和炔的三組分偶聯反應稱之為A3-偶聯反應,已成為近年來直接構建丙炔胺類化合物的通用方法[14-15],該方法通過使用催化量的金屬催化劑(如Cu, Ag, Au, In等)在溫和實驗條件下實現丙炔胺類化合物的高效合成[16-20]。此外,手性催化劑調控的不對成A3-偶聯反應[21]及金屬催化的串聯脫羧A3-偶聯反應[22-23]被廣泛應用于合成手性丙炔胺類化合物和非對稱丙炔胺或3-氨基-1,4-烯炔化合物等。在綠色化學理念指導下,各種負載的銅催化劑被制備并用于無溶劑下的A3-偶聯反應,這種催化劑具有較好的可回收性,但其催化劑回收過程的成本仍然很高[24-28]。因此,有必要尋找一種簡單有效的合成丙炔胺衍生物的方法。本文以廉價易得的CuI為催化劑,利用水楊醛、四氫吡咯和末端炔的A3-偶聯反應實現一種結構新穎的鄰羥基苯基丙炔胺類化合物的克級規模合成,為丙炔胺類化合物在有機合成中的應用提供了依據。設計合成路線如圖1所示。

1 實驗部分

1.1 實驗試劑和儀器

BRUKER-AV-500型核磁共振儀(500 MHz,CDCl3為溶劑,TMS為內標) ; X-4 數字顯示顯微熔點測定儀(北京泰克儀器有限公司,溫度計未經校正)。

實驗所用溶劑和試劑均為分析純(可直接使用)。

1.2 丙炔胺衍生物的合成步驟

在裝有磁性攪拌棒的25 mL圓底燒瓶中加入胺(6.5 mmol)、醛(5.0 mmol)、乙炔(6.5 mmol)、碘化亞銅(I) (20 mol%)和甲苯(10 mL)。將混合物脫氣并回填氮氣,然后在預熱至80 °C的油浴中攪拌8小時(TLC監測)。反應完成后(薄層色譜法測定),將反應混合物冷卻至室溫,用CH2Cl2(10 mL)稀釋,通過硅膠薄層過濾。用CH2Cl2洗滌濾餅,將組合濾液在真空中濃縮。采用硅膠閃柱色譜法對粗品進行純化,得到相應的丙炔胺3a-3u。

1.3 產物表征數據

2-(3-Phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3a): White solid (85%, 1.18 g); mp = 80~81 °C,

1H NMR (500 MHz, CDCl3) δ 7.55~7.52 (m, 3H), 7.37~7.35 (m, 3H), 7.23 (t, J = 7.5 Hz, 1H), 6.87~6.84 (m, 2H), 5.29 (s, 1H), 2.92~2.87 (m, 2H), 2.83~2.79 (m, 2H), 1.91~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 157.6, 131.9, 129.3, 128.6, 128.4, 127.8, 122.5, 122.1, 118.9, 116.3, 89.0, 82.9, 57.0, 48.9, 23.8; HRMS (APCI) m/z: calcd for C19H19NO [M + H]+278.1539, found 278.1538.

2-(1-(Pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3b): White solid (87%, 1.27 g); mp = 61~62 ℃,

1H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 7.5 Hz, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.86~6.83 (m, 2H), 5.28 (s,1H), 2.88 (s, 2H), 2.81~2.79 (m, 2H), 2.37 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 157.5, 138.7, 131.8, 129.3, 129.1, 127.9, 122.2, 119.4, 119.0, 116.3, 89.2, 82.1, 56.9, 48.9, 23.8, 21.5; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1694.

2-(3-(4-Chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3c): White solid (80%, 1.24 g); mp = 69~70 °C,1H NMR (500 MHz, CDCl3) δ 7.49 (d, J = 7.5 Hz,1H), 7.45 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.22 (t, J = 7.5 Hz,1H), 6.86~6.83 (m, 2H), 5.27 (s,1H), 2.87 (s, 2H), 2.81~2.79 (m, 2H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 157.5, 134.8, 133.8, 133.2, 129.6, 129.0, 128.8, 127.9, 122.0, 119.2, 116.6, 88.0, 84.1, 57.1, 49.2, 23.9; HRMS (APCI) m/z: calcd for C19H18ClNO [M + H]+312.1149, found 312.1147.

