陳波, 馬玉宏,2*, 趙桂峰, 管慶松
(1.廣州大學(xué)工程抗震研究中心, 廣州 510006; 2.廣東省地震工程與應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室, 工程抗震減震與結(jié)構(gòu)安全教育部重點(diǎn)實(shí)驗(yàn)室, 廣州 510006; 3.廣州大學(xué)土木工程學(xué)院, 廣州 510006; 4.震安科技股份有限公司, 昆明 650220)
隔震系統(tǒng)可以通過延長結(jié)構(gòu)的自振周期來減輕地震作用,從而改善建筑的抗震性能。目前使用最多、最成熟的是橡膠隔震支座,其中大直徑鉛芯橡膠支座逐步應(yīng)用于大跨空間結(jié)構(gòu)中,而大跨空間結(jié)構(gòu)具有平面尺寸大、結(jié)構(gòu)不規(guī)則等特點(diǎn),故橡膠隔震支座在使用過程中可能會(huì)由于施工過程混凝土溫度收縮和徐變變形或使用過程中拱的推力作用導(dǎo)致支座產(chǎn)生一定的初始剪切變形。
Koh等[1]對(duì)比了不同剪切變形下支座豎向壓縮剛度的力學(xué)模型;金建敏等[2]基于現(xiàn)有的不同初始剪切變形作用下計(jì)算豎向壓縮剛度的理論公式提出改進(jìn),并進(jìn)行試驗(yàn)驗(yàn)證;孫新陽等[3]對(duì)四種截面形狀橡膠隔震支座在不同剪切變形下的壓縮剛度進(jìn)行試驗(yàn)研究,得出剪切變形與截面慣性半徑比值是支座豎向剛度的影響因素;王建強(qiáng)等[4]通過有限元軟件研究支座在極限壓剪狀態(tài)下內(nèi)部鋼板和橡膠應(yīng)力狀態(tài);王可怡等[5]通過健康監(jiān)測系統(tǒng)對(duì)有初始剪切變形的隔震支座性能研究進(jìn)行長期監(jiān)測;杜永峰等[6]對(duì)產(chǎn)生非載荷變形的超長復(fù)雜隔震結(jié)構(gòu)進(jìn)行溫度效應(yīng)的有限元模擬,探究了結(jié)構(gòu)內(nèi)力變化規(guī)律。由以上研究可知,目前對(duì)有初始剪切變形存在的橡膠隔震支座水平性能研究性能較少,同時(shí)當(dāng)支座在大剪切變形時(shí)內(nèi)部受力狀態(tài)復(fù)雜,初始剪切變形對(duì)其內(nèi)部應(yīng)力分布的影響未知。
因此在現(xiàn)有試驗(yàn)研究的基礎(chǔ)上,通過對(duì)有初始剪切變形的支座進(jìn)行有限元分析,分析有初始剪切變形對(duì)橡膠隔震支座水平等效剛度、支座應(yīng)力影響因素以及大剪切變形作用下內(nèi)部橡膠鋼板應(yīng)力的變化規(guī)律,進(jìn)而通過分析得到初始剪切變形的限值,依托試驗(yàn)驗(yàn)證ABAQUS有限元模型的正確性,并對(duì)其進(jìn)行詳細(xì)的參數(shù)分析。
在對(duì)某大跨工程中使用的直徑為1 100 mm的鉛芯橡膠支座進(jìn)行試驗(yàn)研究的基礎(chǔ)上,應(yīng)用ABAQUS軟件建立鉛芯橡膠支座有限元分析模型,支座的具體參數(shù)如表1所示。其中,直徑為1 100 mm支座定名為B1,S1、S2分別為支座的第1、第2形狀系數(shù)。支座為Ⅱ型支座,其連接板直接與橡膠層硫化為整體,故建模時(shí)需要將連接板一同建出。所建立的有限元模型如圖1所示。

圖1 支座有限元模型Fig.1 Finite element model of bearing

表1 支座規(guī)格參數(shù)Table 1 Specification parameters of rubber bearing
支座由鋼板、連接板、鉛芯及橡膠組成,其中內(nèi)部鋼板為Q235B,連接板采用Q345B,采用線彈性本構(gòu)模型,彈性模量取200 GPa,泊松比0.3。鉛芯采用理想彈塑性本構(gòu)模型,彈性模量16 GPa,泊松比0.44,屈服強(qiáng)度取8 MPa。橡膠采用 8節(jié)點(diǎn)六面體雜交單元C3D8H,其余均采用8節(jié)點(diǎn)六面體線性減縮積分單元 C3D8R。支座水平剪切變形在250%內(nèi)時(shí)取橡膠材料Mooney-Rivlin本構(gòu)模型,B1支座橡膠剪切模量為0.35 MPa, 橡膠材料參數(shù)如表2所示[7-8]。

