周晗, 郭明
杏仁核抑制性神經元與焦慮的研究進展*
周晗, 郭明△
[濱州醫學院附屬醫院(濱州醫學院第一臨床醫學院)心理科,醫學研究中心,山東 濱州 256603]
杏仁核;抑制性神經元;焦慮;光遺傳學
焦慮障礙是以過度恐懼和焦慮以及行為紊亂為特征的精神疾病,全球患病率為7.3%[1],我國焦慮障礙的終身患病率已達到7.6%[2]。焦慮障礙嚴重影響患者的工作和生活,給社會帶來巨大的疾病負擔。目前關于焦慮障礙的確切發病機制尚不清楚,臨床上主要應用抗抑郁藥和苯二氮卓類藥物進行治療,存在起效慢、副作用大等缺點。杏仁核是恐懼、焦慮等負性情緒調控的重要腦區,當對杏仁核的抑制性調控減弱時,會導致杏仁核內部神經元活動異常興奮,增加實驗動物的焦慮樣行為[3]。研究顯示抑制性γ-氨基丁酸(gamma-aminobutyric acid, GABA)能系統與焦慮關系密切,杏仁核中有大量的GABA能抑制性神經元可能參與調控焦慮[4]。隨著基因工程、生物信息學、光遺傳學等學科和技術的發展及其在神經科學研究領域的應用,對神經元分類、分布、功能的研究不斷深入,對抑制性神經元亞型的研究也越來越精細[5]。本文綜述了不同亞型的抑制性神經元在杏仁核中的特異性分布及其在焦慮調控中的作用,以期為研究焦慮發生機制和疾病治療新策略提供參考。
杏仁核在結構上主要分為基底外側杏仁核(basolateral amygdala, BLA)和中央杏仁核(central amygdala, CeA),分別是主要的輸入和輸出核團。BLA包括外側核(lateral amygdala, LA)、基底核(basal amygdala, BA)和基底內側核(basomedial amygdala, BMA),CeA包括外側核(lateral central amygdala, CeL)和內側核(medial central amygdala, CeM)。此外,在BLA外側以及BLA和 CeA之間存在一些致密的細胞層(intercalated cell masses, ITC)。杏仁核是焦慮調控的關鍵腦區,但其與焦慮關系的研究報道并不一致。杏仁核增大或縮小[6-7]、激活或抑制[8, 9]都被報道與焦慮障礙存在聯系,提示杏仁核參與焦慮調控的機制復雜性。在基礎研究中,應用動物實驗可以更深入的研究杏仁核在焦慮調控中的作用機制[10]。杏仁核內分布有谷氨酸能興奮性投射神經元、GABA能抑制性中間神經元和GABA能投射神經元,傳統的研究手段很難區分不同類型神經元在焦慮中的作用。基因工程、光遺傳學和化學遺傳學等實驗技術在神經科學領域的應用,為研究不同神經元群體和特定神經投射通路提供了有效的方法。光激活BLA神經元能夠減少小鼠在高架十字迷宮開臂中停留的時間,產生致焦慮樣作用,但特異性激活BLA神經元投射到CeA的軸突末端卻可以增加小鼠在高架十字迷宮開臂中停留的時間,產生抗焦慮樣作用[11],提示BLA不同神經元對焦慮行為調控存在差異。因此,明確杏仁核中不同神經元對焦慮的調控作用有助于揭示其調控焦慮的確切機制。
抑制性神經元是一類產生抑制作用的神經元,主要釋放抑制性神經遞質GABA,占神經元總數的10%~20%。抑制性神經元是大腦抑制性回路的重要組成部分,在保持神經元興奮與抑制之間的平衡中發揮重要作用。不同的抑制性神經元會特異性表達某種神經肽,如小清蛋白(parvalbumin, PV)、生長抑素(somatostatin, SOM)、縮膽囊素(cholecystokinin, CCK)、血管活性腸肽(vasoactive intestinal peptide, VIP)及蛋白激酶Cδ(protein kinase Cδ, PKCδ)等。表達不同神經肽的抑制性神經元具有分布和功能的特異性,在焦慮調控中也發揮著不同的作用。
杏仁核中,BLA是主要信息接收核團,其中抑制性神經元約占20%,主要包括PV神經元、SOM神經元、CCK神經元和VIP神經元等。這些抑制性神經元通過作用于BLA占比約80%的谷氨酸能興奮性神經元、BLA下游核團的神經元以及不同類型抑制性神經元之間的相互作用調控杏仁核的信息傳遞[4-5]。CeA是杏仁核的主要信息輸出核團,主要由抑制性神經元構成,包括GABA能投射神經元和中間神經元。CeA的抑制性神經元包括SOM神經元、CCK神經元、PKCδ神經元和促腎上腺皮質激素釋放因子(corticotropin releasing factor, CRF)神經元等。應激刺激損傷杏仁核的GABA能神經元,減少GABA釋放,導致興奮/抑制穩態失衡從而誘發焦慮,人為調控這些抑制性神經元的活性也會對實驗動物的焦慮樣行為產生影響[11]。為了更好地了解杏仁核抑制性神經元與焦慮的關系,人們對不同類型的神經元分別進行了研究,總結見圖1。

