999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于函數(shù)型主成分分析的過程批次響應(yīng)序貫建模

2023-08-06 07:08:08劉洋洋劉飛
化工自動化及儀表 2023年4期

劉洋洋 劉飛

摘 要 針對間歇生化過程操作條件的批次響應(yīng)建模問題,結(jié)合試驗設(shè)計方法,提出一種基于函數(shù)型主成分分析的序貫建模策略。首先,使用B樣條基函數(shù)平滑法將離散的批次響應(yīng)序列轉(zhuǎn)化為連續(xù)的響應(yīng)函數(shù)曲線;然后,運用函數(shù)型主成分分析得到響應(yīng)函數(shù)的均值曲線、主成分函數(shù)和主成分得分;最后,構(gòu)建主成分得分與操作條件之間的Kriging模型,用于預(yù)測試驗區(qū)域內(nèi)任意操作條件所對應(yīng)的主成分得分,從而建立批次響應(yīng)關(guān)于操作條件的模型。為了提高模型預(yù)測精度,依據(jù)改進(jìn)的收斂條件,采用序貫設(shè)計迭代更新模型。通過生化反應(yīng)網(wǎng)絡(luò)試驗仿真,驗證了該建模策略的有效性,且仿真結(jié)果表明該建模策略具有較好的數(shù)據(jù)可視化和模型解釋能力。

關(guān)鍵詞 函數(shù)型主成分分析 序貫設(shè)計 批次響應(yīng) 試驗設(shè)計 Kriging模型 生化類間歇過程

中圖分類號 TP274.2? ?文獻(xiàn)標(biāo)識碼 A? ?文章編號 1000-3932(2023)04-0439-08

實際工業(yè)生產(chǎn)中,大量生化類間歇過程的機理不清楚或工藝過于復(fù)雜,使得機理建模難度大且優(yōu)化求解困難,因而開發(fā)數(shù)據(jù)驅(qū)動模型成為可行的替代方案[1]。結(jié)合試驗設(shè)計(Design of Experiments,DoE)的響應(yīng)曲面法(Response Surface Methodology,RSM)是一種兼具建模與優(yōu)化的數(shù)據(jù)驅(qū)動方法[2],其在生化分析和藥物研究方面被廣泛應(yīng)用[3]。RSM只能夠建立生產(chǎn)中某一時刻響應(yīng)與操作條件之間的數(shù)據(jù)驅(qū)動模型,通常是終端時刻。但構(gòu)建整個批次響應(yīng)關(guān)于操作條件的模型則更為重要,并且隨著自動化實驗平臺的普及,短期內(nèi)并行試驗?zāi)軌蚩焖佾@取批次數(shù)據(jù),這進(jìn)一步促進(jìn)了學(xué)者們對批次響應(yīng)建模的研究。

文獻(xiàn)[4]對RSM進(jìn)行推廣,提出了動態(tài)響應(yīng)曲面法(Dynamic Response Surface Methodology,DRSM),通過在響應(yīng)面模型的系數(shù)中引入與時間相關(guān)的移位勒讓德多項式(Shifted Legendre Polynomials,SLP),將RSM中僅描述某一時刻的模型系數(shù)轉(zhuǎn)化為可以表示整個批次的時變系數(shù);WANG Z和DONG Y等針對估計高階SLP微小偏差造成的模型局部振蕩問題分別提出相應(yīng)的改進(jìn)策略[5,6],并拓展了DRSM的應(yīng)用范圍[7]。文獻(xiàn)[8]使用改進(jìn)DRSM建立吡啶酮環(huán)化反應(yīng)模型;文獻(xiàn)[9]提出基于半?yún)?shù)模型的批次響應(yīng)建模流程,應(yīng)用于甲酯化學(xué)選擇性水解反應(yīng)分析。此外,還可以考慮高斯過程[10]、機器學(xué)習(xí)[11,12]等方法來分析批次響應(yīng)建模問題。

