胡詩夢 盛 茂 石善志 李嘉成 田守嶒 李根生
1.中國石油大學(北京)人工智能學院 2. 油氣資源與探測國家重點實驗室
3. 中國石油新疆油田公司瑪湖勘探開發項目部 4. 中國石油新疆油田公司工程技術研究院
水平井多簇射孔分段壓裂已成為非常規油氣儲層體積壓裂主體技術之一,其中壓裂段、射孔簇位置優化設計是實現水平井均衡改造的重要環節[1-2]。我國非常規油氣儲層非均質性強,導致射孔簇間裂縫起裂壓力差異顯著。若采用常規均勻布縫方式,裂縫難以均衡起裂擴展,亟需精細評價水平井段巖石強度的差異性,優選巖石強度相近井段布縫,以達到均衡改造的目的。筆者基于鉆錄井數據,利用鉆頭井底機械比能表征儲層原位狀態下的巖石強度,體現水平井段巖石強度的差異性,作為優化布縫位置的重要指標之一。
1965年Teale等[3]引入機械比能的概念,即在鉆壓和扭矩作用下,鉆頭破碎單位體積巖石所做的機械功。理想情況下,機械比能最小值約等于巖石抗壓強度。但在實際情況下,井底機械比能還受到鉆柱摩阻、鉆頭齒磨損、黏滑等非破巖因素的影響,因此廣泛應用于鉆頭破巖效率評價[4]、鉆井參數優化[5]、鉆頭齒磨損監測[6-7]等方向,近年來還拓展應用于頁巖油氣水平井壓裂優化設計。Dalamarinis等[8]采用機械比能分析巖石性質的變化,優化完井設計以減少非均質性影響,較常規設計井短期產量平均提升291%。Wutherich等[9-10]利用機械比能結合裂縫間應力干擾對儲層非均質性進行綜合評價,針對不同級別的機械比能優選段、簇位置,并設計不同暫堵策略,超過90%的壓裂段顯示暫堵有效。Downie等[11]使用鉆井數據和機械比能識別巖石強度的相對非均質性,優化段簇設計,分析其與裂縫響應的關系,相較于常規設計井,優化后的井簇間流體分布更均勻,平均短期產量提高了119.53%。盡管前人研究取得了顯著應用效果,但是在理論方法上仍采用等間隔劃分機械比能區間,缺乏合理的區間劃分方法,同時,若要著重評價用于鉆頭破巖分析的井底機械比能,去除鉆柱摩阻、鉆頭齒磨損、黏滑等非破巖因素的影響,仍缺少系統全面的井底機械比能計算模型。
筆者引入人工智能無監督聚類方法,建立了水平井段井底機械比能無監督聚類模型,實現了非等間隔劃分機械比能區間。模型僅需鉆錄井數據,綜合考慮鉆柱摩阻、復合鉆進、射流輔助破巖等因素對井底機械比能的影響,獲得了分米級空間分辨率的水平井段井底機械比能分布和聚類類別,實現了基于井底機械比能差異性的壓裂段優選;段內射孔簇位置優化綜合考慮縫間應力干擾、套管接箍位置和巖石強度相近井段,優選段內井底機械比能均值10%范圍內布置射孔簇,形成了以均衡改造為目標的體積壓裂布縫優化方法。射孔孔眼沖蝕面積實測數據驗證了模型有效性。
如圖1所示,井底機械比能綜合反映了儲層巖石在地應力、天然裂縫、孔隙壓力等參數原位狀態下的力學強度,與壓裂裂縫的起裂壓力和延伸壓力具有強相關性??紤]鉆柱摩阻、復合鉆進和射流沖擊等作用,建立水平井鉆井井底機械比能修正模型。