Figure 1. Regulation of anxiety by the inhibitory neurons in the amygdala. Top left: a diagram showing the amygdala structure and afferent and efferent projections; right: a summary of the effects of neuronal types, intracellular proteins, and projection targets on anxiety. Effects of neuron activation and intracellular proteins on anxiety are shown as anxiogenic (red), anxiolytic (blue), and inconclusive (yellow). BLA: basolateral amygdala; BNST: bed nucleus of the stria terminalis; CeA: central amygdala; ITC: intercalated cell masses; LC: locus coeruleus; PAG: midbrain periaqueductal gray; SLEAc: central sublenticular extended amygdala; CCK: cholecystokinin; CRF: corticotropin releasing factor; PKCδ: protein kinase Cδ; PV: parvalbumin; SOM: somatostatin; ANO2: anoctamin 2; CART: cocaine and amphetamine regulated transcript; CB1R: cannabinoid type 1 receptor; ErbB4: Erb-b2 receptor tyrosine kinase 4; Erbin: ErbB2-interacting protein; GluK1: glutamate ionotropic receptor kainate type subunit 1; NK-1R: neurokinin-1 receptor; NPS: neuropeptide S; NPY2R: neuropeptide Y receptor Y2; OxtR: oxytocin receptor.
2.1.1PV神經元PV神經元是BLA中最主要的抑制性神經元,約占抑制性神經元總數的50%[4]。大部分PV神經元投射到BLA谷氨酸能神經元的胞體和近端樹突,少部分投射到遠端樹突[12],從而對其活性進行調節。母嬰分離和甲基氧化偶氮甲醇醋酸鹽(methylazoxymethanol acetate)處理會誘導大鼠產生焦慮樣行為并伴有BLA PV神經元活性或數量的降低[13, 14];而抗焦慮藥和豐富環境能夠增加BLA PV神經元的活性和數量從而發揮抗焦慮作用[15, 16]。光遺傳學的應用直接證實了BLA PV神經元活性與焦慮的關系,光抑制BLA PV神經元可以增加小鼠在曠場和高架十字迷宮中的焦慮樣行為,反之,光激活BLA PV神經元產生抗焦慮樣作用[17]。分子機制研究顯示,突變或敲低BLA PV神經元中的ErbB2相互作用蛋白(ErbB2-interacting protein, Erbin)會降低PV神經元興奮性并誘發焦慮樣行為,其作用可能是通過減弱PV神經元對BLA椎體神經元的抑制實現的[17]。PV神經元還可以調控其他抑制性中間神經元的活性。Englund等[18]研究顯示,BLA PV神經元中具有內源性活性的海人藻酸受體亞基GluK1可以通過激活PV神經元抑制下游SOM中間神經元,從而間接調控谷氨酸能神經元興奮性,敲除BLA的或母嬰分離所致LA中GluK1降低均伴有焦慮樣行為的增加。以上研究結果顯示,BLA PV神經元可以調控焦慮行為,激活PV神經元具有抗焦慮作用,而抑制其活性具有致焦慮作用。
2.1.2SOM神經元BLA中SOM神經元約占抑制性神經元總數的15%,主要投射到BLA興奮性神經元的樹突棘和遠端樹突,少量投射到其他抑制性神經元或BLA以外腦區[19]。SOM神經元接收來自VIP和PV神經元的抑制性信號,構成投射神經元前饋調控通路[20]。應激刺激會影響BLA中SOM神經元的活性,Butler等[21]通過SOM與神經元激活標志物c-Fos雙標免疫組化實驗檢測到捕食者氣味會降低大鼠BLA中激活狀態SOM神經元的數量,而高架十字迷宮暴露則使其數量增加。抑制SOM神經元中GABA的合成可增加小鼠的焦慮樣行為[22],相反去抑制SOM神經元活性則具有抗焦慮樣作用[23]。以上研究提示SOM神經元參與焦慮行為的調控。激活SOM神經元上神經肽Y(neuropeptide Y, NPY)受體NPY2R可以減少GABA釋放從而減弱對投射神經元的抑制作用,使焦慮水平升高[24]。相反,慢性激活BLA的NPY5R會導致投射神經元的興奮性輸入減弱和樹突萎縮,并產生抗焦慮樣作用[25],但NPY5R是否通過SOM神經元發揮作用尚不清楚。有研究顯示其他腦區SOM神經元中代謝型谷氨酸受體5、腺苷酸環化酶3、IQSEC3等功能蛋白參與了SOM神經元活性和焦慮行為的調控[26-28],這些蛋白在BLA的SOM神經元中是否發揮相同的作用尚不清楚。以上研究顯示BLA SOM神經元激活具有抗焦慮樣作用,抑制具有致焦慮樣作用,但目前還缺少光遺傳學、化學遺傳學實驗提供更直接的證據。
