999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

碳納米管在作物研究中的應用進展與分析

2023-07-28 01:00:34劉學文高軍濤楊自尚
農業工程學報 2023年8期
關鍵詞:植物研究

劉學文,高軍濤,李 赫,楊自尚,陳 靜

?專論與綜述?

碳納米管在作物研究中的應用進展與分析

劉學文1,高軍濤2,李 赫1,楊自尚1,陳 靜1※

(1. 河南農業大學機電工程學院,鄭州 450002;2. 中電科新防務技術有限公司,鄭州 450047)

碳納米管在農作物研究中的應用對象已經涵蓋了大米、玉米、小麥、番茄、葡萄等常見的農作物。由于研究目的不同,使用的碳納米管種類、分散方式、濃度也不同,導致文獻中出現了試驗結果多樣化的問題。為了建立一個較為統一的碳納米管試驗框架,該研究首先以作物培育、抗逆、生理指標監測和農業基因工程為綱,對碳納米管在作物研究中的應用進展進行了綜述,并歸納了文獻中使用的碳納米管參數及其應用效果。通過綜合分析,論證了作物研究中存在碳納米管有效濃度未知、特異性作用不明顯、間接生物毒性研究不足的問題,并針對性地給出了作物研究中的碳納米管試驗方案建議,包括碳納米管的選型、培養基的制備以及表征方法。最后,與以往利用原始和共價修飾的碳納米管進行作物培育不同,在未來,利用非共價修飾的碳納米管或碳納米管的非共價堆積作用進行作物研究是重要的發展方向。

納米;作物;碳納米管;表面修飾;作物培育;生物毒性

0 引 言

碳納米管(carbon nanotube,CNT)因管壁層數不同而分為單壁碳納米管(single-walled carbon nanotube,SWCNT)和多壁碳納米管(multi-walled carbon nanotube,MWCNT),其優良的光學特性、生物相容性和尺寸特性已經被廣泛認可并被應用于許多領域[1-2]。在結構上,SWCNT可以被視為由石墨烯沿某一矢量方向卷曲而成的單層管狀結構,直徑0.4~2 nm(更大直徑的SWCNTs在技術上是可行的,但容易導致缺陷甚至表面塌陷),長度一般在微米到亞毫米量級;MWCNT可以被視為多個不同直徑的SWCNTs的同軸嵌套形式,層數為幾層到幾十層不等。各管層通過范德瓦爾斯力分開,管層間距為0.34~0.41 nm[3]。MWCNT的外直徑2~100 nm,內直徑1~3 nm,長度一般在微米到亞毫米量級。也有報道稱可以制備長度為厘米尺度的SWCNTs[4-5]和MWCNTs[6-8]。

近年來,CNTs與農作物相互作用已經成為研究熱點,主要集中在CNTs對作物生長發育的促進和生物毒性等方面[9-10],目標物種已經涵蓋了大米、玉米、小麥、番茄、葡萄等常見的農作物。植物的生長發育是個非常復雜的過程,受眾多內在外在因素的影響,因此文獻中關于CNTs影響作物生長發育的形式具有多樣性的特點,其中積極作用包括提高種子發芽率,增大芽長和根長,增加葉片的數量,增加花和果實數量以及提高應對脅迫環境的能力等;但當CNTs濃度高時,也會對作物生長產生氧化損傷、發芽率降低等負面影響[11]。因此,有必要對文獻中的農作物的種類、生長階段、培育方式以及碳納米管的種類、分散方式、施用方法、濃度進行總結歸納,以期發現規律、為后續研究者建立一個較為統一的研究框架。最后,本文也探討了CNTs在作物研究中可能的應用范圍以及發展趨勢。

1 作物對碳納米管的吸收

植物細胞壁是限制外源性生物分子遞送到植物體內的屏障,由于細胞壁孔隙因植物種類、組織類型不同而不同,所以外源性分子穿過細胞壁的難易程度和通量也不同。按照現有的數學模型[12-13],直徑超過20 nm的納米材料進入植物是非常困難的[14]。

但許多文獻報道了大尺寸CNTs可以穿過植物細胞壁,SMIRNOVA等發現超聲分散的外徑(outside diameter,OD)20~70 nm,內徑(inner diameter,ID)5~10 nm,長度≥2 μm的MWCNTs分散液可以進入Onobrychis arenaria的根部和葉部[15]。WILD等使用超聲分散的外徑110~170 nm(長度≤9 μm)的MWCNTs分散液水培小麥時發現MWCNTs可以刺穿表皮和根毛細胞壁,貫穿整個根部的伸長區、根毛和分枝以及根冠,MWCNTs進入細胞質的深度約為4 μm。延長培育時間(最長28天)會導致穿透細胞壁的MWCNTs數量增加,但進入的深度并未超過4 μm[16]。KHODAKOVSKAYA等發現平均直徑20 nm,長度0.5~1 μm的MWCNTs可以進入煙葉細胞[17]。

因此,CNTs在細胞壁處的積累可能改變了細胞壁的性質,主要有以下幾種途徑:

1)CNTs在細胞壁和角質層上造成了新的、更大的孔隙,并在纖維微絲中產生破裂和破壞,最終促進了更大尺寸CNTs的吸收[18]。

2)CNTs會誘導活性氧(reactive oxygen species,ROS)大量爆發[19],其中,OH自由基能夠在植物多糖中裂解糖鍵,引起細胞壁木糖葡聚糖聚合物的分裂,導致植物細胞壁松動,氣孔增大[20]。類似地,環境脅迫誘導的ROS爆發也會增加對大尺寸納米顆粒(nanoparticles,NPs)的吸收[21-22]。

3)表面修飾也可以輔助大尺寸CNTs穿透細胞壁。例如,Serag等驗證了用纖維素酶修飾過尖端和側壁的杯狀堆疊碳納米管(直徑范圍60~100 nm)可以穿過擬南芥細胞壁,并認為是通過修飾于CNTs表面的纖維素酶和細胞壁之間的局部接觸位點進入的,其中,纖維素的局部水解起到了輔助作用[23]。

雖然作物對CNTs的吸收已被試驗驗證,但CNTs穿透作物細胞壁的原理及其在細胞間轉運的動力學原理尚缺乏透徹研究。

2 碳納米管在作物研究中的應用

不同修飾物修飾的CNTs在作物研究中的應用(如圖 1所示)也不同:1)未修飾的或表面羧基化的CNTs主要用來研究對作物培育的影響,羧化的CNTs比未修飾的CNTs具有更優的可移動性,使得芥菜種子發芽更快、發芽率更高[24];2)生物大分子(如蛋白質、核酸[25]等)修飾的或聚合物(如殼聚糖、聚乙二醇PEG、聚乙烯亞胺PEI、聚氨基胺PAMAM[26]等)與生物大分子共同修飾的CNTs常被用來研制生物傳感器[27]或進行DNA/RNA遞送等;3)表面活性劑(如月桂醇硫酸鈉SDS、膽酸鈉SC[28]、脫氧膽酸鈉SDC等)或單純聚合物[29]修飾的CNTs對農作物影響鮮有報道。下面是碳納米管在作物研究中具體應用實例的詳細介紹。