表2 橡膠材料常數(shù)[7-8]
在對(duì)支座進(jìn)行有初始剪切變形的水平性能有限元分析時(shí),采用與試驗(yàn)完全相同的工況:首先豎向加壓至8 MPa,將B1支座從零點(diǎn)向水平方向加載至80 mm(代表水平位移為橡膠總厚度的40%)處,保持初始剪切變形不變,豎向加壓至基準(zhǔn)壓應(yīng)力12 MPa。以此狀態(tài)為初始狀態(tài),在水平方向施加不同工況下剪應(yīng)變對(duì)應(yīng)的位移值,進(jìn)而研究支座的各項(xiàng)性能。
根據(jù)國標(biāo),橡膠隔震支座的水平等效剛度采用第3條滯回曲線計(jì)算公式為
(1)
式(1)中:U+為最大水平正位移;U-為最大水平負(fù)位移;Q+為最大剪力;Q-為最小剪力。
利用所建立的有限元模型,對(duì)支座進(jìn)行數(shù)值模擬,由式(1)計(jì)算得到有無初始剪切變形的支座100%水平等效剛度有限元模擬結(jié)果,與試驗(yàn)結(jié)果對(duì)比如表3所示,主要對(duì)比了12 MPa豎向壓力下,初始剪切變形為0和40%對(duì)應(yīng)的水平等效剛度。

表3 水平剛度對(duì)比Table 3 Comparison of horizontal stiffness
表3可見,水平剛度模擬值與試驗(yàn)值吻合較好,最大誤差0.76%,說明模型能夠很好地反映有初始剪切變形橡膠隔震支座的水平受力特性,可為后續(xù)分析提供基礎(chǔ)。
基于以上有限元模型,在不同初始剪切變形條件下,研究豎向壓力、第一、第二形狀系數(shù)及直徑等參數(shù)對(duì)支座100%水平等效剛度的影響。各模型基本參數(shù)見表4。分析過程中,主要考查有無初始剪切變形的支座100%水平剛度的比值變化情況。考慮到支座水平初始剪切變形的實(shí)際可能情況,將水平加載方向與初始剪切變形方向同向和垂直向分別定義為X向和Y向,如圖2所示。主要研究初始剪切變形為0、40%、60%、80%、100%、150%六種工況。

x為初始剪切變形圖2 加載方向示意圖Fig.2 Loading direction diagram

表4 支座參數(shù)Table 4 Specification parameters of bearings
分別在6、10、12、18 MPa的豎向壓力下,分析支座在不同初始剪切變形與無初始剪切變形下的100%剪應(yīng)變水平等效剛度的比值,結(jié)果如圖3所示。可以看出,無論水平加載方向?yàn)閄向還是Y向,在不同豎向壓力下,初始剪切變形對(duì)支座水平等效剛度的影響不大,最大相差分別為2.82%、3.48%,總體在5%以內(nèi)。

圖3 不同壓力下水平剛度與初始剪切變形關(guān)系Fig.3 Relationship curves between horizontal stiffness and initial shear deformation under different loads
在不同初始剪切變形下,3種第一形狀系數(shù)的支座100%剪應(yīng)變水平等效剛度計(jì)算結(jié)果見圖4。可見,第一形狀系數(shù)相同時(shí),無論加載方向如何,隨初始剪切變形的增大支座水平等效剛度總體呈現(xiàn)減小的趨勢,且加載方向與初始剪切變形垂直時(shí),減小趨勢明顯;初始剪切變形相同的條件下,第一形狀系數(shù)對(duì)支座水平剛度影響程度未出現(xiàn)明顯的規(guī)律性,但總體影響較小。

圖4 不同S1時(shí)水平剛度與初始剪切變形關(guān)系曲線Fig.4 Relationship curves between horizontal stiffness and initial shear deformation under different S1
不同第二形狀系數(shù)的支座在不同初始剪切變形下的100%剪應(yīng)變水平等效剛度計(jì)算結(jié)果見圖5。可見,無論加載方向與初始剪切變形方向相同或垂直時(shí),在不同第二形狀系數(shù)下,初始剪切變形對(duì)支座水平剛度影響程度較小。