2.1.3CCK神經元CCK神經元可以分為胞體較大、共表達鈣結合蛋白(calbindin, CALB)的大CCK神經元和胞體較小、共表達鈣視網膜蛋白或VIP的小CCK神經元[29]。應用化學遺傳學方法激活CCK神經元會增加小鼠在高架十字迷宮閉臂停留的時間,有致焦慮作用[30]。BLA中CCK神經元特異性表達神經激肽1受體(neurokinin-1 receptor, NK-1R),約占BLA中NK-1R陽性細胞的40%,損毀BLA中表達NK-1R的抑制性神經元導致大鼠焦慮樣行為增加[31],提示其可能參與CCK神經元對焦慮的調控,但另有約40%的NK-1R表達在NPY陽性的SOM神經元中,因此NK-1R對焦慮的調控是這兩類細胞共同作用的結果。與NK-1R不同,1型大麻素受體(cannabinoid type 1 receptor, CB1R)在BLA的大CCK神經元中特異性表達,提示CCK神經元可能參與大麻素對焦慮和應激的調控[32]。CCK神經元具有較高的異質性,其對焦慮的調控可能需要更精細的分類研究。
2.2.1SOM神經元SOM神經元是CeL的主要組成部分,通過與CeA的中間神經元相互作用以及投射到CeA以外核團參與情緒調控[33]。光激活CeA SOM神經元會增加小鼠在曠場、高架十字迷宮和明暗箱實驗中的焦慮樣行為[34]。光激活CeA SOM神經元會誘導驚恐刺激下小鼠產生被動僵直,而激活CeA CRF神經元則會誘發小鼠的條件性躲避行為,提示SOM神經元和CRF神經元共同作用影響應激反應[35]。CeA SOM投射神經元投射到多個與情緒調控相關的腦區。光激活CeL SOM神經元投射到中央近管狀延伸杏仁核(central sublenticular extended amygdala, SLEAc)的軸突末梢可以增加小鼠的焦慮樣行為[36]。條件性恐懼刺激能夠特異性增強CeA SOM投射神經元的興奮性突觸傳遞,通過投射抑制中腦導水管周圍灰質(midbrain periaqueductal gray, PAG)神經元活性調控恐懼行為[37]。分子機制研究顯示,敲除CeL中SOM神經元的Erb-b2受體酪氨酸激酶4(Erb-b2 receptor tyrosine kinase 4, ErbB4)通過增加CeA中SOM神經元活性和去抑制下游終紋床核(bed nucleus of the stria terminalis, BNST)SOM神經元而增加小鼠的焦慮樣行為,這一作用與CeL SOM神經元中強啡肽水平升高有關[38]。Li等[39]報道敲除鈣激活氯離子通道ANO2的小鼠焦慮樣行為減弱,這一作用是通過介導CeA SOM神經元鈣激活的氯離子電流以及對其動作電位的影響實現的。以上研究提示,CeA SOM神經元激活具有致焦慮樣作用,但其與抗焦慮作用的關系目前報道較少,還需要更進一步研究。
2.2.2PKCδ神經元PKCδ神經元主要分布在CeL,占CeL抑制性神經元的50%,可作用于CeL的其他神經元以及CeM的投射神經元[4, 40]。關于CeA PKCδ神經元活性對焦慮行為影響的報道并不一致。Cai等[41]報道光激活小鼠CeL PKCδ神經元可以在高架十字迷宮、曠場和明暗箱實驗中產生抗焦慮樣作用;Botta等[42]檢測到光激活CeL PKCδ神經元能夠增加小鼠在高架十字迷宮和曠場實驗中的焦慮行為,而光抑制PKCδ神經元產生抗焦慮樣作用;而在Chen等[34]的研究中光激活CeL PKCδ神經元對小鼠在以上三個實驗中的焦慮行為沒有明顯影響。這些研究的光纖植入位置和采用的光刺激條件不同,提示不同位置和不同興奮性條件下PKCδ神經元對焦慮行為的影響存在差異。PKCδ神經元對焦慮的調控也受到多種信號因子的影響。CeA中65%的PKCδ神經元表達催產素受體(oxytocin receptor, OxtR),研究顯示PKCδ神經元介導了催產素抗焦慮和恐懼的作用[40]。可卡因-安非他明調節轉錄肽(cocaine and amphetamine regulated transcript, CART)也是CeA中PKCδ神經元特異性表達的一種神經肽,育亨賓和乙醇共同作用能夠增加小鼠在明暗箱實驗中的焦慮樣行為,這一作用可以被CeA注射CART抗體所中和,提示CART參與應激誘導焦慮的調控[43]。