圖1 碳納米管在作物研究中的應用

2.1 碳納米管在作物培育中的應用

CNTs的作用包括[30-32]:提高種子發芽率,增加芽長和根長,增加根和葉片的數量,增加花和果實數量,增強光合作用率,提高蒸騰速率,增加作物的生物質,增強水和礦物質的攝取以及提高轉運速率等。

2.1.1 碳納米管對作物種子萌發的影響

2.3~23 mg/L CNTs處理過的芥菜種子比蒸餾水處理過的發芽率更高,50%的種子萌芽所需時間縮短了44%,而46 mg/L的CNTs明顯出現生物毒性[24];SMIRNOVA等使用0.1~10 mg/L未修飾的MWCNTs分散液浸泡萌發Onobrychis arenaria種子,種子的發芽率有明顯提升,根和莖的長度均明顯增加[15]。Haghighi等用10~40 mg/L未修飾的MWCNTs(直徑8~15 nm,長度>10 μm)分散液直接萌發種子,發現番茄、洋蔥和小蘿卜的平均發芽時間延長;根長和莖長增加;40 mg/L的CNTs對洋蔥和小蘿卜產生生物毒性[33]。Ca?as等發現未修飾的SWCNTs會抑制番茄的根伸長,增強洋蔥和黃瓜的根伸長,PABS-CNTs會抑制生菜的根系伸長,而卷心菜和胡蘿卜不受上述兩種SWCNTs的影響[29]。

CNTs對種子萌發的影響呈現明顯的濃度依賴和種類依賴,低濃度的CNTs對種子的萌發產生積極影響。

2.1.2 碳納米管對作物幼苗生長的影響

Tiwari等利用磁力攪拌的MWCNTs-瓊脂混合物(CNTs直徑6~9 nm,長度5 μm)培養玉米種子,發現MWCNTs使黑色層種皮和根部細胞穿孔,因而水的輸送增強。在正常培養基中,低劑量MWCNTs被認為是有益的,可改善根部吸水性、植物生物量和必需的Ca、Fe營養素的濃度,但在高濃度下抑制了玉米幼苗的生長[34]。賽鬧汪青等使用1 000 mg/L的MWCNTs培育水稻幼苗發現直徑30 nm以下的MWCNTs抑制了水稻幼苗的生長,但直徑大的影響更小,而直徑大于50 nm的MWCNTs卻顯著優化了水稻幼苗的生長[35]。

CNTs對幼苗生長的影響存在濃度依賴,同時也存在直徑尺寸依賴,參照CNTs影響種子萌發的試驗也可以發現:使用大直徑CNTs的文獻中,較少提及CNTs對作物培育的毒性。

2.1.3 碳納米管對花和果實數量的影響

在補充MWCNTs的土壤中種植長春花,MWCNTs通過誘導早期花卉發育和更高的花卉產量來刺激植物繁殖系統。在補充MWCNTs(濃度50? mg/L,200? mg/L,OD 13~18? nm,長度1~12 ?μm)和石墨烯的土壤中種植的長春花,總花產量分別提高了37%和58%[36]。在補充表面弱羧化MWCNTs的土壤中生長的番茄植物產生的花朵和果實是對照土壤的兩倍[37]。González-G等發現MWCNTs(OD 30~50 nm,長度10~20 μm)增加了番茄作物的果實產量和干枝生物量。由于抗壞血酸、類黃酮的含量和谷胱甘肽過氧化物酶的活性增加,抗氧化系統得到改善。碳納米管的應用也提高了凈光合作用和水分利用效率[38]。包興成等發現4~12 mg/L的羧化MWCNTs(OD 20~30 nm,長度10~30μm)對夏黑葡萄的生長和果實品質均有促進作用,其中,8? mg/L的CNTs作用效果最佳[39]。

與前述對種子萌發的影響不同,上述文獻中并未發現高濃度的CNTs對種子萌芽率、根長、芽長、花和果實數量出現抑制作用。

2.1.4 碳納米管對作物培育的負面作用機理

CNTs會引起植株內ROS過量爆發,導致植株氧化損傷。例如:Tan等發現用CNTs培養的水稻細胞ROS增加,細胞活力降低[40]。MWCNTs與草甘膦聯合的水培擬南芥的根系和地上部的生長受到顯著影響,丙二醛含量高,代謝抗氧化分子上調表明MWCNTs與草甘膦聯合施用引起強烈的氧化損傷,抗氧化酶活性的降低表明ROS與抗氧化防御系統之間由于ROS的不斷產生而失衡[41]。

CNTs促進細胞壁非流動性Ca2+流失,將引起后續植物損傷:Tiwari等研究發現CNTs與Fe2+同時存在時,細胞內Fe2+的含量增加,而Ca2+的含量降低[34]。另外,CNTs可以將Fe3+還原成Fe2+,Fe2+會繼續與Ca2+發生交換[42]。由于根部Ca2+主要固化于細胞壁,因此,CNTs的存在會加重細胞壁Ca2+的流失,可能造成根部細胞壁被穿孔,體內營養物質外滲,更易被病菌侵染等后果。

文獻中CNTs的作用結果因作物種類、CNTs類型和濃度的不同而不同,甚至出現相互矛盾的現象。通過分析CNTs產生負面作用的原理發現,當試驗中的培養基、培養方式、作物生長特性不同時,產生差異性結果是必然的。表1給出了典型文獻中的CNTs參數。總體來看,大直徑的、短型的、合適濃度的CNTs對作物的培育能夠起到積極作用。

2.2 碳納米管在作物對抗脅迫環境中的應用

Martínez等發現MWCNTs在鹽脅迫下可以進入成株的細胞,積累量較高,認為MWCNTs對NaCl處理植物生長的積極影響是水分吸收增加的結果[30]。Pandey等發現MWCNTs減少了NaCl引起的毒性作用,鹽脅迫條件下栽培的作物長期施用MWCNTs改善了期望的顯性性狀:長春花發育了更高的花數和葉數,棉花增加了纖維生物量。干旱脅迫試驗表明,缺水條件下,在成熟期長春花植株中引入MWCNTs可提高植物存活率,且無葉片枯萎癥狀[36]。賀君杰等發現5 mg/L的MWCNTs可以通過調節重金屬轉運ATP酶5(ATPase5)基因的表達減少銅離子吸收、提高根部非蛋白硫醇的水平以螯合過量的銅離子等方式緩解苜蓿銅脅迫[43]。

CNTs在作物抗逆中的作用既有植物生理作用也有基因表達調控作用,機理較復雜。

表1 作物培育研究中的CNTs參數

注:SWCNT:單壁碳納米管;MWCNT:多壁碳納米管。

Note: SWCNT: Single-walled carbon nanotube; MWCNT: Multi-walled carbon nanotube.