4-Methyl-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3d): Yellow oil (82%, 1.19 g);1H NMR (500 MHz, CDCl3) δ 7.54~7.52 (m, 2H), 7.37~7.35 (m, 3H), 7.31 (s, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 2.89~2.85 (m, 2H), 2.82~2.77 (m, 2H), 2.28 (s, 3H), 1.88~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 155.1, 131.9, 129.7, 128.5, 128.4, 128.3, 128.0, 122.6, 121.8, 116.0, 88.8, 83.1, 57.0, 48.9, 23.8, 20.7; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1696.

4-Methyl-2-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3e): Yellow solid (89%, 1.36 g); mp = 67~68 °C,1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 8.0 Hz, 2H), 7.31 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 2.89~2.85 (m, 2H), 2.81~2.77 (m, 2H), 2.38 (s, 3H), 2.28 (s, 3H), 1.88~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 155.1, 138.7, 131.8, 129.7, 129.1, 128.3, 128.0, 121.9, 119.5, 116.0, 89.0, 82.3, 57.0, 48.9, 23.8, 21.5, 20.7; HRMS (APCI) m/z: calcd for C21H23NO [M + H]+306.1852, found 306.1850.

2-(3-(4-Chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)-4-methylphenol (3f): Yellow solid (86%, 1.40 g); mp = 79~80 °C,1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 5.20 (s, 1H), 2.84 (s, 2H), 2.79~2.77 (m, 2H), 2.28 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 155.0, 134.6, 133.1, 129.8, 128.7, 128.2, 128.1, 121.6, 121.0, 116.1, 87.7, 84.3, 57.1, 49.1, 23.8, 20.7; HRMS (APCI) m/z: calcd for C20H20ClNO [M + H]+326.1306, found 326.1307.

4-Chloro-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3g): Yellow solid (75%, 1.17 g); mp = 61~62 °C,1H NMR (500 MHz, CDCl3) δ 7.54~7.52 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.38~7.35 (m, 3H), 7.17 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 5.24 (s, 1H), 2.88 (s, 2H), 2.80~2.76 (m, 2H), 1.89~1.86 (m, 4H);13C NMR (125 MHz, CDCl3) δ 156.3, 131.9, 129.1, 128.8, 128.4, 127.7, 123.6, 122.2, 117.5, 89.5, 82.0, 56.7, 48.9, 23.8; HRMS (APCI) m/z: calcd for C19H18ClNO [M + H]+312.1149, found 312.1146.

4-Chloro-2-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3h): White solid (88%, 1.43 g); mp = 75~76 °C,1H NMR (500 MHz, CDCl3) δ 7.50 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.18~7.15 (m, 3H), 6.78 (d, J = 8.5 Hz, 1H), 5.24 (s, 1H), 2.88 (s, 2H), 2.79~2.78 (m, 2H), 2.38 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.2, 139.0, 131.8, 129.2, 129.1, 127.8, 123.7, 123.6, 119.1, 117.6, 89.7, 81.1, 56.6, 48.9, 23.8, 21.5; HRMS (APCI) m/z: calcd for C20H20ClNO [M + H]+326.1306, found 326.1303.

4-Chloro-2-(3-(4-chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3i): Yellow solid (80%, 1.38 g); mp = 94~95 °C,1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 3H), 7.34 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 5.21 (s, 1H), 2.85 (s, 2H), 2.78~2.76 (m, 2H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.2, 134.9, 133.7, 133.2, 128.9, 128.8, 127.6, 123.6, 123.4, 120.6, 117.7, 88.4, 83.1, 56.7, 49.0, 23.8; HRMS (APCI) m/z: calcd for C19H17Cl2NO [M + H]+346.0760, found 346.0757.

2-Bromo-6-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3j): Yellow solid (82%, 1.51 g); mp = 86~87 °C,1H NMR (500 MHz, CDCl3) δ 7.49~7.45 (m, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz, 1H), 5.28 (s, 1H), 2.92~2.90 (m, 2H), 2.81~-2.80 (m, 2H), 2.37 (s, 3H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 154.6, 139.0, 132.7, 131.8, 129.2, 127.1, 123.3, 119.6, 119.1, 110.3, 89.7, 81.2, 57.1, 48.8, 23.8, 21.6; HRMS (APCI) m/z: calcd for C20H20BrNO [M + H]+370.0801, found 370.0799.