2.2.3CRF神經元CRF是應激反應中涉及生理、內分泌、行為反應調控的重要因子,除了參與下丘腦-垂體-腎上腺軸的激活,其在CeA也參與應激和焦慮的調控。CRF神經元大部分集中在CeL,少量在CeM,兩個亞區的CRF神經元在電生理和形態學上都存在差異[44]。部分CRF神經元中特異性共表達SOM或PKCδ等神經肽,也證明了其異質性的特點。CeA過表達CRF或光激活CeA中CRF神經元可增加大鼠在曠場和高架十字迷宮中的焦慮樣行為[45-46]。CeA CRF神經元投射到多個腦區,光激活或化學遺傳學激活其在藍斑(locus coeruleus, LC)或BNST的末梢可以增加小鼠的焦慮樣行為,提示CeA投射到LC和BNST的CRF神經元參與焦慮的調控[47-48]。與激活CRF神經元相反,敲除CeA的CRF或化學遺傳學抑制CRF神經元的活性能夠減輕應激刺激誘導實驗動物的焦慮樣行為[48-49]。總體來說,已有研究顯示CeA CRF神經元是一類致焦慮神經元,激活誘導焦慮,抑制具有抗焦慮樣作用。
2.3杏仁核其他抑制性神經元對焦慮的調控杏仁核中還有一些其他類型的中間神經元也參與恐懼、應激和焦慮的調控。BLA VIP中間神經元主要作用于投射神經元遠端樹突,部分共表達CB1R、鈣視網膜蛋白和/或CCK[4]。研究顯示前額葉皮層的VIP神經元參與應激和焦慮的調控[50]。Krabbe等[20]用活體鈣成像檢測到足底電擊刺激能夠激活BLA VIP中間神經元,但其是否參與焦慮的調控還有待進一步研究。前面提到位于BLA和CeA之間的ITC主要由抑制性GABA能神經元構成,這些神經元接受來自BLA以及杏仁核外其他腦區的神經投射,并對ITC內部以及BLA和CeA的神經元進行抑制性調控。神經肽S(neuropeptide S, NPS)可通過作用于ITC減輕疼痛誘導的大鼠焦慮樣行為[51]。目前對這部分神經元的分類還缺乏系統的研究,Zikopoulos等[52]檢測到恒河猴ITC抑制性神經元表達CALB。ITC接收參與情緒調控的谷氨酸能、多巴胺能、去甲腎上腺素能、5-羥色胺能、膽堿能神經投射,這些神經遞質系統通過作用于不同受體調控神經元的活性從而發揮情緒調節作用。近年來的研究顯示ITC抑制性神經元在恐懼記憶的形成和消退中發揮重要作用,提示其可能是研究焦慮障礙的一個新靶點[53-55]。
杏仁核調控焦慮的機制一直是神經精神科學領域研究的重點和難點。隨著光遺傳學等技術的應用,出現了大量探究杏仁核內不同種類抑制性神經元在焦慮中作用的研究。相較于在分子和細胞水平的研究,通過對神經元興奮性及其神經投射通路的調控進行研究能更好地體現神經系統的作用特點。杏仁核中的抑制性神經元種類繁多,相互之間以及與上下游神經投射之間存在復雜的網絡連接,不同種類的神經元在焦慮調控中發揮的作用不同,同一種神經元也會由于其所在位置、興奮性程度差異產生不同的影響。還有一些結構,如ITC,雖然有許多恐懼記憶相關的報道,但其中抑制性神經元的分類以及其對焦慮的調控還需要更多的研究。神經系統的功能,尤其是涉及情緒調節等高級功能的實現需要復雜的網絡進行精準的調控以保持其穩態,未來如果能通過形態學、光遺傳學等技術的結合繪制出杏仁核調控焦慮的神經網絡圖譜,不但有利于更好地了解焦慮調控機制,而且對揭示神經系統功能也將具有重大意義。
[1] Baxter AJ, Scott KM, Vos T, et al. Global prevalence of anxiety disorders: a systematic review and meta-regression[J]. Psychol Med, 2013, 43(5):897-910.
[2] Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in china: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3):211-224.
[3] Perumal MB, Sah P. Inhibitory circuits in the basolateral amygdala in aversive learning and memory[J]. Front Neural Circuits, 2021, 15:633235.
[4] Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry[J]. Exp Mol Med, 2018, 50(4):1-16.
[5] Hajos N. Interneuron types and their circuits in the basolateral amygdala[J]. Front Neural Circuits, 2021, 15:687257.