圖1 井底機械比能反映儲層參數示意圖
Teale等[3]提出機械比能公式如下:
式中MSE表示機械比能,MPa;W表示鉆壓,kN;Ab表示鉆頭截面積,mm2;N表示轉速,r/min;T表示扭矩,kN·m;Vpc表示機械鉆速,m/h。
當鉆井效率最大時,輸入的機械比能均用于破巖,此時機械比能約等于巖石抗壓強度(CCS),Teale機械比能模型中,鉆壓、扭矩、轉速均為重要參數。然而,常規鉆錄井數據均為地面測得,受鉆柱摩阻、鉆頭齒磨損、黏滑等非破巖因素影響,無法直接體現鉆頭處井底機械比能。因此需修正地面鉆錄井數據至井底環境,得到鉆頭實際破巖能量,體現儲層原位狀態下的巖石強度。修正鉆壓、扭矩、轉速如下:
1)鉆壓修正:綜合考慮鉆柱與井壁接觸產生的摩擦阻力[12]和射流沖擊力的破巖作用[13],得到井底有效鉆壓(We):
式中We表示井底有效鉆壓,kN;μs表示鉆柱與井壁間的摩擦系數,通常介于0.25~0.4[14],取值0.35;γb表示井斜角,rad;η表示鉆頭水功率系數,與噴嘴流速、噴嘴尺寸、位置等相關[15];ρd表示鉆井液密度,g/cm3;Q表示鉆井液排量,L/s;A0表示鉆頭噴嘴出口截面積,cm2。
2)扭矩修正:鉆頭扭矩Tb可由鉆頭有效鉆壓和鉆頭摩擦系數計算得到[16]:
式中Tb表示鉆頭扭矩,kN·m;db表示鉆頭直徑,cm;μ表示鉆頭滑動摩擦系數,其中PDC鉆頭滑動摩擦系數通常取0.8[17]。
3)轉速修正:鉆頭轉速Nb考慮非常規油氣水平井鉆井常采用轉盤和螺桿鉆具的復合鉆進方式,其中螺桿鉆具將循環鉆井液時的水力能量轉換為動能來提供鉆頭的主動力,其輸出的理論轉速只與流經鉆具的流量和螺桿每轉排量相關[18],如式(4):
式中Nb表示鉆頭轉速,r/min;NL表示螺桿鉆具馬達輸出的理論自轉轉速,r/min;q表示螺桿每轉排量,僅與鉆具的幾何尺寸和線型相關,L/r,經查表(螺桿說明書),取16.5 L/r。
4)水力能量:考慮水力參數條件下鉆頭破巖過程中水功率造成的水力能量(Eb)[13]:
式中Eb表示水力能量,MPa;Pb表示水功率,kW;Δpb表示鉆頭壓力降,MPa。
綜上,井底機械比能計算公式如式(6),包含鉆壓、扭矩和射流水力能量等三部分對巖石破碎能量的貢獻:
式中MSEb表示井底機械比能,MPa。
為計算水平井段機械比能隨井深變化的剖面,需使用純鉆進過程的鉆錄井數據。由錄井儀器直接測量的原始鉆錄井數據是以秒點格式存儲的時域數據,包含鉆進和非鉆進(如起下鉆、停鉆)數據。實際數據存在不同時間對應相同井深、不同鉆錄井參數,以及少數井深位置的鉆錄井參數為空值的情況。為將時域數據轉換為深度數據,對非鉆進過程數據、相同井深的不同鉆錄井參數以及空值數據進行處理。數據清洗流程如圖2所示。