2.3 碳納米管在作物監測中的應用

核酸適配體、蛋白質或特殊ssDNA片段修飾的SWCNTs具有很好的近紅外熒光特性,已經被廣泛用來研制各種生物傳感器[44],基于熒光強度變化的傳感器工作原理如圖2a所示,當SWCNTs周圍的化學環境發生變化時,其熒光強度或熒光中心波長會發生變化。例如,Lambert等利用ssDNA纏繞的SWCNTs高選擇性地檢測玉米黃曲霉毒素B1(aflatoxin B1,AFB1),而不受伏馬菌素(fumonisin B1,FB1)等毒素的影響[45],另外,基于CNTs的電化學傳感器也可以實現對真菌毒素的檢測[46]。Wu等報道了利用對H2O2敏感的DNA適配體修飾的SWCNTs來檢測H2O2,實現通過SWCNTs熒光的強弱變化實時反映植物體內H2O2的含量變化,原理如圖 2b所示[47],有望實現對脅迫下植物體內ROS變化(時間點和位置)的監測。Lew等利用ssDNA修飾的SWCNTs實現了對萵苣、芥菜、菠菜、大頭菜、酸模和擬南芥中創傷葉片處H2O2含量的實時在線測量[48]。

雖然SWCNTs表面可以較為容易地修飾多種生物大分子,但是修飾過程會改變適配體或DNA的構象,這可能會影響其與靶標分子的特異性結合,而這種結合是否具有可逆性的熒光響應也是需要解決的問題。

注:當基于熒光響應的CNTs傳感器與待測物結合后,其熒光的光強或中心波長會發生變化。δI為光強的變化量,δλ為中心波長的變化量。

2.4 碳納米管在DNA/RNA遞送中的應用

SWCNTs的直徑很小,表面修飾DNA后的復合物直徑仍然小于植物細胞壁孔隙尺寸(例如,原始SWCNTs直徑1.3 nm,聚合物修飾后的直徑為8.1 nm,再經DNA培育后的直徑變為16.3 nm[49]),能夠穿透植物細胞壁[50]。不過,SWCNTs的長度可能會影響其穿過細胞壁,因此一般需要將SWCNTs變短。

與傳統植物DNA遞送和小干擾RNA(small interfering RNA,siRNA)施用方法不同,CNTs介導的DNA/RNA遞送具有瞬時轉化率高的特點[51-52],而且CNTs還可以保護多核苷酸避免被核酸酶降解[53]。目前,SWCNTs被認為是基因遞送的理想載體[54-55],例如:Kwak等利用殼聚糖修飾的SWCNTs選擇性地將質粒DNA遞送至葉綠體,在成熟的芥菜、金蓮花、煙草和菠菜植物以及分離的擬南芥葉肉原生質體中實現了葉綠體靶向轉基因遞送和瞬時表達,轉化率達到88%[56]。Demirer等通過共價修飾和非共價修飾的SWCNTs實現了在本氏煙草、芝麻菜、小麥、棉葉和芝麻菜原生質體上的高效DNA遞送和強蛋白表達[49,57]。

Apartsin等詳述了siRNA綁定CNTs形成復合物的方法、靶細胞如何吸收siRNA-CNTs復合物以及細胞內siRNA如何解綁等[58]。Edwards等將雙鏈DNA(double-stranded DNA,dsDNA)連接到聚酰胺-胺聚合物(PAMAM)修飾的MWCNTs上形成的PAMAM- CNT- dsRNA復合物注射到赤擬谷盜幼蟲體內時,發現PAMAM-CNT在細胞液泡和細胞核中可見,而且兩個靶基因α-微管蛋白和線粒體RNA聚合酶的敲除水平顯著增加。與單獨注射dsRNA(靶基因α-微管蛋白)相比,注射PAMAM-CNT-dsRNA的幼蟲發現皰翅表型的發生率更多,這表明,使用功能化的CNTs進行dsRNA遞送可以提高RNA干擾對害蟲物種的功效[59]。

碳納米管用于DNA/RNA遞送的關鍵是基因的“裝載”。碳納米管的結構決定了dsRNA和dsRNA很難直接纏繞到CNTs上[60],文獻中主要有兩種形式實現dsDNA/dsRNA遞送:1)先將兩條互補的單鏈DNA(single-stranded DNA,ssDNA)/ssRNA分別纏繞到CNTs表面,當上述混合物進入細胞后,ssDNA或ssRNA與CNTs解吸附,再形成dsDNA或dsRNA,原理如圖3a所示[50];2)先使用聚合物修飾CNTs,然后通過電荷吸附作用或形成絡合物等方式將dsDNA或dsRNA固定在CNTs表面,原理如圖3b所示[59]。另外,還有一種方法可以嘗試:原理如圖3c所示[61-62],將dsDNA或dsRNA與一段ssDNA相連,ssDNA通過π-π堆積纏繞到CNTs表面后,即可將dsDNA或dsRNA固定在CNTs上。

圖3 DNA/RNA遞送的操作方法

3 作物研究中碳納米管的使用問題分析

3.1 碳納米管培養基的有效濃度問題

濃度是研究CNTs影響作物生長發育必須衡量的參數,雖然文獻中都給出了所使用的CNTs培養基濃度,但實際能夠進入植物細胞的有效CNTs濃度是不確定的[63]。這是因為一部分文獻中采用超聲直接分散的原始未修飾的CNTs,分散效果較差,CNTs聚集團較多(如圖4a所示[16],箭頭處為聚集團,Copyright 2009 American Chemical Society);另一部分文獻采用超聲分散的表面羧基化的CNTs,由于羧基與CNTs的質量比和體積比均過低,其在一定時間后仍然會產生聚集、沉淀。

盡管文獻中的透射電子顯微鏡或熒光圖像顯示植物細胞中的CNTs往往是小的聚集團[64](如圖4b所示[65],Copyright 2021 American Chemical Society),尺寸在數μm甚至百μm量級[53],但目前還沒有直接證據證明CNTs是以聚集團的形式進入的細胞。與之相反的是,Husen等論證了當CNTs通過毛細作用被輸送到通道狹窄的點時,CNTs會積聚并阻塞營養物質進一步流動的通道[66];Martínez等使用超聲分散的未修飾MWCNTs-霍格蘭溶液(直徑6~9 nm,長度0.1~0.5 μm)水培西蘭花,發現在植株根部和莖部的CNTs都是以單根的形式存在[30]。綜上分析,CNTs應該是以單根形式穿過細胞壁,并會在細胞質中的聚集,而CNTs培養基中的聚集團是不太可能整體進入植物細胞的。因此,研究者應當注意測量CNTs的有效濃度。

圖4 試驗中CNTs的典型形態

3.2 碳納米管的特異性作用問題

試驗中可采用的CNTs商品較少,只有表面氨基化、羧基化或羥基化的幾類。由于并未在表面修飾特殊功能的材料,因此在研究作物植株受CNTs影響時,CNTs往往是被當作一種納米尺寸的材料使用,試驗結果也與大部分的NPs(如CeO2、TiO2、ZnO等)對作物培育的影響相同:都可以對種子引發、種子萌發、幼苗生長過程、對抗脅迫壓力產生有益影響,從而提高種子發芽率,增大芽長和根長[18,67-69]。究其原因,基本共識是由于NPs可以導致細胞壁穿孔,增強了水的吸收、改變了種子的抗氧化系統等[19],亦即在促進作物生長方面,與其他NPs相比,無修飾或非選擇性修飾的CNTs并未顯示具有獨特的作用效果。