[6] Alemany S, Mas A, Goldberg X, et al. Regional gray matter reductions are associated with genetic liability for anxiety and depression: an MRI twin study[J]. J Affect Disord, 2013, 149(1/2/3):175-181.
[7] Machado-De-Sousa JP, Osorio Fde L, Jackowski AP, et al. Increased amygdalar and hippocampal volumes in young adults with social anxiety[J]. PLoS One, 2014, 9(2):e88523.
[8] Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia[J]. Am J Psychiatry, 2007, 164(10):1476-1488.
[9] Redlich R, Grotegerd D, Opel N, et al. Are you gonna leave me? Separation anxiety is associated with increased amygdala responsiveness and volume[J]. Soc Cogn Affect Neurosci, 2015, 10(2):278-284.
[10] 劉紅霞, 潘虹, 王華, 等. 杏仁核腦區硫化氫對創傷后應激障礙模型大鼠抑郁樣行為的影響[J]. 中國病理生理雜志, 2017, 33(6):988-992.
Liu HX, Pan H, Wang H, et al. Effect of amygdala H2S system on depression-like behavior in posttraumatic stress disorder rats[J]. Chin J Pathophysiol, 2017, 33(6):988-992.
[11] Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety[J]. Nature, 2011, 471(7338):358-362.
[12] Vereczki VK, Veres JM, Muller K, et al. Synaptic organization of perisomatic gabaergic inputs onto the principal cells of the mouse basolateral amygdala[J]. Front Neuroanat, 2016, 10:20.
[13] Lukkes JL, Burke AR, Zelin NS, et al. Post-weaning social isolation attenuates c-Fos expression in GABAergic interneurons in the basolateral amygdala of adult female rats[J]. Physiol Behav, 2012, 107(5):719-725.
[14] Yamaguchi T, Minami S, Ueda S. Effects of methylazoxymethanol-induced micrencephaly on parvalbumin-positive gabaergic interneurons in the rat rostral basolateral amygdala[J]. Brain Res, 2021, 1762:147425.
[15] Hale MW, Johnson PL, Westerman AM, et al. Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of gabaergic interneurons in the basolateral amygdala[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(7):1285-1293.
[16] Urakawa S, Takamoto K, Hori E, et al. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats[J]. BMC Neurosci, 2013, 14:13.
[17] Luo ZY, Huang L, Lin S, et al. Erbin in amygdala parvalbumin-positive neurons modulates anxiety-like behaviors[J]. Biol Psychiatry, 2020, 87(10):926-936.