圖2 鉆錄井數據清洗與空缺值填充圖
計算流程如下:
1)提取滿足鉆進條件的數據,即鉆壓、轉速和立壓均大于零。
2)對相同井深的不同鉆錄井參數取算數平均值。
3)考慮破巖強度相近的巖石時,同一儲層、同一鉆井工具下鉆錄井參數的相似性,采用KNN近鄰算法[19]填補空值,該算法基于歐氏距離公式準則,尋找k個與空值點最近的觀測點,再將k個近鄰的數據通過距離逆加權的方法算出填充值。相較于常規均值填充、眾數填充、回歸法填充等方法,該方法更可靠、穩健。
最終,建立隨井深遞增,以0.1 m為間隔的鉆錄井數據集。
以X1井數據為例,該井位于新疆準噶爾瑪湖凹陷致密礫巖區塊,開發層位為三疊系百口泉組T1b12,完鉆垂深3 920 m,水平段4 226~5 159 m。如圖3所示,直接計算該井的井底機械比能值存在較大波動,孤立點多,難以在宏觀上區分其差異性,為此對其開展數據平滑處理?;谧钚《朔ㄔ淼腟avitzky—Golay濾波器[20]常被用于消除錄井、測井數據的噪聲并分離出代表地層性質的有用信號[21-22]。因井底機械比能數據與錄井、測井數據特征的相似性,采用該濾波器對機械比能進行平滑處理,在保持數據趨勢不變的情況下,可提高數據精度。由圖3對比可知,通過平滑處理,整體機械比能趨勢得到了保留,數據分布保持一致,且顯著減少了孤立點的數量(圖4),為后續無監督聚類模型的建立提供了良好的數據集。

圖3 井底機械比能平滑示意圖

圖4 平滑前后機械比能分布箱型圖
建立由數據驅動的井底機械比能無監督聚類模型,將相近的井底機械比能區間組合在一起,實現壓裂段自動劃分;綜合考慮縫間應力干擾、套管接箍位置、橋塞位置和巖石強度相近井段,優化段內射孔簇位置,實現儲層均衡改造。
將井底機械比能作為表征儲層巖石強度和壓裂段簇優選的重要指標,將相似井底機械比能的井段劃分至同一類別中。常用聚類算法有K-Means算法和K-Medoids[23]算法,兩者均圍繞中心點劃分集群,不同的是:前者利用集群平均值作為參考點,對于有孤立點的數據非常敏感;而后者會反復用集群中所有點替代參考點,以改進聚類質量,當存在孤立點時,K-Medoids算法可以很好地降低極端數據對聚類結果的影響,因此優選K-Medoids算法。
將沿井深的井底機械比能樣本數據集X={x1,x2,…,xN}劃分為K個聚類集群,基于歐式幾何距離衡量樣本點間的相似度,使得聚類集群中樣本之間相似度更高。其中,K為預先設定的聚類集群數,需滿足每個聚類集群中至少有一個樣本點,且N>K,最優K值通過準則函數和段長限制條件來確定。使用誤差平方和(SSE)作為準則函數,并通過遍歷所有樣本點來選擇最優聚類集群中心,從而減少孤立點的影響,提高了聚類的穩健性。
式中nj表示第j個集群中樣本的數量;μj表示第j個集群中心點;xi表示樣本點;K表示集群數。
K-Medoids聚類算法步驟如下:
1)從給定樣本的數據集X={x1,x2,…,xm}中隨機選取K個點作為初始集群中心。
2)計算每個樣本點到K個集群中心的歐氏距離,并將其劃分到具有最小歐氏距離的集群中,完成第一次聚類。
(1)療效指標 主要療效指標是生存率(4、12、24和 48周生存率)。次要療效指標包括:①癥狀和體征:患者乏力、納差、腹脹、尿少、出血、肝性腦病、感染及腹水等臨床癥狀和體征的變化;②實驗室指標:血液生化學檢查示TBil、PTA(INR)和Alb等改變。
3)遍歷各集群中除初始集群中心點外的所有樣本點,按順序計算其為新集群中心時準則函數的值,選擇使準則函數值最小的樣本點作為新的集群中心。
4)重復步驟2和步驟3,直至所有集群中心點不再改變或達最大迭代次數。
5)輸出最終聚類結果。
考慮壓裂段長限制與“手肘法則”來確定簇聚類模型的最優集群數K:
1)基于“手肘法則”:當選擇的K值小于合適的K值時,隨K值增大,SSE值將大幅減小,當選擇的K值大于合適的K值時,SSE值的變化將不會那么明顯,那么最合適的K值將在該轉折點,如圖5所示,基于該方法的最優集群數為5,因此限制K∈[5,+ ∞]。