2-Bromo-4-chloro-6-(3-(4-methoxyphenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3k): Yellow solid (75%, 1.58 g); mp = 86~87 °C,1H NMR (500 MHz, CDCl3) δ 7.47~7.45 (m, 4H), 6.89 (d, J = 8.5 Hz, 2H), 5.24 (s, 1H), 3.83 (s, 3H), 2.91~2.90 (m, 2H), 2.80~2.78 (m, 2H), 1.90~1.88 (m, 4H);13C NMR (125 MHz, CDCl3) δ 160.1, 153.5, 133.4, 131.9, 127.1, 124.2, 123.5, 114.1, 113.8, 110.6, 90.0, 79.6, 56.9, 55.3, 48.8, 23.8; HRMS (APCI) m/z: calcd for C20H19BrClNO2[M + H]+422.0339, found 422.0333.

2,4-Di-tert-butyl-6-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3l): Yellow solid (70%, 1.41 g); mp = 74~75 °C,1H NMR (500 MHz, CDCl3) δ 7.51 (s, 1H), 7.43 (d, J = 6.5 Hz, 2H), 7.27 (s, 1H), 7.18 (d, J = 8.0 Hz, 2H), 5.26 (s, 1H), 2.88 (s, 2H), 2.80 (s, 2H), 2.38 (s, 3H), 1.87 (s, 4H), 1.45 (s, 9H), 1.33 (s, 9H);13C NMR (125 MHz, CDCl3) δ 154.0, 140.0, 138.5, 135.4, 131.7, 129.1, 123.3, 122.7, 121.4, 119.8, 89.0, 82.9, 57.4, 48.7, 34.9, 34.3, 31.6, 29.6, 24.0, 22.6, 21.5; HRMS (APCI) m/z: calcd for C28H37NO [M + H]+404.2947, found 404.2944.

4-Bromo-2-(3-(3-chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3m): Yellow solid (75%, 1.47 g); mp = 74~75 °C,1H NMR (500 MHz, CDCl3) δ 7.57 (s, 1H), 7.51 (s, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.32~7.28 (m, 2H), 6.74 (d, J = 8.5 Hz, 1H), 5.22 (s, 1H), 2.85 (s, 2H), 2.79~2.75 (m, 2H), 1.90~1.87 (m, 4H);13C NMR (125 MHz, CDCl3) δ 156.7, 134.3, 132.2, 131.8, 130.4, 130.1, 129.7, 129.1, 123.8, 118.2, 110.8, 88.1, 83.3, 56.6, 49.0, 23.8; HRMS (APCI) m/z: calcd for C19H17BrClNO [M + H]+ 392.0233, found 392.0234.

4-Nitro-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3n): Red solid (68%, 1.09 g); mp = 72~73 °C,1H NMR (500 MHz, CDCl3) δ 8.56 (s, 1H), 8.13 (d, J = 9.0 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.32~7.29 (m, 2H), 7.26~7.21 (m, 3H), 4.25 (s, 2H), 3.44 (s, 4H), 2.02 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.3, 147.2, 143.0, 138.1, 128.6, 128.3, 126.6, 126.1, 119.4, 119.2, 117.1, 111.6, 111.5, 52.1, 33.2, 25.3; HRMS (APCI) m/z: calcd for C19H18N2O3[M + H]+323.1390, found 323.1386.

2-(1-(Pyrrolidin-1-yl)non-2-yn-1-yl)phenol (3o): Yellow oil (72%, 1.03 g);1H NMR (500 MHz, CDCl3) δ 7.47 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.84~6.81 (m, 2H), 5.03 (s, 1H), 2.81~2.77 (m, 2H), 2.73~2.68 (m, 2H), 2.34 (t, J = 7.5 Hz, 2H), 1.85~1.82 (m, 4H), 1.62~1.56 (m, 2H), 1.49~1.43 (m, 2H), 1.36~1.32 (m, 4H), 0.91 (t, J = 7.5 Hz, 3H);13C NMR (125 MHz, CDCl3) δ 157.6, 129.1, 127.8, 122.7, 118.7, 116.0, 89.6, 73.3, 56.6, 48.6, 31.3, 28.8, 28.5, 23.8, 22.6, 18.7, 14.0; HRMS (APCI) m/z: calcd for C19H27NO [M + H]+286.2165, found 286.2163.