3.3 碳納米管帶來的食品安全問題

無論是被用于人類/動物疾病治療、植入式傳感,還是被用于農業,CNTs的生物毒性一直是被討論的問題。相比于人類/動物領域主要研究CNTs的直接毒性,農業中還需要考慮其間接毒性問題[70]。

3.3.1 碳納米管的直接毒性

美國國家職業安全衛生研究所在職業性癌癥致癌物清單中并未將CNTs列為致癌物[71],但其一項研究表明,接觸CNTs的工人離體全血樣本對兩種微生物刺激劑(脂多糖和葡萄球菌腸毒素)功能性免疫反應較低[72]。

REZAEI等創建了用于全面調查番茄植株器官中積累的MWCNTs可能帶來的健康風險評估平臺,用CNTs污染植株結出的西紅柿喂養小鼠,結果顯示所有參與評估的動物器官和生理參數都沒有顯示出毒性反應,表明由于根部施用導致在植物不同部位積累的CNTs數量不足以對小鼠產生毒性[73]。

3.3.2 碳納米管的間接毒性

CNTs中的碳原子主要以sp2雜化形式存在,管壁碳原子的P電子形成大范圍的未配對的離域π電子云,因此可以通過π-π堆積(π-stacking)與其他含有碳環狀結構的物質(如芳香族化合物)結合[74-77]。另外,表面修飾物也會與離子結合,如吸附水中重金屬離子(鎘、稀土、鉛、銅離子等)[78-80]。上述吸附作用或離子結合作用使得CNTs可以作為載體將外源污染物運輸到農作物的多個部位,造成外源有毒物質在植株內的積累,例如:

1)Chen等研究發現,在超聲分散的MWCNTs與污染物(六氯苯HCB、滴滴涕p-p′ DDT)的同時作用下,污染物在芥菜植株內的富集,并給出了幾種污染物的動力學積累過程[81]。WILD等發現超聲分散MWCNTs穿透過的小麥根部細胞壁更加容易使大分子菲進入該細胞[16],但是沒說明菲是由于π-π堆積作用附著在碳管壁一起進入的還是由被碳管擴大的細胞壁孔洞進入的細胞。

2)Wang等的研究表明,羧化的MWCNTs與Pb+Cd的組合導致蠶豆幼苗營養元素不平衡,葉片中Pb和Cd的富集引起葉片氧化脅迫和損傷,而單獨的MWCNTs-COOH或Pb+Cd作用卻沒有上述效果[82]。

相較而言,含有CNTs的作物食用安全問題,可以直接參考動物或人類直接CNTs暴露的毒性研究結論。但是,在含有污染物的植株生長環境中,CNTs運載外源毒性物質進入植株帶來的間接毒性問題需要更深入的研究。

4 作物研究中碳納米管試驗方案建議

4.1 碳納米管選型建議

SWCNTs與MWCNTs具有同類型的特性,都具有很高的比表面積和長徑比、高的化學反應活性等[83-84],但SWCNT在幾何尺寸、熒光特性和生物毒性方面具有明顯優勢。通過綜合分析文獻可知:

1)大直徑的MWCNTs對作物培育的負面影響較少。

2)考慮到細胞壁的通過性,直徑越小的CNT越容易穿過細胞壁,或允許“裝載”更大的分子。

3)CNT是一維納米材料,長度也會影響植物細胞的吸收。文獻中尺寸短的CNTs對作物的影響更顯著。

4)雖然有文獻指出共價修飾后的MWCNTs可以產生熒光(激發光中心波長350 nm,熒光中心波長為418 nm)[85-86],但其不是常用的熒光物質。而非共價修飾的SWCNTs具有非常優秀的熒光特性[87],其典型手性CNTs的熒光發射峰在近紅外Ⅱ區,遠離植物色素的自發熒光波段,避免植物組織自發熒光的干擾,在表征方面具有優勢。

5)世界衛生組織國際癌癥研究機構公布的致癌物清單中,MWCNTs被認定為2B類致癌物,而SWCNT被認定為3類致癌物[88]。SWCNT的直接生物毒性比MWCNT小很多。

因此,本文建議在作物培育的研究中使用短型大直徑多壁碳納米管作為試驗材料;而在以遞送和傳感為主的作物研究中,使用短型單壁碳納米管作為試驗材料。

4.2 碳納米管培養基制備方法建議

由于碳納米管疏水性強、易聚集,若采用超聲分散未修飾的或表面羧基化的CNTs來制備溶液培養基,或采用將CNTs粉末與瓊脂直接攪拌混合的方法制備瓊脂培養基[34,89],不同的研究者很難獲得相同的有效濃度。

為了保證濃度對作物影響結果的可復現性,本文建議采用表面修飾的碳納米管進行試驗研究,修飾物可以為在植株體內可降解的有機分子如ssDNA、吡唑醚菌酯等[90-91],由于營養液中的陽離子可能與CNTs表面修飾物發生反應,因此不建議用營養液來分散CNTs。

CNTs培養基儲備液的制備流程建議為CNTs和修飾物的水溶液混合后在水浴杯中進行超聲分散,將分散液高速離心4 h后取80%~90%的上層溶液,利用分光光度計測量CNTs濃度。

由于制備瓊脂時需要將水加熱至接近沸騰,而修飾物在高溫下,構象可能會發生改變甚至解析附,故制備CNTs瓊脂培養基的流程建議為瓊脂粉與少量高純水混合后加熱至全部溶解,再加入CNTs儲備液攪拌均勻并定容。

基于上述兩種培養基,可以方便地利用水培法和瓊脂培育法探索CNTs在作物研究中的各種作用[30]。

4.3 植株內CNTs的表征方法

一般采用透射電子顯微鏡和掃描電鏡對CNTs的形貌[92]或植物組織切片成像[93]。采用電子斷層掃描(electron tomography,ET)可以獲得細胞的3D圖像,在觀察CNTs在植物細胞內的體分布方面具有更大的優勢[94]。

熒光顯微鏡也常用于表征CNTs。考慮到顯微鏡細胞成像系統的通用性,一般農學生物實驗室常采用以下3種用法:1)采用對細胞染色的方法對細胞成像,利用CNTs在該激發光波段(如370、488、592 nm等)無熒光的特性,通過研究圖像中黑斑來表示其形態和在細胞中的位置[64];2)將熒光團修飾到CNTs表面進行熒光標記,而不對細胞染色,通過融合熒光圖像與細胞的明場圖像來研究其相對位置(如圖5a所示[95],Copyright 2009 American Chemical Society);3)將CNTs作為熒光團的淬滅物質:進入細胞前,連接在探針兩端的熒光團和CNTs之間會緊密接觸,使得熒光被淬滅。進入細胞后,當探針與目標物結合后,由于構象發生變化,熒光團脫離CNTs表面并發射熒光(如圖5b所示[53])。

