黃建 邵虹



【摘? ?要】在跨學科主題活動中,學生將面對現實的背景,從數學的角度發現并提出問題,綜合運用數學和其他學科的知識與方法分析并解決問題。教師可以“折扇”為主題,設計跨學科主題作業“折扇:拾遺校園十景圖”,從“品扇”“制扇”“鑒扇”三個板塊展開,以“折扇中的黃金比例”“如何進行調研”“尋找扇形元素”“如何設計評價量規”等任務為驅動,構建主題作業群,從而提升學生的核心素養。
【關鍵詞】跨學科主題作業;傳統文化;作業評價
《義務教育數學課程標準(2022年版)》提出:“綜合與實踐重在解決實際問題,以跨學科主題學習為主,主要包括主題活動和項目學習等。第一、第二、第三學段主要采用主題式學習,將知識內容融入主題活動中。”由此可見,在跨學科主題活動中,學生將面對現實的背景,從數學的角度發現并提出問題,綜合運用數學和其他學科的知識與方法分析并解決問題。
跨學科主題學習除了與課內知識相結合,也可以拓展到課外。筆者結合“宋韻文化”,面向六年級學生,設計了數學跨學科主題作業“折扇:拾遺校園十景圖”。下面就如何融合傳統文化設計小學數學跨學科主題作業并有效實施作具體的說明。
一、小學數學跨學科主題作業的設計
跨學科主題作業的設計可從作業背景與主題、作業目標與核心問題、作業評價三個維度展開,也就是對作業從何而來、想要達到什么目標、目標達成情況展開具體討論。
(一)作業背景與主題
作業情境:校慶日即將到來,學校文創部計劃以校園十景為主題制作一套折扇,作為學校紀念品贈送給嘉賓。那么,如何設計、制作一套校園十景折扇呢?又需要用到哪些數學知識?就讓我們開啟一場與折扇有關的數學之旅吧!
明確了作業主題之后,還需進一步規劃作業板塊。主題作業可從“品扇”“制扇”“鑒扇”三個板塊出發,形成以“運算—圖形—統計”為主線的知識應用體系,融合數學、工程、藝術等學科,綜合提升學生的核心素養。具體規劃內容與涉及的跨學科知識如圖1所示。
(二)作業目標與核心問題
結合具體板塊梳理作業目標、任務目標,明確核心問題,具體如表1所示。一方面,任務目標與核心問題相互匹配,互為補充與說明;另一方面,作業目標統籌任務目標與核心問題。
(三)作業評價
對于實施效果,則需要發揮評價的育人導向作用,堅持以評促學,以評促教。具體可從定性評價、定量評價兩個方面展開。指向過程的定性評價,要特別關注學生在完成作業過程中的習慣與態度表現,可以從思考、合作、探究、創新四個維度展開。指向結果的定量評價,可將三個作業板塊的分值與學生的能力進行匹配,最終生成一張個性化的雷達圖。
二、小學數學跨學科主題作業的實施
主題作業的設計與實施要體現“教—學—評”一致性。設計主題作業時,教師需要通過確定作業主題來梳理作業板塊,并根據作業主題提供不同的背景材料,創設真實的探究情境,關注數學活動之間的學習進階,同時注重將數學研究的過程融入其中,體現數學的學科特點。在實施過程中,教師要在真實的探究情境中給學生布置學習任務,并為他們的探究提供支架,如圖表、流程圖等。在評價時,教師要根據學習成果設計合適的量規,具體來說,應兼顧學生作品的呈現方式、內涵及所蘊含的數學要素。下面筆者將結合主題作業實施的三個基本階段作具體的分析。
(一)階段一:品扇——折扇中的黃金比例
此階段為主題作業的開啟階段,教師需為學生提供“宋韻文化”的背景,創設真實的探究情境。同時,提出核心問題:折扇中有哪些黃金比例?本階段分三課時教學,設計了走進扇博物館、扇面中的0.618、折扇中的0.618三個活動(如圖2),讓學生經歷猜想、探究、結論等過程,提升用數據說話的能力。
中國扇博物館是三個國家級專題性博物館之一,館內展示了形式各樣的折扇。教師帶領學生參觀中國扇博物館,引導學生仔細觀察折扇,并啟發學生:你能提出一個與數學有關的問題嗎?
1.分析與提問
問題:為了保障扇風的功能、耐用性和使用舒適度,是否需要對折扇兩邊夾角的度數進行控制?
我也來提問:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
2.測量與推算
布置學習任務1:扇面中圓心角的0.618。即要研究“折扇的展開角度是否根據黃金比例確定”,需要經歷怎么樣的研究過程?
【猜想】(? ? ?)÷(? ? ?)≈0.618。
【探究】實驗準備:量角器、折扇若干。
實驗記錄單
[序號 扇面中圓心角度數 (? ? )÷(? ? ) 1 2 3 …… 平均數 ]
【結論】? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 。
3.遷移與應用
布置學習任務2:折扇中的0.618。除了扇面中圓心角角度,折扇中還有其他的黃金比例嗎?