圖5 “肘部法則”示意圖
2)基于段長限制的K值:研究井水平段為931 m,該區塊常設段長范圍為60~100 m,因此限制K∈[9.31,15.52]。
綜合上述條件,本井K值設置為10。

圖6 X1井井底機械比能聚類結果示意圖
在獲得壓裂段劃分結果的基礎上,進一步設計段內射孔簇位置,方法如下:
1)計算每段內占比最大的機械比能類別的均值,如圖7所示,將該均值的上下浮動范圍設置為10%,屬于此范圍內的機械比能將歸類為相似巖石強度區域,在此區域布置射孔簇將極大提高裂縫均衡起裂擴展的可能性。

圖7 壓裂布縫位置優化設計示意圖
2)標記出相似巖石強度區域與機械比能的交集并布縫,相鄰縫間距不可太近,保持間距10~30 m,射孔簇長度設置3~5 m。
3)對于長度超過100 m的段,可根據壓裂段長最大取值限制,將其劃分為多個小段。
4)套管接箍位置、各段橋塞位置與射孔簇之間應設置一定距離,以保證可射穿套管和保持橋塞的穩定性。
采用射孔成像監測數據驗證模型的合理性。射孔成像各簇孔眼侵蝕面積與進入該簇的壓裂液量、砂量呈正相關[24],即孔眼侵蝕面積越大,相應的進液量、進砂量也越高。采用皮爾遜相關系數分析法,分析X1井孔眼侵蝕面積與測井參數、井底機械比能的相關性(圖8)。皮爾遜相關系數的變化范圍為-1~1,兩個變量關聯程度越強則該系數絕對值越大,即接近于1,兩個變量關聯程度越弱則該系數越接近0,其正、負號分別對應正、負相關性。經分析,井底機械比能與孔眼侵蝕面積的皮爾遜相關系數為-0.55,呈強負相關性。而脆性指數、抗壓強度和應力差等參數與孔眼侵蝕面積的皮爾遜相關系數絕對值介于0.2~0.3。結果表明,井底機械比能可有效表征水平井段射孔簇進砂量的差異性,可作為優選布縫位置的重要指標之一。

圖8 侵蝕面積與機械比能相關性分析圖
如圖9所示,繪制X1井井底機械比能分布圖、測井參數及錄井參數曲線圖,包括井底機械比能,鉆井參數:鉆速、鉆壓、轉速、扭矩;測井參數:應力差、補償密度、自然伽馬、聲波時差、地層真電阻率、侵入帶電阻率。結果表明,測井參數及應力差在該段內變化較小,難以反映儲層巖石強度非均勻分布特征。然而井底機械比能差異顯著,原設計中布縫位置處于不同的井底機械比能集群,新布縫設計相比于原設計,考慮了巖石強度的非均勻分布,重新劃分段簇,優化縫位置于段內巖石強度相對較低且相近的位置,確保其易起裂并達到均衡起裂的效果。

圖9 壓裂布縫位置優化設計圖
本文利用井底機械比能表征儲層原位狀態下巖石強度,結合人工智能技術,建立了水平井段鉆頭井底機械比能無監督聚類模型,形成了水平井體積壓裂布縫優化設計方法,通過射孔孔眼沖蝕面積實測數據驗證后,取得以下結論:
1)井底機械比能與沖蝕面積數據的相關性較高,有效表征了水平井段射孔簇進砂量的差異性,可作為優選布縫位置的重要指標。
2)鉆錄井數據清洗與平滑、手肘法優選聚類數是獲取井底機械比能聚類結果的關鍵步驟,可實現分米級分辨率區分井底機械比能的差異性。
3)所編制的計算機算法自動優選壓裂段簇位置,實現了段間距和簇間距的差異化設計,有望為水平井體積壓裂布縫優化提供新方法,并進一步提高壓裂改造的均衡性。