以上方法把批次響應(yīng)看作生產(chǎn)過程的離散數(shù)據(jù)序列。筆者將把批次響應(yīng)視作一個整體,表示為連續(xù)的響應(yīng)函數(shù)曲線,即函數(shù)型數(shù)據(jù)[13]。函數(shù)型主成分分析(Functional Principal Component Analysis,F(xiàn)PCA)是研究函數(shù)型數(shù)據(jù)的主要方法。FIDALEO M采用面心立方復(fù)合設(shè)計構(gòu)造試驗,利用FPCA建立攪拌球磨機批次響應(yīng)與操作條件之間的函數(shù)模型,確定了操作條件的設(shè)計空間[14]。其中,F(xiàn)PCA作用于批次響應(yīng)得到均值曲線、主成分函數(shù)和主成分得分。FIDALEO M使用RSM構(gòu)建主成分得分關(guān)于操作條件的二階多項式預(yù)測模型。但當(dāng)批次響應(yīng)的非線性較強且試驗區(qū)域較為復(fù)雜時,就需要采用精度更高、靈活性更強的建模方法;另一方面,如果根據(jù)一次試驗設(shè)計所得模型未達(dá)到預(yù)期精度,還需考慮如何進(jìn)一步提高模型精度。

因此,筆者采用精度更高的Kriging模型預(yù)測主成分得分,并結(jié)合極大均方誤差準(zhǔn)則的序貫設(shè)計[15],在當(dāng)前模型預(yù)測精度較低區(qū)域進(jìn)行新的試驗,以提高所建模型精度。使用改進(jìn)的曲線擬合度量指標(biāo)與均方誤差共同組成序貫設(shè)計收斂條件。通過FPCA序貫建立生化反應(yīng)網(wǎng)絡(luò)產(chǎn)物濃度模型的試驗仿真,驗證了所提方法的有效性。

1 基于Kriging模型的FPCA建模

1.1 函數(shù)型主成分分析

1.2 預(yù)測主成分得分

2 FPCA序貫建模算法

3 生化反應(yīng)網(wǎng)絡(luò)建模示例

對一個含10種物質(zhì)的模擬反應(yīng)網(wǎng)絡(luò)進(jìn)行FPCA序貫建模。該反應(yīng)網(wǎng)絡(luò)具有8個獨立反應(yīng),反應(yīng)1、4為可逆反應(yīng),動力學(xué)方程和參數(shù)見文獻(xiàn)[6],物質(zhì)間的關(guān)系如圖2所示,其中,數(shù)字代表反應(yīng),圓圈代表物質(zhì),藍(lán)色表示反應(yīng)物,灰色表示中間體,橙色表示副產(chǎn)物,綠色表示目標(biāo)產(chǎn)物。

綜上,結(jié)合DoE方法,通過FPCA序貫建模算法實現(xiàn)了對生化反應(yīng)網(wǎng)絡(luò)試驗區(qū)域內(nèi)任意操作條件下產(chǎn)物批次濃度的預(yù)測,驗證了所提建模策略的有效性。

4 結(jié)束語

筆者結(jié)合DoE,提出了一種基于FPCA序貫建立過程批次響應(yīng)模型的方法。通過對生化反應(yīng)網(wǎng)絡(luò)物質(zhì)濃度建模的試驗仿真,驗證了該方法的有效性。所建模型具有較好的數(shù)據(jù)可視化和解釋能力,能夠非常準(zhǔn)確地預(yù)測試驗區(qū)域內(nèi)未知操作條件的批次響應(yīng),可用于生化過程的在線監(jiān)測、控制和優(yōu)化。

本課題中考慮的操作條件是不隨時間變化的,筆者后續(xù)將推廣所提方法,使其可以建立隨時間變化的操作條件的過程批次響應(yīng)模型。

參 考 文 獻(xiàn)

[1]? ?GEORGAKIS C.Design of dynamic experiments:A da-ta-driven methodology for the optimization of time-varying processes[J].Industrial & Engineering Che-mistry Research,2013,52(35):12369-12382.

