孫 勇
(費縣三和水源工程服務中心,山東 臨沂 273400)
在眾多復雜的工程環境中,影響裂縫發展的因素很多。如果不重視裂縫的維護而任由其發展,將會影響結構物的正常使用[1]。
近年來,許多學者采用數值擬合、工程檢測等多種方式,對混凝土裂縫可逆性進行了相關研究。王暢[2]對裂縫尖端出現的塑性變形進行分析,探究了時間因素、拓展狀態與裂縫發展之間的關系,并將裂縫發展的過程劃分為3個階段。胡少偉等[3]采用小波提取裂縫的變形量,并使用空間重構的方法對裂縫發展的階段進行識別。李雪紅等[4]根據實地測量的數據,建立裂縫寬度與裂縫展開的相對位移關系,并根據擬合數據提出了裂縫失穩模型,將突變理論與統計模型相結合,分析了裂縫發展與裂縫灰色尖點處突變間的關系。
本文在某水閘裂縫處布置傳感器與測縫計,監測和記錄裂縫的寬度變化和相對位置變化,分析溫度變化和時效分量對裂縫的影響,以達到閘門裂縫檢測的目的。
某水利樞紐的主要作用是發電,建設過程中水壩圍擋、泄水閘、電站廠區的建筑物等級為3級。該水庫的常規蓄水水位86.5m,設計洪水位88.1m。在安全巡查中發現,水庫泄水閘門上方的交通橋左側有多處裂縫,產生原因不詳。裂縫中,有兩條從交通橋的上游貫穿到下游,在建筑物胸墻88m處終止。在泄水閘門庫上游有一條豎直裂縫,且裂縫周圍存在明顯的析鈣現象,裂縫一直延伸至交通橋底板處。
裂縫的發展貫穿了整個泄水閘的門庫胸墻,主要發生在庫門的上游位置,嚴重影響到門庫對水流的阻攔效果。
2020年第二季度,在裂縫發生處設置了雙向測縫計。共設置9組,編號分別為Mkj-1~Mkj-9。上游側面設置Mkj-1和Mkj-2,泄水閘門庫側面設置Mkj-6和Mkj-7。兩只測縫計為一組,相互交叉垂直布置,用于監測和記錄裂縫的寬度變化。與測縫計相連接的傳感器型號為NVJ-5,測量精度0.001mm,該型號傳感器的測試精度高,環境適應能力強,數據測試傳輸性能穩定。
Mkj-1~Mkj-9測縫計位置布置平面圖見圖1。

圖1 測縫計位置布置平面圖
在宏觀領域,混凝土裂縫的時效分量是表征混凝土構件的主要指標之一。因此,為了便于描述水庫閘墩處的裂縫發展對閘墩工作性能的影響,建立裂縫寬度計算模型。混凝土裂縫的發展會隨溫度的升降表現出非線性的變化趨勢,綜合考量溫度變化對裂縫產生的非線性變化,本文參考相關文獻[4]構建的混凝土裂縫寬度統計計算模型[5]如下:
(1)
式中:δ(t)為裂縫的實測寬度值,mm;Ti為測點序號為i時的實測溫度值,℃;K為測點總數;L為多項式的溫度階次;c為回歸因子;H為水深,m;t為時間,s;θ=0.01t(s-1);a0為時效分量;b為常系數。
統計測縫計2020年6月至2021年4月的監測數據進行分析。文中選取的數據包含高溫、低溫、汛期等多種環境,不同的環境會對測縫計造成不同的環境荷載。在進行泄水閘的安全檢查時發現,門庫處出現較為明顯的裂縫,嚴重影響了泄水閘的正常交通管理工作,導致重型卡車不能通行。
已有研究表明,導致泄水閘門出現裂縫的主要因素是溫度變化,由于熱脹材料的熱脹冷縮,導致閘門的裂縫寬度和新的位置發生變化。采用9組測縫計記錄監測裂縫的變化情況,并記錄測縫計設置處的溫度,作為溫度影響數據,監測數據點位K為9。采用已有研究經驗,使用L值進行數據運算,對9個測試點的溫度值進行一次方函數、二次方函數、三次方函數的擬合計算。運算結果發現,進行三次方擬合計算時得到的數據相關性最好。因此,在分析溫度變化對其他因素的影響時,采用三階函數,取L=3。在進行裂縫統計擬合時,采用分步線性回歸法運算得到計算模型。各監測點的相關系數和誤差見表1。在9組監測數據中,傳感器J6-1的數據擬合精度高,規律明顯,繪制溫度變化對實測值與模型擬合數值的影響趨勢,見圖2。
各監測點的數值變化幅度和影響比例見表2。由表2可知,各監測點位的擬合精度為0.88~0.99,相對位置平方根誤差為0.05~0.5mm,數據的擬合精度較高,并且均方的平方根誤差較小,表明采用的擬合公式能夠較好預測裂縫的發展情況。