圖5 植株內CNTs的不同表征方式

另外,SWCNTs具有非常優秀的熒光特性,其激發光范圍為550~800 nm,熒光范圍為900~1 400 nm[96](如圖5c所示)。近紅外熒光顯微鏡可以被用來檢測SWCNTs的熒光,圖像包含熒光光強和二維空間位置信息[97],近紅外共聚焦熒光顯微鏡景深小,可以用于確定SWCNTs在細胞內的深度[98]。雙光子激發熒光顯微鏡(two-photon excitation microscopy,TPEM)更適用于檢測MWCNTs的熒光(360~530 nm),因為激發光710 nm恰好在植物組織的近紅外窗口區,與350 nm的激發光相比優勢明顯。同時,基于多幅TPEM圖像的3D重建技術,可以更清晰地分辨MWCNTs與植物細胞的位置關系(如圖5d所示[16],Copyright 2009 American Chemical Society)。

5 結論與展望

碳納米管在農作物生長發育、抗逆、育種等方面的積極作用已經被證實,應用前景廣闊。但也不可避免地存在需要改進的情況,例如,未修飾的和共價修飾的CNTs對作物培育的影響已經有豐富的研究基礎,但非共價修飾的CNTs的應用研究相對較少。因此,對CNTs在作物研究中的應用總結與展望如下:

1)CNTs穿透細胞壁的原理、進入細胞后的聚集機制及其在細胞間轉運的動力學原理尚缺乏透徹研究,需要設計新穎的試驗、采取新的表征手段或采用新的植入式在線傳感器進行研究。

2)基于CNTs的植入式在線監測傳感器將是CNTs在作物研究中的重要應用方向之一。相對于被用作體外傳感器,由于CNTs可以穿透細胞壁,具有優良的近紅外熒光特性,適當濃度的CNTs對作物沒有生物毒性(甚至有益于作物的生長),因此,非共價修飾的CNTs更適合作為植入式傳感器,對植物體內的多種化學物質進行實時在線監測。

3)作為轉運載體是CNTs在作物研究中的一個重要應用方向:在siRNA遞送方面,siRNA-CNTs復合物在施用周期、植物細胞吸收、害蟲細胞吸收、保護RNA被降解方面均有獨特的優勢,但是,相關文獻并沒有進行包括siRNA-CNTs復合物的施用、植物細胞吸收、害蟲細胞吸收、阻斷基因表達、害蟲發育停滯或者死亡這一系列完整的試驗流程,因此,CNTs介導的RNA干擾抗蟲技術還有廣闊的研究空間。

4)利用CNTs對有機農藥的吸附,實現殺菌劑的精準定點運載及農藥緩釋,用來提高農藥的藥效以及延長半衰期也是一個重要的研究方向。

另外,CNTs與動物相互作用(遞送、檢測、疾病治療)的研究深度和廣度遠超其與植物的相互作用研究。近年來,已經有將動物研究方面的技術應用轉化到植物方面的例子。在未來,將CNTs在動物應用研究中的經驗轉化到植物應用研究中將會有效地促進農作物培育的發展。

[1] 喬俊,趙建國,解謙,等. 納米炭材料對作物生長影響的研究進展[J]. 農業工程學報,2017,33(2):162-170. QIAO Jun, ZHAO Jianguo, XIE Qian, et al. Review of effects of carbon nano-materials on crop growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 162-170. (in Chinese with English abstract)

[2] 柳馨,鐵健,鐵生年. 溫室多壁碳納米管芒硝基相變材料儲能性能[J]. 農業工程學報,2016,32(6):226-231. LIU Xin, TIE Jian, TIE Shengnian. Energy storage properties of mans nitro phase transition materials of multi-walled carbon nano-tubes of greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 226-231. (in Chinese with English abstract)

[3] LIU M Q, JOHN M C. Structure of carbon nanotubes studied by HRTEM and nanodiffraction[J]. Ultramicroscopy, 1994, 53(4): 333-342.

[4] ZHANG R F, ZHANG Y Y, WEI F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties[J]Accounts of Chemical Research, 2017, 50(2): 179-189

[5] CHANG N K, HSU J H, SU C C, et al. Horizontally oriented carbon nanotubes coated with nanocrystalline carbon[J]. Thin Solid Films, 2009, 517(6): 1917-1921.

[6] ZHANG R, NING Z, XU Z, et al. Interwall friction and sliding behavior of centimeters long double-walled carbon nanotubes[J]. Nano Letters, 2016, 16(2): 1367-1374.

[7] KIM H, WANG M, LEE S K, et al. Tensile properties of millimeter-long multi-walled carbon nanotubes[J]. Scientific Reports, 2017, 7(1): 1-7.

[8] CHO W, SCHULZ M, SHANOV V. Growth and characterization of vertically aligned centimeter long CNT arrays[J]. Carbon, 2014, 72: 264-273.

[9] VERMA S K, DAS A K, GANTAIT S, et al. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons[J]. Science of the Total Environment, 2019, 667: 485-499.

[10] Safdar M, Kim W, Park S, et al. Engineering plants with carbon nanotubes: A sustainable agriculture approach[J]. Journal of Nanobiotechnology, 2022, 20(1): 1-30.

[11] Mathew S, Tiwari D K, Tripathi D. Interaction of carbon nanotubes with plant system: A review[J]. Carbon Letters, 2021, 31(2): 167-176.

[12] Deinum E E, Mulder B M, Benitez-A Y. From plasmodesma geometry to effective symplasmic permeability through biophysical modelling[J]. Elife, 2019, 8: e49000.

[13] Hughes A, Faulkner C, Morris R J, et al. Intercellular communication as a series of narrow escape problems[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2021, 7(2): 89-93.

[14] Faulkner C. Plasmodesmata and the symplast[J]. Current Biology, 2018, 28(24): R1374-R1378.

[15] Smirnova E, Gusev A, Zaytseva O, et al. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings[J]. Frontiers of Chemical Science and Engineering, 2012, 6(2): 132-138.

[16] Wild E, Jones K C. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants[J]. Environmental Science & Technology, 2009, 43(14): 5290-5294.

[17] Khodakovskaya M V, Kanishka d S, Biris A S, et al. Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS nano, 2012, 6(3): 2128-2135.

[18] Fiol D F, Terrile M C, Frik J, et al. Nanotechnology in plants: Recent advances and challenges[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(8): 2095-2108.

[19] Marslin G, Sheeba C J, Franklin G. Nanoparticles alter secondary metabolism in plants via ROS burst[J]. Frontiers in Plant Science, 2017, 8: 832.

[20] Tenhaken R. Cell wall remodeling under abiotic stress[J]. Frontiers in Plant Science, 2015, 5: 771.

[21] Rossi L, Zhang W, Lombardini L, et al. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus[J]. Environmental Pollution, 2016, 219: 28-36.

[22] Rossi L, Zhang W, Schwab A P, et al. Uptake, accumulation, and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in glycine max (.) merr[J]. Environmental Science & Technology, 2017, 51(21): 12815-12824.

[23] Serag M F, Kaji N, Tokeshi M, et al. Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes[J]. RSC Advances, 2012, 2(2): 398-400.

[24] Mondal A, Basu R, Das S, et al. Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect[J]. Journal of Nanoparticle Research, 2011, 13(10): 4519-4528.

[25] Gillen A J, Kupis-R J, Gigli C, et al. Xeno nucleic acid nanosensors for enhanced stability against ion-induced perturbations[J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4336-4343.