[18] Englund J, Haikonen J, Shteinikov V, et al. Downregulation of kainate receptors regulating gabaergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents[J]. Transl Psychiatry, 2021, 11(1):538.
[19] Muller JF, Mascagni F, Mcdonald AJ. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala[J]. J Comp Neurol, 2007, 500(3):513-529.
[20] Krabbe S, Paradiso E, D'aquin S, et al. Adaptive disinhibitory gating by vip interneurons permits associative learning[J]. Nat Neurosci, 2019, 22(11):1834-1843.
[21] Butler RK, White LC, Frederick-Duus D, et al. Comparison of the activation of somatostatin- and neuropeptide y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors[J]. Exp Neurol, 2012, 238(1):52-63.
[22] Miyata S, Kumagaya R, Kakizaki T, et al. Loss of glutamate decarboxylase 67 in somatostatin-expressing neurons leads to anxiety-like behavior and alteration in the Akt/GSK3β signaling pathway[J]. Front Behav Neurosci, 2019, 13:131.
[23] Fuchs T, Jefferson SJ, Hooper A, et al. Disinhibition of somatostatin-positive gabaergic interneurons results in an anxiolytic and antidepressant-like brain state[J]. Mol Psychiatry, 2017, 22(6):920-930.
[24] Mackay JP, Bompolaki M, Dejoseph MR, et al. Npy2 receptors reduce tonic action potential-independent gabab currents in the basolateral amygdala[J]. J Neurosci, 2019, 39(25):4909-4930.
[25] Michaelson SD, Miranda Tapia AP, Mckinty A, et al. Contribution of NPY Y5receptors to the reversible structural remodeling of basolateral amygdala dendrites in male rats associated with NPY-mediated stress resilience[J]. J Neurosci, 2020, 40(16):3231-3249.
[26] Joffe ME, Maksymetz J, Luschinger JR, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5receptor plasticity on somatostatin-expressing interneurons[J]. Neuron, 2022, 110(6):1068-1083.
[27] Kim S, Park D, Kim J, et al. Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior[J]. Cell Rep, 2021, 36(3):109417.
[28] Yang XY, Ma ZL, Storm DR, et al. Selective ablation of type 3 adenylyl cyclase in somatostatin-positive interneurons produces anxiety- and depression-like behaviors in mice[J]. World J Psychiatry, 2021, 11(2):35-49.
[29] Mascagni F, Mcdonald AJ. Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala[J]. Brain Res, 2003, 976(2):171-184.
[30] Whissell PD, Bang JY, Khan I, et al. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition[J]. eNeuro, 2019, 6(1):ENEURO.0360-18.2019.
[31] Truitt WA, Johnson PL, Dietrich AD, et al. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala[J]. Neuroscience, 2009, 160(2):284-294.
[32] Mcdonald AJ. Expression of the type 1 cannabinoid receptor (CB1R) in cck-immunoreactive axon terminals in the basolateral amygdala of the rhesus monkey ()[J]. Neurosci Lett, 2021, 745:135503.
[33] Ye J, Veinante P. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse[J]. Brain Struct Funct, 2019, 224(3):1067-1095.
[34] Chen WH, Lien CC, Chen CC. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala[J]. Pain, 2022, 163(3):e463-e475.
[35] Fadok JP, Krabbe S, Markovic M, et al. A competitive inhibitory circuit for selection of active and passive fear responses[J]. Nature, 2017, 542(7639):96-100.
[36] Sun Y, Qian L, Xu L, et al. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala[J/OL]. Mol Psychiatry, 2020 (2020-10-01) [2023-01-08]. https://www.nature.com/articles/s41380-020-00894-1.
[37] Penzo MA, Robert V, Li B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala[J]. J Neurosci, 2014, 34(7):2432-2437.
[38] Ahrens S, Wu MV, Furlan A, et al. A central extended amygdala circuit that modulates anxiety[J]. J Neurosci, 2018, 38(24):5567-5583.
[39] Li KX, He M, Ye W, et al. Tmem16b regulates anxiety-related behavior and gabaergic neuronal signaling in the central lateral amygdala[J]. Elife, 2019, 8:e47106.