圖5 不同S2時(shí)水平剛度與初始剪切變形關(guān)系曲線Fig.5 Relationship curves between horizontal stiffness and initial shear deformation under different S2
不同直徑的支座在不同初始剪切變形下的100%水平等效剛度計(jì)算結(jié)果見圖6。可見,無論加載方向如何,在不同尺寸下,初始剪切變形對(duì)支座水平剛度的影響程度均在5%以內(nèi)。

圖6 不同尺寸下水平剛度與初始剪切變形關(guān)系曲線Fig.6 Relationship curves between horizontal stiffness and initial shear deformation under different dimensions
綜上所述,鉛芯橡膠隔震支座有無初始剪切變形對(duì)支座100%水平等效剛度總體影響不大,大體變化均在5%以內(nèi),加載方向、支座直徑等參數(shù)對(duì)水平性能影響也不大。
考慮壓應(yīng)力P、支座直徑D、第一和第二形狀系數(shù)S1、S2的影響,分析對(duì)有初始剪切變形的支座100%剪應(yīng)變下的內(nèi)部橡膠最大主應(yīng)力比、鋼板最大Mises等效應(yīng)力比的變化規(guī)律,以加載方向?yàn)閄向?yàn)槔?見圖7、圖8。

圖7 不同參數(shù)對(duì)支座內(nèi)部橡膠最大主拉應(yīng)力的影響Fig.7 Influence of different parameters on maximum main tensile stress of rubber in bearing

圖8 不同參數(shù)對(duì)支座內(nèi)部鋼板最大Mises等效應(yīng)力的影響Fig.8 The influence of different parameters on the maximum Mises equivalent stress of steel plate inside the support
2.5.1 橡膠最大主拉應(yīng)力
由圖7可以看出:①無論哪一個(gè)參數(shù),橡膠主拉應(yīng)力比均隨初始剪切變形增大而增大。②與無初始剪切變形的支座相比,有初始變形支座橡膠主拉應(yīng)力增大近9倍;③橡膠內(nèi)部最大主拉應(yīng)力與壓力、第一形狀系數(shù)、第二形狀系數(shù)之間呈現(xiàn)出明顯的規(guī)律性,但與支座直徑之間的規(guī)律性不明顯。因此,以B1支座為例,得出水平加載與初始位移方向相同情況下,考慮壓力P、第一形狀系數(shù)S1及第二形狀系數(shù)S2影響的有初始剪切變形的支座橡膠最大主拉應(yīng)力比的計(jì)算公式為
y=αβγ(2.34x+1.0)
(2)
(3)
(4)
(5)
式中:α、β、γ分別為壓應(yīng)力P、S1、S2對(duì)有初始剪切變形x的支座內(nèi)部橡膠最大主拉應(yīng)力比的修正系數(shù)。
2.5.2 鋼板最大Mises應(yīng)力
由圖8可知,與無初始剪切變形的支座相比,有初始剪切變形支座內(nèi)部鋼板最大Mises應(yīng)力最大增大近3倍;且鋼板應(yīng)力隨壓力的增大而增大,而其他三種因素對(duì)其影響很小。因此得出有初始剪切變形支座內(nèi)部鋼板最大Mises應(yīng)力比隨壓應(yīng)力的變化規(guī)律為
y=α(1.82-0.81e-1.65x)
(6)
(7)
綜上所述,面壓是影響有初始剪切變形支座各項(xiàng)性能的最主要因素。
為進(jìn)一步分析有初始剪切變形支座在大剪切變形下內(nèi)部橡膠鋼板應(yīng)力的變化規(guī)律,對(duì)前文B1支座模型進(jìn)行大剪切變形分析,橡膠本構(gòu)采用Yeoh模型。根據(jù)廠家所做橡膠材料單軸拉伸試驗(yàn),確定橡膠模型參數(shù)見表5。