[26] Varghese R, Binu N, Dalvi Y B. Biomedical applications of carbon nanotubes[J]. Carbon Nanotubes, 2022: 61-80.

[27] 王麗茹,李浩榛,王茜茜,等. 基于聚苯胺的農用柔性低阻抗pH傳感芯片設計與試驗[J]. 農業工程學報,2022,38(增刊):184-192. WANG Liru, LI Haozhen, WANG Qianqian, etal. Design and feasibility test of a lower-impedance flexible pH sensor based on polyaniline[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(Suppl): 184-192. (in Chinese with English abstract)

[28] Lambert B, Gillen A J, Schuergers N, et al. Directed evolution of the optoelectronic properties of synthetic nanomaterials[J]. Chemical Communications, 2019, 55(22): 3239-3242.

[29] CA?AS J E, LONG M, NATIONS S, et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1922-1931.

[30] Martínez B M, Zapata L, Chalbi N, et al. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity[J]. Journal of Nanobiotechnology, 2016, 14(1): 1-14.

[31] Rudakiya D, Patel Y, Chhaya U, et al. Carbon Nanotubes in Agriculture: Production, Potential, and Prospects[M]//Nanotechnology for Agriculture. Singapore: Springer, 2019: 121-130.

[32] Patel D K, Kim H B, Dutta S D, et al. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications[J]. Materials, 2020, 13(7): 1679.

[33] Haghighi M, Teixeira S J A. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species[J]. Journal of Crop Science and Biotechnology, 2014, 17(4): 201-208.

[34] Tiwari D K, Dasgupta-S N, Villase?or C L M, et al. Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture[J]. Applied Nanoscience, 2014, 4(5): 577-591.

[35] 賽鬧汪青,曹佳鑫,龐海龍,等. 多壁碳納米管對水稻幼苗的生理學效應及對1, 2, 4-三氯苯毒性的緩解[J]. 應用與環境生物學報,2020,26(3):534-542. Sainao Wangqing, Cao Jiaxin, Pang Hailong, et al. Multi-walled carbon nanotubes: Their effects on the physiological responses ofL. seedlings and the toxicity of trichlorobenzene[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(3): 534-542. (in Chinese with English abstract)

[36] Pandey K, Anas M, Hicks V K, et al. Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials[J]. Scientific Reports, 2019, 9(1): 1-14.

[37] Khodakovskaya M V, Kim B S, Kim J N, et al. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community[J]. Small, 2013, 9(1): 115-123.

[38] González-G Y, Cadenas-P G, Alpuche-S á G, et al. Carbon nanotubes decrease the negative impact of Alternaria solani in tomato crop[J]. Nanomaterials, 2021, 11(5): 1080.

[39] 包興成. 多壁碳納米管與KH2PO4配施對夏黑葡萄生長及果實品質的影響[D]. 石河子:石河子大學,2021. BAO Xingcheng. Effects of Multi Walled Carbon Nanotubes Combined with KH2PO4on Growth and Fruit Quality of Summer Black Grape[D]. Shihezi: Shihezi University, 2021. (in Chinese with English abstract)

[40] Tan X, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15): 3479-3487.

[41] Ke M, Ye Y, Zhang Z, et al. Synergistic effects of glyphosate and multiwall carbon nanotubes on Arabidopsis thaliana physiology and metabolism[J]. Science of the Total Environment, 2021, 769: 145156.

[42] Woo H, Kim I, Park S. Estimating the reducing power of carbon nanotubes and granular activated carbon using various compounds[J]. Water, 2021, 13(14): 1959.

[43] 賀君杰. 多壁碳納米管與氫化鎂緩解紫花苜蓿銅脅迫的分子機理[D]. 南京:南京農業大學,2020. HE Junjie. Molecular Mechanism Underlying Multi-Walled Carbon Nanotubes and Magnesium Hydride-Alleviated Copper Toxicity in Alfalfa[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract)

[44] Lambert B P, Gillen A J, Boghossian A A. Synthetic biology: A solution for tackling nanomaterial challenges[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4791-4802.

[45] Lambert B P. Directed Evolution of DNA-wrapped Single-walled Carbon Nanotube Complexes for Optical Sensing[D]. Lausanne: EPFL, 2021.

[46] 朱成喜,劉東,李玉葉,等. 比率電化學傳感技術在農產品真菌毒素檢測中的研究進展[J]. 農業工程學報,2022,38(5):259-268. ZHU Chengxi, LIU Dong, LI Yuye, et al. Research progress on ratiometric electrochemical sensors for the detection of mycotoxins in agricultural products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 259-268. (in Chinese with English abstract)

[47] Wu H, Ni?ler R, Morris V, et al. Monitoring plant health with near-infrared fluorescent H2O2nanosensors[J]. Nano Letters, 2020, 20(4): 2432-2442.

[48] Lew T T S, Koman V B, Silmore K S, et al. Real-time detection of wound-induced H2O2signalling waves in plants with optical nanosensors[J]. Nature Plants, 2020, 6(4): 404-415.

[49] Demirer G S, Zhang H, Matos J L, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464.

[50] Demirer G S, Zhang H, Goh N S, et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown[J]. Science Advances, 2020, 6(26): eaaz0495.

[51] Lv Z, Jiang R, Chen J, et al. Nanoparticle‐mediated gene transformation strategies for plant genetic engineering[J]. The Plant Journal, 2020, 104(4): 880-891.

[52] Zhao Y, Xu R, Hua X, et al. Multi-walled carbon nanotubes induce transgenerational toxicity associated with activation of germline long non-coding RNA linc-7 in C. elegans[J]. Chemosphere, 2022, 301: 134687.

[53] Wu Y, Phillips J A, Liu H, et al. Carbon nanotubes protect DNA strands during cellular delivery[J]. ACS Nano, 2008, 2(10): 2023-2028.

[54] Wang J W, Grandio E G, Newkirk G M, et al. Nanoparticle-mediated genetic engineering of plants[J]. Molecular Plant, 2019, 12(8): 1037-1040.

[55] Kumar S, Nehra M, Dilbaghi N, et al. Nanovehicles for plant modifications towards pest-and disease-resistance traits[J]. Trends in Plant Science, 2020, 25(2): 198-212.

[56] Kwak S Y, Lew T S, Sweeney C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechnology, 2019, 14(5): 447-455.

[57] Demirer G S, Zhang H, Goh N S, et al. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants[J]. Nature Protocols, 2019, 14(10): 2954-2971.

[58] Apartsin E K, Buyanova M Y, Novopashina D S, et al. Hybrids of siRNA with Carbon Nanotubes as RNA Interference Instruments[M]. Singapore: Pan Stanford Publishing, 2016: 33-58.

[59] Edwards C H, Christie C R, Masotti A, et al. Dendrimer-coated carbon nanotubes deliver dsRNA and increase the efficacy of gene knockdown in the red flour beetle Tribolium castaneum[J]. Scientific Reports, 2020, 10(1): 1-11.

[60] Cao C, Kim J H, Yoon D, et al. Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2008, 112(3): 738-741.