【問】仔細觀察折扇的平面圖,提出一個與黃金比例有關的問題;
【探】經歷“猜想—探究—結論”等過程,進行數學研究;
【寫】撰寫一份實驗報告單。
實施建議:在分析與提問環節,學生往往不善于提出有價值的數學問題。因此,教師可將學習任務前置,在課堂上重在問題的交流、評估與完善,引導學生交流得出有意義數學問題的要素:表達準確(結構完整,意思清晰)、有數學元素(如:結合周長、角度、面積、體積等)、有價值(能應用所學知識解決)。
(二)階段二:制扇——規劃·優化·美化
制扇階段由三個獨立的活動組成,分別為規劃、優化、美化(如圖3),旨在引導學生從數學的角度認識折扇,綜合運用數學和其他學科的知識與方法進行折扇設計。本階段安排五課時。
1.規劃——步驟&數學
布置學習任務3:制作一把折扇需要哪幾個步驟?分別用到哪些數學知識?你可以用思維導圖、表格等方式呈現。
2.優化——圖形&統計
(1)圖形:扇的組成
布置學習任務4:測量扇環的面積需要哪些數據?如何測量?請選擇一個扇面,并將你測量的過程及結果記錄下來。
(2)統計:扇的規格
布置學習任務5:不同年齡、不同性別的來賓,喜愛的折扇尺寸會有差別嗎?請你設計一個研究方案,從來賓的年齡、性別等角度進行調查,并為學校提供一份有參考性的研究報告。具體請圍繞“研究背景—問題提出—調查過程—數據呈現與分析—結論”等研究環節進行撰寫。
3.美化——選景&造景
(1)選景:扇的元素
布置學習任務6:尋找扇形元素。學校哪些景物中有扇形的元素?請你參考扇形元素設計形變圖,并把校園中的扇形元素畫出來。
(2)造景:扇的產品
布置學習任務7:制作與美化。為了讓十景圖能夠量產,學校文創部決定利用版畫的形式制作紀念品。同學們,相信通過之前的研究,你已經有了十景圖的創意。那么,接下來就讓我們一起進行制作與美化,形成校園十景圖吧!
實施建議:在進行學習評價時,教師可以將評價的主動權交給學生,由學生討論、確定評價內容。如學習任務5中,可以讓學生通過討論,確定評價量規(如表2)。
(三)階段三:鑒扇——設計評選方案
此階段安排五課時。前兩課時,學生可通過小組合作的方式,討論如何讓關鍵性因素成為評選的指標,并構建具體的模型。在最后一課時中,學生展示和匯報成果,其他同學對其進行評價。
布置學習任務8:設計評選方案。校文創委員會正在廣泛收集建議,希望能夠設計出一種公正合理的評分量規。設計時要考慮五個關鍵性因素:(1)整體造型;(2)局部造型;(3)學校特色;(4)文化理念;(5)折扇質量。請你給校長寫一封信,介紹你設計的評價方案,并解釋原因,幫助學校選出能夠體現校園文化的十景圖。
實施建議:教師可以培養模型意識為目標,從“現實問題,抽象分析”“模型推理,模型演算”“模型檢驗,生成模型”等維度出發,進一步明確五個水平層次(如表3)。
實施過程中,學生在設計評分量規時展現了不同的水平層次。第一種是模糊性評分,其建立的數學模型比較單一;第二種嘗試建立元素與元素之間的數量關系,但是結構缺乏合理性;第三種通過調查研究,確定了一個比較合理的賦分制,由此構建模型。
三、跨學科主題作業設計的啟示
(一)從學科作業到跨學科主題作業
跨學科主題作業的設計基于學科作業,借助傳統文化背景,在解決真實問題的過程中,應用不同學科的知識,提高學生解決實際問題的能力。跨學科主題作業要以數學素養為核心,設計現實性的問題,引導學生將現實問題轉化為數學問題,讓學生在解決問題的過程中,學會合理假設、預測結果、選擇方法、建構模型,形成系列的物化成果。同時,可以通過類比開發更多的與傳統文化有關的主題作業,如燈籠、古橋等,讓學生在系列作業的探究中,厚植家國情懷,浸潤中華優秀傳統文化,形成和發展核心素養。
(二)從菜單式作業到結構化作業
結構化作業的設計是思維、目標、內容、評價的有機統一,體現在兩個方面:首先是自上而下的指導,也就是以思維發展為目的,合理制定作業目標,從而指導作業的內容設計與實施;其次是自下而上的重構,目標的制定起著平衡的作用,通過具體的實施、評價及時優化作業目標,從而實現預定思維目標的調整。由此雙線并行,使得跨學科主題作業設計更具結構化。
綜上所述,以“作業”為切入點進行跨學科主題學習是一種很好的學習方式。通過對傳統作業進行整合、改造、重組,盤活相關數學知識,可以構建具有真實性、開放性、綜合性的數學跨學科作業。由此,學生在解決問題的過程中,體會到數學的要素與應用價值,在內化知識的同時,提高了數學能力和核心素養。
參考文獻:
[1]中華人民共和國教育部.義務教育數學課程標準(2022年版)[M].北京:北京師范大學出版社,2022.
[2]郝安南,徐斌艷.小學數學跨學科主題活動案例分析與思考:以“夏日閱讀”活動為例[J].小學數學教師,2021(10):85-88.
[3]袁丹.指向核心素養的跨學科主題學習:意蘊辨讀與行動路向[J].課程·教材·教法,2022,42(10):70-77.
[4]吳剛平.跨學科主題學習的意義與設計思路[J].課程·教材·教法,2022,42(9):53-55.
(1.浙江省杭州市勝利實驗學校
2.浙江省杭州市上城區教育學院)