表5 橡膠材料常數(shù)Table 5 Material parameters of rubber
剪切變形考慮250%、300%、350%和400%,采用正弦波加載,加載頻率為0.3 Hz,其余分析步設(shè)置與上文一致。
國家標(biāo)準(zhǔn)第3部分《建筑橡膠隔震支座》[9]附錄B要求支座橡膠在剪切模量0.3~0.5 MPa時(shí)的拉伸強(qiáng)度應(yīng)大于等于12~15 MPa,本文中橡膠支座所使用的橡膠材料拉伸強(qiáng)度為21.3 MPa,以此為橡膠拉斷破壞的標(biāo)準(zhǔn)。
3.1.1 水平加載方向?yàn)閄向
為了研究有初始剪切變形的橡膠隔震支座在大剪應(yīng)變下內(nèi)部橡膠應(yīng)力變化情況,將支座沿X方向切開,其主拉應(yīng)力分布如圖9所示。將最大主應(yīng)力為負(fù)即橡膠未受拉的區(qū)域統(tǒng)一用深灰色表示。

圖9 350%剪切變形內(nèi)部橡膠最大主應(yīng)力分布圖Fig.9 Plan view of maximal principal stress of inner rubber under 350% shear strain
由圖9可見,橡膠最大主拉應(yīng)力分布在頂部及底部橡膠層的內(nèi)邊緣,隨著初始剪切變形的增大,支座內(nèi)部橡膠主拉應(yīng)力范圍變大且最大值也相應(yīng)增加,達(dá)到橡膠扯斷強(qiáng)度。
橡膠最大主拉應(yīng)力在不同大剪切變形下隨初始剪切變形的變化見圖10。可見,隨著初始剪切變形的增大,橡膠最大主拉應(yīng)力近似指數(shù)增加趨勢。令初始剪應(yīng)變?yōu)閍,支座在實(shí)際大剪應(yīng)變b下內(nèi)部橡膠最大主拉應(yīng)力y變化規(guī)律為

圖10 不同初始剪切變形支座在大剪切變形下內(nèi)部橡膠最大主拉應(yīng)力Fig.10 Maximum principal tensile stress of internal rubber of supports with different initial shear deformation under large shear deformation
y=(15.82b-35.14)e(-0.32b+1.89)a
(8)
式(8)計(jì)算的擬合值與模擬值的平均偏差 為8.2%。由式(8)可知,當(dāng)初始剪應(yīng)變a為40%時(shí),支座在發(fā)生330%實(shí)際剪應(yīng)變時(shí),橡膠主拉應(yīng)力y為21.89 MPa,超過橡膠扯斷強(qiáng)度21.3 MPa,此時(shí)支座發(fā)生破壞。該公式可用于描述支座內(nèi)部橡膠最大主拉應(yīng)力隨初始剪切變形與大剪切變形雙重因素作用的變化規(guī)律,為實(shí)際工程實(shí)踐應(yīng)用提供參考依據(jù)。
3.1.2 水平加載方向?yàn)閅向
同樣以350%剪切變形為例,給出相應(yīng)的結(jié)果如圖11所示,橡膠最大主拉應(yīng)力集中在中孔邊緣以及外邊緣。

圖11 350%剪切變形支座內(nèi)部橡膠最大主應(yīng)力分布圖Fig.11 Distribution of maximum principal stress of rubber in 350% shear deformation bearing
當(dāng)無初始剪切變形時(shí),支座在發(fā)生350%剪應(yīng)變時(shí)內(nèi)部橡膠最大主拉應(yīng)力為16.36 MPa,遠(yuǎn)小于橡膠扯斷強(qiáng)度,而支座存在初始剪切變形時(shí),橡膠主拉應(yīng)力的數(shù)值和分布的區(qū)域隨初始剪切變形變大而變大,其規(guī)律如圖12所示,支座內(nèi)部橡膠最大主拉應(yīng)力隨初始剪應(yīng)變a和大剪應(yīng)變b有關(guān),因此擬合公式為