[61] Wu S J, Schuergers N, Gillen A J, et al. Characterization of double-stranded DNA (dsDNA) on single-walled carbon nanotubes (SWCNTs)[C]//ECS Meeting Abstracts. Bristol: IOP Publishing, 2018: 680.

[62] Wu S J, Schuergers N, Lin K H, et al. Restriction enzyme analysis of double-stranded DNA on pristine single-walled carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37386-37395.

[63] 閆素英,張田歌,袁雪,等. 基于響應面法的碳管納米流體穩定性[J]. 農業工程學報,2022,38(21):261-267. YAN Suying, ZHANG Tiange, YUAN Xue, et al. Stability of carbon tube nanofluid based on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 261-267. (in Chinese with English abstract)

[64] Gohari G, Safai F, Panahirad S, et al. Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in. in a concentration-dependent manner[J]. Chemosphere, 2020, 249: 126171.

[65] YANG Jingxu, YAN Zhengjuan, XU Dehua, et al. Enhanced growth of broad beans (.) through separating antagonistic nutrients using nitrogen-doped carbon nanotubes[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16437-16449.

[66] Husen A, Siddiqi K S. Carbon and fullerene nanomaterials in plant system[J]. Journal of Nanobiotechnology, 2014, 12(1): 1-10.

[67] Masoomeh A K, Mehdi M, Asgari L B, et al. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants[J]. Plant Growth Regulation, 2021, 93(1): 13-28.

[68] Zhao L, Peralta-V J R, Varela-R A, et al. Effect of surface coating and organic matter on the uptake of CeO2NPs by corn plants grown in soil: Insight into the uptake mechanism[J]. Journal of Hazardous Materials, 2012, 225: 131-138.

[69] Rossi L, Zhang W, Lombardini L, et al. The impact of cerium oxide nanoparticles on the salt stress responses of[J]. Environmental Pollution, 2016, 219: 28-36.

[70] 羅斌. 碳納米管干擾對植物多樣性與生態系統功能關系的影響[D]. 杭州:浙江大學,2020. LUO Bin. Effects of Carbon Nanotube Disturbance on Biodiversity-ecosystem Functioning Relationships[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract)

[71] CENTERS for DISEASE CONTROL and PREVENTION. Occupational cancer-carcinogen list[EB/OL]. 2012-05-02 [2023-03-03]. https://www.cdc.gov/niosh/topics/cancer/ npotocca. html.

[72] Mary K, Matthew M, Christine A. et al. Association of occupational exposures with ex vivo functional immune response in workers handling carbon nanotubes and nanofibers[J]. Nanotoxicology, 2020, 14(3): 404-419.

[73] Rezaei C S, Anas M, Liu S, et al. Comprehensive risk assessment of carbon nanotubes used for agricultural applications[J]. ACS Nano, 2022, 16(8): 12061-12072.

[74] Zheng Y, Bachilo S M, Weisman R B. Photoexcited aromatic reactants give multicolor carbon nanotube fluorescence from quantum defects[J]. ACS Nano, 2019, 14(1): 715-723.

[75] Liu S, Zha Y, Wang Y, et al. Characteristics of aniline and nitrobenzene adsorption on single-walled, multi-walled and graphitized multi-walled carbon nanotubes[J]. Current Science, 2019, 117: 683-689.

[76] Li X, Chen Y, Chen Z, et al. The recent progress on gaseous chlorinated aromatics removal for environmental applications[J]. Separation and Purification Technology, 2022, 296(9): 121364.

[77] Li P, Guo H, Xu H. Environmentally friendly ionic side chain organic small molecule/single-walled carbon nanotube composites have high TE performance[J]. Journal of Materials Science, 2022, 57(39): 18524-18534.

[78] Li Y H, Wang S, Luan Z, et al. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon, 2003, 41(5): 1057-1062.

[79] Peng X, Luan Z, Di Z, et al. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water[J]. Carbon, 2005, 43(4): 880-883.

[80] Liang P, Liu Y, Guo L. Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(1): 125-129.

[81] Chen G, Qiu J, Liu Y, et al. Carbon nanotubes act as contaminant carriers and translocate within plants[J]. Scientific Reports, 2015, 5(1): 1-9.

[82] Wang C, Liu H, Chen J, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274: 404-412.

[83] Vander W R L, Berger G M, Ticich T M. Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation[J]. Applied Physics A, 2003, 77(7): 885-889.

[84] Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications[J]. Nanoscale Research Letters, 2014, 9(1): 1-13.

[85] Minati L, Speranza G, Bernagozzi I, et al. Luminescent short thiol-functionalized multi-wall carbon nanotubes[J]. Diamond and Related Materials, 2011, 20(7): 1046-1049.

[86] Yin Y, Cao G, Fu L, et al. Functionalized multi-walled carbon nanotubes with strong fluorescence emission[J]. Journal of Alloys and Compounds, 2021, 854: 157016.

[87] Ju S Y, Kopcha W P, Papadimitrakopoulos F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization[J]. Science, 2009, 323(5919): 1319-1323.

[88] INTERNATIONAL AGENCY for RESEARCH on CANCER. Agents classified by the IARC monographs, Volumes 1-114[EB/OL]. 2022-09-07[2023-03-03]. https://monographs. iarc. who. int/list-of-classifications.

[89] Samadi S, Saharkhiz M J, Azizi M, et al. Single-wall carbon nano tubes (SWCNTs) penetrate Thymus daenensis Celak. plant cells and increase secondary metabolite accumulation in vitro[J]. Industrial Crops and Products, 2021, 165: 113424.

[90] WANG Y, TIAN J, WANG Z, et al. Crop-safe pyraclostrobin-loaded multiwalled carbon nanotube delivery systems: Higher fungicidal activity and lower acute toxicity[J]. ACS Agricultural Science & Technology, 2022, 2(3): 534-545.

[91] Hu J, Xianyu Y. When nano meets plants: A review on the interplay between nanoparticles and plants[J]. Nano Today, 2021, 38: 101143.

[92] 楊玲梅,呂鵬梅,羅文,等. 碳納米管摻雜Fe(Ⅱ)-Zn催化劑催化合成生物柴油[J]. 農業工程學報,2011,27(13):129-132. YANG Lingmei, LYü Pengmei, LUO Wen, et al. Synthesis of biodiesel by carbon nanotubes doped Fe(Ⅱ)-Zn double metal cyanide catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(13): 129-132. (in Chinese with English abstract)

[93] Talbot M J, White R G. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope[J]. Plant Methods, 2013, 9(1): 1-16.

[94] Pelz P M, Griffin S, Stonemeyer S, et al. Solving complex nanostructures with ptychographic atomic electron tomography[EB/OL]. 2022-06-17[2023-03-03]. https://arxiv. org/abs/2206.08958

[95] Liu Q, Chen B, Wang Q, et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Letters, 2009, 9(3): 1007-1010.

[96] Zubkovs V, Wang H, Schuergers N, et al. Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring[J]. Nanoscale Advances, 2022, 4(11): 2420-2427.

[97] Ni?ler R, Ackermann J, Ma C, et al. Prospects of fluorescent single-chirality carbon nanotube-based biosensors[J]. Analytical Chemistry, 2022, 94(28): 9941-9951.

