


摘 要:分類討論思想可以促進學生思維進階,提升學生的解題能力.在初中數學教學中,教師應詳細分析其應用方法,尤其是要結合例題具體闡述其應用技巧,保證學生熟練掌握分類討論思想.文章結合例題詳細闡述了分類討論思想在代數、方程、不等式、函數、幾何中的具體應用,在例題分析中進一步闡述了分類討論思想的應用技巧.在初中數學學習中,教師要有意識滲透分類討思想,增強學生的分類討論意識,培養學生分類討論能力,提升學生的數學核心素養.
關鍵詞:分類討論思想;初中數學;解題;應用
中圖分類號:G632 文獻標識碼:A 文章編號:1008-0333(2023)26-0008-03
作者簡介:陳芳香(1990.5-),女,福建省仙游人,碩士,中學二級教師,從事數學教學研究.
分類討論思想的形成是一個長期的過程,所以,教師要樹立正確的培養意識,采用有效的培養方法.尤其是要建立長效培養機制,一步步增強學生的分類討論意識,直至形成分類討論能力.這也意味著教師要改變現有教學模式,從分類討論思想的內在規律入手,設計適合發展學生分類討論思維的學習活動.尤其是要抓住解題教學時機,滲透分類討論思想,進一步加強學生分類討論思想的培養.
1 分類討論思想在代數解題中的應用
與代數有關的分類討論題型比較簡單.主要類型有絕對值、平方根、完全平方式等.這類題型所給條件比較清晰,且計算難度也不大[1].可以說,這是最簡單的分類討論.學生只要熟練掌握絕對值、平方根、完全平方式的概念和性質,就可以完成解題.
1.1 與絕對值有關的代數問題
實數是初中數學的主要內容之一.實數分為正實數、負實數、0.無理數包括正無理數、負無理數.與絕對值有關的代數問題本身就具有明顯的分類思想,在解題時需進行分類討論.
1.2 含有平方的代數式問題
一個數的平方是定值,但是一個數的平方根有兩個互為相反數的值.所以,在含有平方的代數式問題中需要分類討論開方得到的數.
2 分類討論思想在方程中的應用
在求解與一元一次方程、二元一次方程、分式方程方程有關的某些應用題時都需要分類討論[2].
例3 “五一”假期期間,某商城推出了一項購物優惠活動:一次性購物不高于100元時不享受優惠;高于100元但低于300元時,享受9折優惠.不低于300元則享受8折優惠.李某到該商場購物,總共付款兩次.一次是80元,一次是252元,那么如果改為在商場一次性購買,則需要支付多少錢?
解析 本題需分類討論求解.第一步,確定分類對象.按照題干給出的信息,需要對一次性購物的金額進行分類:一次性購物不高于100元,高于100元但低于300元,不低于300元.第二步,分類.假設一次性購物金額為x,付款金額為y.當x≤100時,y=x;當100 從本題求解過程可以看出,利用分類討論思想解題的關鍵是準確找到分類對象,并能夠精準分類計算.只有這樣才能得到準確的計算結果,否則就會出現錯誤.簡而言之,利用分類討論思想解題時一定要準確確定分類對象和分類標準. 3 分類討論思想在不等式中的運用 在解決不等式問題時,當遇到不等式條件不明確、結論不確定、題干所含參數范圍不確定等情況時,就需要進行分類討論[3]. 3.1不含參數的不等式問題 在不含參數的不等式問題中,若不等式中含有絕對值或平方,在解題時必須進行分類討論. 從本題的求解過程可以看出,含絕對值的不等式問題,分類情況比較多,很容易出現分類錯誤或計算錯誤.所以在解決這類問題時,一定要清晰地羅列出分類標準,這樣才能準確求解. 3.2 含參數的不等式問題 利用分類討論思想解決含參數的不等式問題的關鍵是要分析參數,對參數進行分類. 從本題的求解過程可以看出,對于一些復雜的含參數的不等式問題,在解題時一定要從題干出發,依據自變量范圍準確確定參數范圍. 4 分類討論思想在函數中的應用 在解決與函數有關的數學問題時,當分析變量之間的函數關系是否滿足條件或計算結果是否符合實際情況時,一般情況下需利用分類討論思想. 總之,分類討論思想在初中數學解題中有著極其重要的應用.因此,教師在平時教學中要重視分類討論思想,在解題教學中有意識滲透分類討論思想,強化學生的分類討論意識,提高學生解題能力,從而提升學生數學核心素養. 參考文獻: [1] 祁永前.初中數學分類討論思想在解題中的應用體會[J].考試周刊,2013(75):2. [2] 趙敏.新課標下初中數學分類討論思想教學的幾個著力點[J].數學教學通訊:教師閱讀,2010(6):3. [3] 紐曼曼.初中數學分類討論思想在解題中的應用探討[J].教育現代化,2016(08):240-242. [責任編輯:李 璟]