4-Bromo-2-(3-(cyclohex-1-en-1-yl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3p): Yellow solid (87%, 1.56 g); mp = 76~77 °C,1H NMR (500 MHz, CDCl3) δ 7.56 (s, 1H), 7.30 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 6.24 (s, 1H), 5.14 (s, 1H), 2.82 (s, 2H), 2.73 (s, 2H), 2.23 (s, 2H), 2.16 (s, 2H), 1.87 (s, 4H), 1.71 (s, 2H), 1.65 (s, 2H);13C NMR (125 MHz, CDCl3) δ 156.8, 135.9, 131.9, 130.6, 124.4, 119.9, 118.0, 110.7, 91.5, 78.9, 56.5, 48.7, 29.4, 25.6, 23.8, 22.2, 21.4; HRMS (APCI) m/z: calcd for C19H22BrNO [M + H]+360.0957, found 360.0953.

4-Bromo-2-(1-(pyrrolidin-1-yl)-3-(thiophen-3-yl)prop-2-yn-1-yl)phenol (3q): White solid (87%, 1.57 g); mp = 101~102 °C,1H NMR (500 MHz, CDCl3) δ 7.60 (s, 1H), 7.55 (s, 1H), 7.31 (s, 2H), 7.19 (s, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.21 (s, 1H), 2.86 (s, 2H), 2.78 (s, 2H), 1.87 (s, 4H), 1.71 (s, 2H);13C NMR (125 MHz, CDCl3) δ 156.8, 132.1, 130.6, 130.0, 129.6, 125.6, 124.1, 121.1, 118.1, 110.8, 84.6, 81.6, 56.7, 48.9, 23.8; HRMS (APCI) m/z: calcd for C17H16BrNOS [M + H]+364.0188, found 361.0189.

2-(3-Phenyl-1-(piperidin-1-yl)prop-2-yn-1-yl)phenol (3r): White solid (80%, 1.16 g); mp = 83~84 °C,

1H NMR (500 MHz, CDCl3) δ 7.56~7.54 (m, 3H), 7.38~7.35 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 6.87~6.84 (m, 3H), 5.11 (s, 1H), 2.76~2.72 (m, 4H), 1.89 (br, 6H);13C NMR (125 MHz, CDCl3) δ 157.6, 131.9, 129.4, 128.6, 128.5, 128.4, 122.6, 121.3, 119.0, 116.4, 89.8, 82.3, 61.0, 25.9, 23.9; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1693.

2-(1-Morpholino-3-phenylprop-2-yn-1-yl)phenol (3s): Yellow solid (68%, 0.99 g); mp = 98~99 °C,1H NMR (500 MHz, CDCl3) δ 7.57~7.54 (m, 3H), 7.38~7.35 (m, 3H), 7.27~7.23 (m, 2H), 6.91~6.87 (m, 2H), 5.12 (s, 1H), 3.81 (s, 4H), 2.81 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.9, 131.9, 129.8, 128.8, 128.1, 122.1, 120.5, 119.5, 118.7, 90.5, 81.4, 66.7, 60.6; HRMS (APCI) m/z: calcd for C19H19NO2[M + H]+294.1488, found 294.1485.

2-(1-(3,4-Dihydroisoquinolin-2(1H)-yl)-3-phenylprop-2-yn-1-yl)phenol (3t): White solid (84%, 1.42 g); mp = 112~113 °C,1H NMR (500 MHz, CDCl3) δ 10.3 (s, 1H), 7.45~7.43 (m, 2H), 7.32~7.28 (m, 4H), 7.23~7.19 (m, 3H), 7.16~7.11 (m, 2H), 6.86~6.83 (m, 2H), 4.95 (s, 1H), 4.18 (dd, J = 14.0 Hz, J = 14.0 Hz, 2H), 3.19~3.14 (s, 1H), 3.12~3.06 (s, 1H), 2.96~2.92 (s, 1H), 2.88~2.84 (s, 1H);13C NMR (125 MHz, CDCl3) δ 157.9, 134.3, 133.1, 131.8, 129.2, 129.0, 128.4, 128.3, 127.8, 127.4, 126.2, 122.6, 121.1, 119.3, 116.2, 87.6, 85.6, 58.4, 54.2, 45.2, 28.6; HRMS (APCI) m/z: calcd for C24H21NO [M + H]+340.1695, found 340.1692.