[98] Antonucci A, Reggente M, Roullier C, et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics[J]. Nature Nanotechnology, 2022, 17(10): 1111-1119.

Progress and analysis of carbon nanotube applications in crop research

LIU Xuewen1, GAO Juntao2, LI He1, YANG Zishang1, CHEN Jing1※

(1.,,,450002,2.,,450047,)

The promotion and biotoxic effects of carbon nanotubes (CNTs) on crop cultivation have drawn much attention over the last decade. The studied species have covered common crops, such as rice, corn, wheat, tomato, and grapes. There was great inconsistency in the previous experiments, including the various species, growth stages, and cultivation methods of crops as well as the various types, dispersion, application, and concentrations of CNTs, resulting in the diversification of test results in the literature. To establish a relatively unified experiment framework for carbon nanotubes, this study first reviewed the progress of the application of carbon nanotubes in following four crop research directions: crop cultivation, stress resistance, physiological index monitoring, and agricultural genetic engineering, and summarized the carbon nanotube parameters used in the literature and their application effects. It was found that the ultrasonic method or carboxylation covalent modification was commonly used to disperse the CNTs for crop cultivation research, which would result that the effective concentration of carbon nanotubes in crop research being unknown. Meanwhile, this kind of non-selectively modified CNTs was used as the type of nano-sized material. There was no significant difference in the effects between NPs and CNTs on the crops. It is still lacking in the unique effects of CNTs on crop growth. Then, the non-covalently modified CNTs were proposed to establish the unique role of CNTs in crop cultivation, for example, they can aggregate at the target sites after CNTs were modified by macromolecules that can be decomposed by special plant enzymes. Biomolecules (e.g., proteins, and nucleic acids), and polymers (e.g., chitosan, PEG, PEI, and PAMAM) can non-covalently be modified on the surface of CNTs, and further used to adsorb the molecules with negative charges, which can be used as carrier or sorbent. In addition, the non-covalent modification caused no defects on the CNT surface, indicating the fluorescence properties of SWCNTs were retained. So, CNTs were often used for DNA/RNA delivery and the development of biosensors. The working principles and application scenarios of selectively modified CNTs were also summarized as: 1) The CNTs were undoubtedly an important research direction for the applications as the carriers of gene transfer. However, the DNAs that were carried by CNTs were difficult to achieve stable gene transformation, in terms of transgenic applications. By contrast, the siRNA-CNTs complexes shared unique advantages, in terms of administration cycle, plant cell uptake, and protection of RNA from degradation during non-transformative gene delivery. One of the future development directions was in the field of agricultural non-transgenic insect-resistant. 2) The surface of SWCNTs was non-covalently modified with a variety of organic substances. The target molecules were then bound to the organic substances. A variety of sensors were obtained using their fluorescence or electrochemical properties. Some of them were more suitable as implantable sensors for the real-time online monitoring of multiple chemicals in plants, compared with the in vitro sensors. The reason was that the CNTs were used to penetrate the cell walls, indicating excellent near-infrared fluorescence properties. There was no biotoxic effect on the crops at appropriate concentrations (and even beneficial to crop growth). Furthermore, the toxicity problem was caused by the accumulation of exogenous toxic substances in the plant, due to the adsorption or ion exchange with the modified CNTs. It was more worthy of investigation than the toxicity problem of CNT itself. Finally, suggestions for the CNTs experiment program in crop research are given, including the selection of carbon nanotubes, the preparation of medium and characterization methods. To sum up, unlike the previous crop cultivation using pristine and covalently modified CNTs, in the future, using non-covalently modified CNTs or non-covalent stacking of CNTs for crop research is an important development direction.

nanometer; crops; carbon nanotube; surface modification; crop cultivation; biotoxicity

2022-12-29

2023-03-02

河南省教育廳國際科技合作項目(222102520017);財政部和農業農村部:國家現代農業產業技術體系項目(CARS-04)

劉學文,博士,高級工程師,研究方向為智能感知技術。Email:liuxuewen1983@hotmail.com

陳靜,博士,碩士生導師,研究方向為生物傳感器、光電信息處理技術。Email:jingchen1983@outlook.com

10.11975/j.issn.1002-6819.202212182

S-1

A

1002-6819(2023)-08-0001-11

劉學文,高軍濤,李赫,等. 碳納米管在作物研究中的應用進展與分析[J]. 農業工程學報,2023,39(8):1-11. doi:10.11975/j.issn.1002-6819.202212182 http://www.tcsae.org

LIU Xuewen, GAO Juntao, LI He, et al. Progress and analysis of carbon nanotube applications in crop research[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 1-11. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212182 http://www.tcsae.org

猜你喜歡
植物研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: AV色爱天堂网| 中文字幕日韩视频欧美一区| 黄片一区二区三区| 欧美日韩中文国产va另类| 亚洲成人一区二区| 国产最爽的乱婬视频国语对白| 欧美在线免费| 国内精品自在自线视频香蕉| 精品久久高清| 国产午夜精品一区二区三| 午夜福利在线观看成人| 精品国产中文一级毛片在线看 | 久久久久九九精品影院| 欧美第二区| 亚洲人成网址| 国产精品无码一二三视频| 女同国产精品一区二区| 日韩视频精品在线| 狠狠色婷婷丁香综合久久韩国| 亚洲精品波多野结衣| 久久9966精品国产免费| 色偷偷一区| 香蕉在线视频网站| 亚洲av综合网| 久久精品人妻中文视频| 亚洲视频三级| 色妞www精品视频一级下载| 久久精品国产999大香线焦| 超清无码一区二区三区| 日韩精品无码免费一区二区三区 | 国产第一页屁屁影院| 中文纯内无码H| 精品剧情v国产在线观看| 美女国内精品自产拍在线播放| 日本高清有码人妻| 色综合天天综合| 亚洲美女视频一区| 中文成人在线| 中文字幕久久亚洲一区| 色综合日本| 国产欧美性爱网| 亚洲一本大道在线| 国产正在播放| 亚洲欧美不卡| 国产精品亚欧美一区二区| a天堂视频| 日韩在线成年视频人网站观看| 中文字幕调教一区二区视频| 毛片网站观看| 亚洲高清日韩heyzo| 国产在线一区二区视频| 欧美综合区自拍亚洲综合绿色 | 99精品国产高清一区二区| 亚洲无码电影| 好紧太爽了视频免费无码| 亚洲A∨无码精品午夜在线观看| 天天操精品| 国产高清不卡| 国产美女一级毛片| 91精品啪在线观看国产| 91福利国产成人精品导航| 99久久99这里只有免费的精品| 99精品国产自在现线观看| 欧美va亚洲va香蕉在线| 久久久久亚洲AV成人网站软件| 老司国产精品视频| 色综合天天综合中文网| 九色91在线视频| 精品三级在线| 欧美亚洲一二三区| 中国成人在线视频| 国产精欧美一区二区三区| 午夜a级毛片| 看国产毛片| 日韩国产精品无码一区二区三区| 国产精品欧美激情| a亚洲天堂| 国产精品污视频| 亚洲午夜国产精品无卡| 欧美性色综合网| 国产欧美精品午夜在线播放| 免费欧美一级|