[40] Haubensak W, Kunwar PS, Cai H, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear[J]. Nature, 2010, 468(7321):270-276.
[41] Cai H, Haubensak W, Anthony TE, et al. Central amygdala PKC-δ+neurons mediate the influence of multiple anorexigenic signals[J]. Nat Neurosci, 2014, 17(9):1240-1248.
[42] Botta P, Demmou L, Kasugai Y, et al. Regulating anxiety with extrasynaptic inhibition[J]. Nat Neurosci, 2015, 18(10):1493-1500.
[43] Walker LC, Hand LJ, Letherby B, et al. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking[J]. Neuropsychopharmacology, 2021, 46(2):325-333.
[44] Li JN, Chen K, Sheets PL. Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropin-releasing hormone[J]. J Comp Neurol, 2022, 530(13):2286-2303.
[45] Kalin NH, Fox AS, Kovner R, et al. Overexpressing corticotropin-releasing factor in the primate amygdala increases anxious temperament and alters its neural circuit[J]. Biol Psychiatry, 2016, 80(5):345-355.
[46] Mazzitelli M, Yakhnitsa V, Neugebauer B, et al. Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats[J]. Neuropharmacology, 2022, 210:109031.
[47] Mccall JG, Al-Hasani R, Siuda ER, et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety[J]. Neuron, 2015, 87(3):605-620.
[48] Pomrenze MB, Tovar-Diaz J, Blasio A, et al. A corticotropin releasing factor network in the extended amygdala for anxiety[J]. J Neurosci, 2019, 39(6):1030-1043.
[49] Regev L, Tsoory M, Gil S, et al. Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge[J]. Biol Psychiatry, 2012, 71(4):317-326.
[50] Johnson C, Kretsge LN, Yen WW, et al. Highly unstable heterogeneous representations in VIP interneurons of the anterior cingulate cortex[J]. Mol Psychiatry, 2022, 27(5):2602-2618.
[51] Ren W, Kiritoshi T, Gregoire S, et al. Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors[J]. J Neurophysiol, 2013, 110(8):1765-1781.
[52] Zikopoulos B, John YJ, Garcia-Cabezas MA, et al. The intercalated nuclear complex of the primate amygdala[J]. Neuroscience, 2016, 330:267-290.
[53] Likhtik E, Popa D, Apergis-Schoute J, et al. Amygdala intercalated neurons are required for expression of fear extinction[J]. Nature, 2008, 454(7204):642-645.
[54] Hagihara KM, Bukalo O, Zeller M, et al. Intercalated amygdala clusters orchestrate a switch in fear state[J]. Nature, 2021, 594(7863):403-407.
[55] Chen M, Li Y, Liu Y, et al. Neuregulin-1-dependent control of amygdala microcircuits is critical for fear extinction[J]. Neuropharmacology, 2021, 201:108842.
Role of amygdala inhibitory neurons in regulating anxiety
ZHOU Han, GUO Ming△
(,,,,256603,)
The amygdala is an important brain region, where inhibitory neurons play key roles in the modulation of anxiety. The major subregions of the amygdala, including the basolateral amygdala (BLA) and the central amygdala (CeA), have different subtypes of inhibitory neurons that are categorized by specific protein expressions. Understanding how these inhibitory neuron subtypes regulate anxiety is important for identifying the neurological basis of anxiety disorders. However, little progress has been made in this regard due to the limitations of experimental techniques. The development and application of genetic engineering and optogenetics in the field of neuroscience enables precise manipulation of the activity and investigation of the function of a locally dense group of neurons expressing the same biomarker. Moreover, they provide effective methods for the functional study of different subtypes of inhibitory neurons in the amygdala. This study presents a literature review on inhibitory neurons in the amygdala in anxiety and, in particular, the neuronal activity and molecular mechanisms that modulate anxiety, to promote a better understanding of the mechanisms underlying anxiety and provide new strategies for the treatment of associated disorders.
amygdala; inhibitory neuron; anxiety; optogenetics
1000-4718(2023)07-1296-06
2023-01-09
2023-07-12
R749.7+2; Q421; R363
A
10.3969/j.issn.1000-4718.2023.07.017
[基金項目]國家自然科學基金資助項目(No. 81771458);山東省重點研發計劃項目(No. 2018GSF118181)
0543-3258861; E-mail: byfygm@126.com
(責任編輯:余小慧,羅森)