表1 各監測點的相關系數和誤差

圖2 溫度變化對實測值與模型擬合數值的影響

表2 各監測點的數值變化幅度和影響比例
每年的6-8月份處于汛期,6-10月份處于高溫季節,11月份至次年2月份處于低溫季節。其中,一年的高溫季節最高溫度可達35.1℃,在該溫度環境中可以檢測到的裂縫最大寬度為0.08mm;一年的低溫季節最低溫度僅有0.3℃,在該溫度環境中可以檢測到的裂縫最大寬度為0.21mm。從裂縫的總體變化趨勢來看,裂縫寬度的發展與環境溫度呈負相關。當溫度上升時,裂縫的寬度逐漸減小;溫度下降時,裂縫的寬度增大。比較各變化因素對裂縫寬度的影響所占比例發現,溫度的改變對裂縫的寬度影響最為顯著,影響比例在57%~85%范圍內波動。由此可見,溫度變化是造成裂縫發展的主要因素,裂縫寬度計算模型擬合效果好,精度高,可用于泄水閘門裂縫預測[6-7]。
根據統計模型的計算,時效分量隨時間的發展趨勢見圖3。


圖3 時效分量隨時間的發展趨勢
由圖3可以發現,若監測點位于同一側面,則時效分量的發展趨勢保持同樣的規律。位于門庫上游的監測點擬合得到的時效分量,表現出隨時間的增長先增大后減小的變化趨勢。其中,位于門庫頂端上游側的J4-1的時效分量變化最小,僅在剛開始階段有小幅下降,之后隨時間的變化,時效分量基本保持水平發展,而其他幾個測點的失效分量均表現出隨時間的增長先增大后減小的趨勢。位于門庫內測的監測點位均表現出逐漸減小的發展趨勢。位于門庫頂端下游側的J8-1時效分量變化最小,僅在剛開始階段有下降,之后隨時間的變化,時效分量基本保持水平發展;J9-1測點的失效分量均表現出隨時間的增長而減小的趨勢。
由表2可以看出,測點J3-1處的時效分量受到的影響最大。裂縫寬度的時效分量發展規律與日變幅的發展規律十分接近,當裂縫的寬度增長幅度較大時,測點的時效分量變化趨勢就越顯著。在接近閘墩位置的測點時效分量要明顯小于距離閘墩較遠處的測點。閘墩位于基巖上,在進行門庫的泄水閘檢修時,會受到左側庫岸的沉降影響,導致接近庫岸的測點監測得到的裂縫寬度值更大。
由圖3還可以看出,除J8-1測點外,其他幾個測點的失效分量均表現閉合的發展趨勢。表明裂縫的發展在減緩,寬度在逐漸變小,但其變化的穩定性難以由圖3觀察得到。
根據裂縫統計模型,計算獲得時效分量,具體數據見表3。
由表3可知,傳感器J4-1、傳感器J6-1、傳感器J8-1監測到的裂縫寬度時效分量要小于傳感器的可視精度0.01mm。因此,判定一階導數值為零,裂縫處于可正常工作狀態。傳感器J4-1的一階導數為負,二階導數為正,處于收斂趨勢,裂縫處于可正常工作狀態。傳感器J1-1、傳感器J2-1、傳感器J3-1、傳感器J5-1、傳感器J9-1的計算結果均呈現出不收斂,裂縫寬度的發展呈現出減小的趨勢。由此可見,該水利樞紐泄水閘門庫處的裂縫目前處于穩定,后續應保持持續監測和分析,并著重關注溫度變化的影響,做好預防措施。

表3 裂縫統計模型計算
本文在某水利樞紐的泄水閘裂縫發生處設置9組傳感器,分析了因常年在不利環境荷載作用下受溫度變化產生的裂縫變化規律。結論如下:
1)當溫度上升時,裂縫的寬度逐漸減小;溫度下降時,裂縫的寬度增大。比較各變化因素對裂縫寬度的影響所占比例發現,溫度的改變對裂縫的寬度影響最為顯著,影響比例在57%~85%范圍內波動。由此可見,溫度變化是造成裂縫發展的主要因素。
2)裂縫寬度的時效分量發展規律與日變幅的發展規律十分接近,當裂縫的寬度增長幅度較大時,測點的時效分量變化趨勢就越顯著。后續應保持持續監測和分析,并著重關注溫度變化的影響,做好預防措施。