1-(1,3-Diphenylprop-2-yn-1-yl)pyrrolidine (3u): Yellow oil (80%, 1.04 g);1H NMR (500 MHz, CDCl3) δ 7.63 (d, J = 7.5 Hz, 2H), 7.51~7.50 (m, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.33~7.30 (m, 4H), 4.90 (s, 1H), 2.71~2.69 (m, 4H), 1.84~1.79 (m, 4H)13C NMR (125 MHz, CDCl3) δ 139.6, 131.8, 128.5, 128.2, 128.1, 128.0, 127.5, 123.2, 86.9, 86.7, 59.1, 50.3, 23.5; HRMS (APCI) m/z: calcd for C19H19N [M + H]+ 262.1596, found 262.1598.

2 結果與討論

選擇不同取代基的水楊醛、二級胺和末端炔為原料,以20 mol%的CuI為催化劑,甲苯作溶劑,80 oC的溫度下反應8 h,合成得到了系列結構不同的丙炔胺衍生物,考察了底物取代基的電子效應和空間位阻效應對該反應的影響,具體結果見表1。

結果表明,各種取代基的水楊醛、苯乙炔等均能很好的適用于該反應,并以良好以上收率得到相應的丙炔胺類化合物。對苯乙炔而言,無論苯環上連有吸電子基(如—Cl),還是連有供電子基(如—CH3),對該反應的影響不大(表1, entries 1~3)。當使用活性較弱的烷基末端炔時,產率出現稍微下降(表1, entry 15);令人滿意的是,當使用1-環己烯基乙炔和3-噻吩乙炔進行反應時,均能以優異的產率獲得相應的產物3p和3q (表1, entries 16, 17)。對水楊醛而言,當苯環羥基對位連有較弱的吸電子基(如—Cl,—Br),或連有供電子基(如—CH3)時,對該反應沒有明顯影響,仍能以75%~89%的收率得到目標產物(表1, entries 4~13);而當羥基對位連有較強的吸電子基(如—NO2)時,由于取代基的電子效應,水楊醛活性降低,使得產物3n的產率出現明顯降低(表1, entry 14)。值得一提的是,當水楊醛羥基鄰位和對位連有較大的取代基時(如—Br, —tBu),該反應亦能較好的進行,并以70%和75%的產率得到產物3k和3l (表1, entries 11, 12)。進一步地,使用水楊醛作為底物時,在反應也能較好的進行,并以80%的產率得到相應的產物3u (表1, entry 21)。

隨后考察了二級胺對該反應的影響,結果發現使用不同的二級胺時,產物的產率有所不同。使用活性相當的哌啶或活性較小的四氫異喹啉時,反應產率沒有明顯改變,仍能以良好以上收率得到目標產物3r和3t (表1, entries 18, 20)。當使用活性較弱的嗎啉作為胺類化合物時,產物3s的產率明顯降低(表1, entry 19)。

3 結論

本文發展了一種CuI催化三組分A3-偶聯反應合成苯丙炔胺類化合物的方法,該方法以水楊醛、四氫吡咯和末端炔為底物合成得到一種具有多個反應位點的鄰羥基苯基丙炔胺類化合物。該方法底物普適性廣,取代基容忍性好,具有原料來源廣泛,實驗條件溫和,反應選擇性高、產率優異等優點,可以實現鄰羥基苯基丙炔胺類化合物的克級規模合成,具有一定的實際應用價值和良好的應用前景。

參考文獻:

[1] LAUDER K, TOSCANI A, SCALACCI N, et al. Synthesis and reactivity of propargylamines in organic chemistry[J]. Chemical Reviews,2017, 117(24): 14091?14200.

[2] LANGSTON J W, IRWIN I, LANGSTON E B, et al. Pargyline prevents MPTP-induced parkinsonism in primates[J]. Science, 1984, 225: 1480?1482.

[3] CHEN J J,SWOPE D M.Clinical pharmacology of rasagiline: A novel, second-generation propargylamine for the treatment of Parkinson disease [J]. Journal of Clinical Pharmacology, 2005, 45(8):878?894.

[4] BIRKS J, FLICKER L. Selegiline for Alzheimers disease [J]. Cochrane Database of Systematic Reviews,2003,1:CD00044210.

[5] YAMAMOTO Y, HAYASHI H, SAIGOKU T, et al.Domino coupling relay approach to polycyclic pyrrole-2-carboxylates[J]. Journal of the American Chemical Society,2005, 127(31):10804-10805.