[2]? ?BAS D, BOYACL I H. Modeling and optimization Ⅰ:Usability of response surface methodology[J].Journal of Food Engineering,2007,78(3):836-845.

[3]? HANRAHAN G,LU K.Application of factorial and response surface methodology in modern experimental design and optimization[J].Critical Reviews in Ana-lytical Chemistry,2006,36(3-4):141-151.

[4] KLEBANOV N,GEORGAKIS C.Dynamic response surface models:A data-driven approach for the analysis of time-varying process outputs[J].Industrial & Engi-neering Chemistry Research,2016,55(14):4022-4034.

[5]? ?WANG Z,GEORGAKIS C.New dynamic response sur-face methodology for modeling nonlinear processes over semi-infinite time horizons[J].Industrial & Engi-neering Chemistry Research,2017,56(38):10770-10782.

[6]? ?DONG Y,GEORGAKIS C,MUSTAKIS J,et al.Constr-ained version of the dynamic response surface metho-dology for modeling pharmaceutical reactions[J].In-dustrial & Engineering Chemistry Research,2019,58(30):13611-13621.

[7]? DONG Y,GEORGAKIS C,SANTOS-MARQUES J,et al.Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J].Frontiers of Chemical Science and Engineering,2022,16(2):221-236.

[8]? ?JURICA J A,MCMULLEN J P.Automation Technolo-gies to Enable Data-Rich Experimentation:Beyond Design of Experiments for Process Modeling in Late-Stage Process Development[J].Organic Process Research & Development,2021,25(2):282-291.

[9]? ?WANG K,HAN L,MUSTAKIS J,et al.Kinetic and da-ta-driven reaction analysis for pharmaceutical process development[J].Industrial & Engineering Chemistry Research,2019,59(6):2409-2421.

[10]? ?TANG Q,LAU Y B,HU S,et al.Response surface methodology using Gaussian processes:Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts[J].Chemical Engineering Journal,2010,156(2):423-431.

[11]? DOMAGALSKI N R,MACK B C,TABORA J E.Analysis of design of experiments with dynamic res-ponses[J].Organic Process Research & Development,2015,19(11):1667-1682.

[12]? ?WILSON Z T,SAHINIDIS N V.The ALAMO approa-ch to machine learning[J].Computers & Chemical Engineering,2017,106:785-795.

[13]? ?RAMSAY J O.When the data are functions[J].Psych-ometrika,1982,47(4):379-396.

[14]? ?FIDALEO M.Functional data analysis and design of experiments as efficient tools to determine the dynamical design space of food and biotechnological batch processes[J].Food and Bioprocess Technology,2020,13(6):1035-1047.

[15]? ?CROMBECQ K,LAERMANS E,DHAENE T.Effici-ent space-filling and non-collapsing sequential design strategies for simulation-based modeling[J].European Journal of Operational Research,2011,214(3):683-696.

[16]? ?RAMSAY J O,SILVERMAN B W.Functional Data Analysis[M].2nd ed.New York:Springer New York,2005.

[17]? ?BETZ W,PAPAIOANNOU I,STRAUB D.Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion[J].Computer Methods in Applied Mechanics and Engineering,2014,271:109-129.

[18]? ?RAMSAY J O,DALZELL C J.Some tools for functio-nal data analysis[J].Journal of the Royal Statistical Society:Series B (Methodological),1991,53(3):539-561.

[19]? ?SACKS J,WELCH W J,MITCHELL T J,et al.Design and analysis of computer experiments[J].Statistical Science,1989,4(4):409-423.

[20]? ?MONTGOMERY D C.Design and analysis of experi-ments[M].9th ed.Arizona:John Wiley & Sons,2017.