圖12 不同初始剪應(yīng)變支座在350%剪切變形下內(nèi)部橡膠最大主拉應(yīng)力Fig.12 Maximum principal tensile stress of rubber in support under different initial shear strain
y=(0.14e1.05b)e(-0.13b+0.74)a
(9)
式(9)計(jì)算的擬合值與模擬值的平均偏差 為3.91%。由上式可得,當(dāng)初始剪應(yīng)變a為40%時(shí),支座發(fā)生370%剪應(yīng)變時(shí)橡膠內(nèi)部最大主拉應(yīng)力為21.71 MPa,此時(shí)支座發(fā)生破壞。與X向加載相比,此時(shí)初始剪應(yīng)變與實(shí)際剪應(yīng)變的和超過400%,說明加載方向與初始變形一致的方向?qū)χё跏甲冃蜗拗灯鹂刂谱饔?以下在分析鋼板應(yīng)力時(shí),僅展示水平加載方向?yàn)閄的結(jié)果。
根據(jù)橡膠支座內(nèi)部鋼板層的Mises等效應(yīng)力云圖能直觀展現(xiàn)支座易于產(chǎn)生破壞的區(qū)域[10]。水平加載方向?yàn)閄向時(shí),對(duì)前述相同工況的支座,從下到上依次取第1、15、29層即底層、中間層以及頂鋼板的應(yīng)力云圖見圖13。鋼板最大Mises應(yīng)力在不同大剪切變形下隨初始剪切變形的變化見圖14。可見,鋼板應(yīng)力隨初始剪應(yīng)變的增大而增加。

圖13 大剪切變形內(nèi)部鋼板Mises應(yīng)力分布圖Fig.13 Mises stress distribution of steel plate in large shear deformation

圖14 不同初始剪切變形作用下支座在大剪切變形下內(nèi)部鋼板最大Mises應(yīng)力Fig.14 Maximum Mises stress of internal steel plate under different initial shear deformation
初始剪應(yīng)變?yōu)閍的支座在實(shí)際剪應(yīng)變b下內(nèi)部鋼板Mises等效應(yīng)力擬合公式為
y=(50.88b2-283.47b+517.45)e(0.30b-0.55)a
(10)
即當(dāng)初始剪應(yīng)變a為40%時(shí),支座發(fā)生390%剪應(yīng)變時(shí)內(nèi)部鋼板最大Mises等效應(yīng)力為238 MPa,超過鋼板屈服強(qiáng)度235 MPa。鋼板達(dá)到屈服強(qiáng)度。
由圖9~圖14可得到以下結(jié)論。
(1)無論何種加載方式,隨著初始剪切變形的增大,支座內(nèi)部鋼板和橡膠最大主應(yīng)力均呈指數(shù)增大趨勢。根據(jù)不同剪應(yīng)變分析得到的數(shù)據(jù)點(diǎn)得到反映鉛芯橡膠隔震支座隨初始剪切變形和大剪應(yīng)變雙重因素影響的變化規(guī)律;
(2)加載方向與初始剪切變形方向相同(X向)時(shí),支座內(nèi)部應(yīng)力變化比方向垂直(Y向)明顯,通過分析對(duì)比得到當(dāng)水平加載方向?yàn)閄向時(shí),基于支座橡膠的破壞公式對(duì)支座初始變形限值起控制作用,因此分析時(shí)可主要考慮X向影響。
利用 ABAQUS軟件對(duì)具有初始剪切變形的橡膠隔震支座進(jìn)行了性能分析,得到了下列主要結(jié)論。
(1)有無初始剪切變形對(duì)橡膠隔震支座100%水平等效剛度的影響不大;豎向壓力、第一形狀系數(shù)、第二形狀系數(shù)、加載方向以及支座尺寸對(duì)支座100%水平等效剛度影響也很小。相對(duì)來說,影響最大的是豎向壓力。
(2)有初始剪切變形對(duì)橡膠隔震支座100%剪應(yīng)變條件下的橡膠和鋼板應(yīng)力有一定的影響,但基本未達(dá)到橡膠材料的拉伸強(qiáng)度和鋼板的屈服強(qiáng)度,支座處于安全狀態(tài)。
(3)有初始剪切變形對(duì)橡膠隔震支座250%以上剪應(yīng)變條件下的橡膠和鋼板應(yīng)力有很大的影響,不同剪應(yīng)變條件下的橡膠或鋼板應(yīng)力均可能達(dá)到拉伸強(qiáng)度或鋼板的屈服強(qiáng)度,支座有極大的損傷風(fēng)險(xiǎn)。
(4)綜合鋼板屈服強(qiáng)度和橡膠拉伸強(qiáng)度限制,由式(8)得到,當(dāng)初始變形a=0時(shí),支座在b=370%剪應(yīng)變狀態(tài)下橡膠達(dá)到扯斷破壞,因此建議當(dāng)支座a+b<370%時(shí),支座處于安全狀態(tài)。因此得到支座在實(shí)際剪應(yīng)變?yōu)?00%、350%、300%、250%、200%及100%時(shí),其初始變形分別不能超過0、20%、70%、120%、170%及270%。