[6] FENG H D, ERMOLAT'EV D S, SONG G H, et al. Synthesis of Oxazolidin-2-ones via a copper(I)-catalyzed tandem decarboxylative/carboxylative cyclization of a propiolic acid, a primary amine and an aldehyde[J]. Advanced Synthesis & Catalysis, 2012, 354(2-3):505-509.

[7] ERMOLAT'EV D S, BARIWAL J B, STEENACKERS H P L, et al. Concise and diversityoriented route toward polysubstituted 2-aminoimidazole alkaloids and their analogues[J]. Angewandte Chemie International Edition, 2010, 49(49):9465?9468.

[8] ZINDO F T, JOUBERT J, MALAN S F. Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond[J]. Future Medicinal Chemistry, 2015, 7(5):609?629.

[9] MAO F, LI J, WEI H, et al. Tacrine?propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimers disease[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30(6):995?1001.

[10] KOPKA I E, FATAFTAH Z A, RATHKE M W. Preparation of a series of highly hindered secondary amines, including bis-(triethylcarbinyl)amine[J]. The Journal of Organic Chemistry, 1980, 45(23):4616?4622.

[11] HENNION G F, HANZEL R S. The alkylation of amines with tacetylenic chlorides. Preparation of sterically hindered amines[J]. Journal of the American Chemical Society, 1960, 82(18):4908?4912.

[12] LI C J. The development of catalytic nucleophilic additions of terminal alkynes in water[J]. Accounts of Chemical Research, 2010, 43(4):581?590.

[13] BLAY G, MONLEON A, PEDRO J. Recent Developments in asymmetric alkynylation of imines[J]. Current Organic Chemistry, 2009, 13(15):1498–1539.

[14] GHOSH S, BISWAS K. Metal-free multicomponent approach for the synthesis of propargylamine: A review[J]. RSC Advances, 2021, 11(4):2047-2065

[15] MANUJYOTHI R, ANEEJA T, ANILKUMAR G. Solvent-free synthesis of propargylamines: An overview[J]. RSC Advances, 2021, 11(32):19433–19449.

[16] PESHKOV V A, PERESHIVKO O P, VAN DER EYCKEN E V. A walk around the A3-coupling[J]. Chemical Society Reviews, 2012, 41(10):3790-3807

[17] UHLI G N, LI C J. Site-Specific Modification of amino acids and peptides by aldehyde–alkyne–amine coupling under ambient aqueous conditions [J]. Organic Letters, 2012, 14(12): 3000-3003.

[18] LI J, XU Y, HU X, et al. Easy access to 2,4-disubstituted cyclopentenones by a gold(III)-catalyzed A3-coupling/cyclization cascade[J]. Organic Letters, 2020, 22(24):9478-9483.

[19] CHEN X, CHE N T, ZHOU Y, et al. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts[J]. Organic & Biomolecular Chemistry, 2014, 12(2):247-250.

[20] ZHANG Y, LI P, WANG M, et al. Indium-catalyzed highly efficient three-component coupling of aldehyde, alkyne, and amine via C?H bond activation[J]. The Journal of Organic Chemistry, 2009, 74(11):4364-4367.

[21] ROKADE B V, BARKER J, GUIRY P J. Development of and recent advances in asymmetric A3coupling[J]. Chemical Society Reviews, 2019, 48(18):4766-4790.

[22] XU X, FENG H, VAN DER EYCKEN E V. Microwave-assisted Cu(I)-catalyzed synthesis of unsymmetrical 1,4-diamino-2-butynes via cross-A3-coupling/decarboxylative A3-coupling[J]. The Journal of Organic Chemistry, 2021, 86(20):14036-14043.

[23] FENG H, ERMOLATEV D S, SONG G, et al. Regioselective Cu(I)-catalyzed tandem A3-coupling/decarboxylative coupling to 3-amino-1,4-enynes[J]. Organic Letters, 2012, 14(7):1942-1945.

[24] YAN S, PAN S, OSAKO T, et al. Solvent-free A3and KA2 coupling reactions with mol ppm level loadings of a polymer-supported copper(II)?bipyridine complex for green synthesis of propargylamines[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9097?9102.

[25] KATKAR S V, JAYARAM R V. Cu?Ni bimetallic reusable catalyst for the synthesis of propargylamines via multicomponent coupling reaction under solvent-free conditions[J]. RSC Advances, 2014, 4(89):47958?47964.