(收稿日期:2022-10-21,修回日期:2023-01-10)

Sequential Modeling of Process Batch Response Based on

Functional Principal Component Analysis

LIU Yang-yang, LIU Fei

(MOE Key Laboratory of Advanced Control for Light Industry Processes, Jiangnan University)

Abstract? ?Combined with the method of experiment design, a sequential modeling strategy based on functional principal component analysis(FPCA) was proposed for the batch response modeling of operation conditions in biochemical processes. Firstly, having B-spline basis function smoothing method adopted to transform discrete batch response sequence into a continuous response function curve; then, having FPCA employed to analyze and obtain response functions mean curve, principal component function and principal component score; finally, having Kriging model between the principal component score and operating conditions constructed to predict the principal component score corresponding to any operating conditions in the experiment region so as to establish the model of batch response on operating conditions. For purpose of improving prediction accuracy of the model, having sequential design used to update the model according to the improved convergence condition was implemented, including having effectiveness of the proposed modeling strategy verified by biochemical reaction network experiment simulation. The simulation results show that, the proposed modeling strategy has better data visualization and model interpretation ability.

Key words? ?functional principal component analysis, sequential design, batch response, experiment design, Kriging model, biochemical batch process

主站蜘蛛池模板: 亚洲熟女中文字幕男人总站| 亚洲成A人V欧美综合天堂| 久久不卡国产精品无码| 制服丝袜 91视频| 亚洲手机在线| 噜噜噜久久| 国产午夜精品鲁丝片| 中国一级特黄视频| 蜜臀AV在线播放| 国产精鲁鲁网在线视频| 亚洲国产精品一区二区第一页免 | 久久a级片| 亚洲国语自产一区第二页| 日本日韩欧美| AV无码一区二区三区四区| 99re免费视频| 国产精品大白天新婚身材| 国产亚洲一区二区三区在线| 九九九精品成人免费视频7| 亚洲国产精品无码久久一线| 欧美国产在线一区| 亚洲av无码成人专区| 久久人人爽人人爽人人片aV东京热| 国产超碰一区二区三区| 国产真实乱人视频| 日韩欧美视频第一区在线观看| 国产精品成人AⅤ在线一二三四| 72种姿势欧美久久久大黄蕉| 五月激激激综合网色播免费| 久久免费视频播放| 色一情一乱一伦一区二区三区小说| 国产无遮挡猛进猛出免费软件| 精品一区二区三区中文字幕| 国产网站免费观看| 国产在线麻豆波多野结衣| 亚洲中久无码永久在线观看软件| 国产91透明丝袜美腿在线| 五月天综合婷婷| 亚洲无码高清视频在线观看| 久久夜色撩人精品国产| 国产欧美另类| 欧美激情网址| 国产一区二区三区精品欧美日韩| 国产在线精品人成导航| 久久久久亚洲AV成人人电影软件| 亚洲天堂成人| 免费Aⅴ片在线观看蜜芽Tⅴ | 欧美在线网| 美女无遮挡免费视频网站| 91九色国产porny| 国产视频久久久久| aaa国产一级毛片| 国产jizz| 四虎影视8848永久精品| 免费人成视网站在线不卡 | 2020精品极品国产色在线观看| 亚洲视频一区在线| 亚洲黄色激情网站| 免费在线国产一区二区三区精品| 国产欧美日韩综合在线第一| 精品偷拍一区二区| 国产一级α片| 国内丰满少妇猛烈精品播| 毛片网站在线看| 亚洲欧美日本国产综合在线| 日韩乱码免费一区二区三区| 伊人久久大香线蕉综合影视| 久久久久久国产精品mv| 亚洲一区二区三区中文字幕5566| 中国一级特黄大片在线观看| 四虎免费视频网站| 亚洲国产精品一区二区第一页免| 国产成人乱码一区二区三区在线| 日本欧美成人免费| 国产毛片基地| 国产精品污视频| 国产欧美性爱网| 91国内外精品自在线播放| 欧美怡红院视频一区二区三区| 狠狠ⅴ日韩v欧美v天堂| a亚洲视频| 久久9966精品国产免费|