[26] LI P, REGATI S, HUANG H C, et al. A sulfonate-based Cu(I) metal?organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions[J]. Chinese Chemical Letters, 2015, 26(1):6?10.

[27] KAUR P, KUMAR B, KUMAR V, et al. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction[J]. Tetrahedron Letters, 2018, 59(21):1986?1991.

[28] PERUMGANI P C, KEESARA S, PARVATHANENI S, et al. Polystyrene supported N-phenylpiperazine?Cu(II) complex: An efficient and reusable catalyst for KA2-coupling reactions under solvent-free conditions[J]. New Journal of Chemistry, 2016, 40(6):5113?5120.

CuI-catalyzed A3-Coupling Reactions for the Synthesis of o-Hydroxyphenyl Propargylamines

FAN Chen-li XIE Ji-na HUI Wen-jie CHEN Hao-yu HE Xin-wei

(1. Department of Material Engineering, Wuhu Institute of Technology, Wuhu 241003, China; 2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China)

Abstract: Propargylamine compounds have been widely used in organic synthesis because of their multiple reaction sites, and thus have attracted extensive attention. In this paper, a CuI-catalyzed A3-coupling reactions of salicyladehydes, pyrrolidine and terminal alkynes for the synthesis of propargylamines has been developed. Salicyladehydes and aromatic alkynes bearing with electron-withdrawing or electron-donating groups were well tolerated. In particular, disubtituted salicyladehydes were investigated to showcase the prospective utility of this protocol. Moreover, all products were characterized by1H,13C NMR and HRMS. The results showed that the method has the advantages of wide scope of substrates, good tolerance of substituents, and without separation of intermediates by using multi-component one-pot reaction, achieving step economy and application in organic synthesis.

Key words: A3-coupling reactions; propargylamines; salicylaldehydes; terminal alkynes

(責任編輯:王海燕)

主站蜘蛛池模板: 在线国产欧美| 亚洲国产综合自在线另类| 色综合中文| 97在线观看视频免费| 亚洲第一成网站| 欧洲亚洲一区| 99热这里只有精品免费| 国国产a国产片免费麻豆| 日韩视频福利| 伊人久热这里只有精品视频99| 久久亚洲精少妇毛片午夜无码 | 老色鬼欧美精品| 毛片一区二区在线看| 91精品亚洲| 午夜啪啪福利| 成年人午夜免费视频| 一级毛片网| 任我操在线视频| 久久久久无码精品| 九九热在线视频| 亚洲午夜天堂| 高潮爽到爆的喷水女主播视频| 国产一区亚洲一区| 夜夜操国产| 久久久久久久97| 日本午夜三级| 国产一级裸网站| 亚洲国语自产一区第二页| 57pao国产成视频免费播放| 亚洲欧美不卡中文字幕| 激情亚洲天堂| 色135综合网| 青草精品视频| 99视频在线免费观看| 91无码视频在线观看| 亚洲成人黄色在线| 99er精品视频| 99精品免费在线| 色婷婷综合激情视频免费看| 免费看美女自慰的网站| 97青青青国产在线播放| 制服丝袜一区| 精品精品国产高清A毛片| 国产H片无码不卡在线视频| 奇米影视狠狠精品7777| 日韩欧美高清视频| 啦啦啦网站在线观看a毛片| 国产成人夜色91| 超薄丝袜足j国产在线视频| 国产网站免费看| 亚洲天堂网2014| 国产亚洲成AⅤ人片在线观看| 亚洲成综合人影院在院播放| 亚洲日韩精品无码专区97| 91久久偷偷做嫩草影院精品| 成年女人a毛片免费视频| 亚洲欧美不卡| 青草视频免费在线观看| 国产啪在线| 国产三级毛片| 2020极品精品国产| 亚洲国产91人成在线| 亚洲一区二区日韩欧美gif| 国产精品妖精视频| 国产精品永久在线| 日韩无码真实干出血视频| 欧美成人精品高清在线下载| 无码电影在线观看| 毛片免费在线视频| 日韩午夜片| 国产高清在线丝袜精品一区| 国产成人毛片| 999精品色在线观看| 国产欧美日韩在线一区| 久久semm亚洲国产| 91在线视频福利| 高清色本在线www| 中文纯内无码H| 国产9191精品免费观看| www.99在线观看| 亚洲Av综合日韩精品久久久| 老色鬼久久亚洲AV综合|