999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

矩形hBN層狀光柵中的Goos-H?nchen位移

2023-12-19 07:53:28招月金高周勝
高師理科學刊 2023年11期
關鍵詞:測量結構

招月,金高,周勝,2

矩形hBN層狀光柵中的Goos-H?nchen位移

招月1,金高1,周勝1,2

(1. 哈爾濱師范大學 物理與電子工程學院,黑龍江 哈爾濱 150025;2. 廣州航海學院 基礎教學部,廣東 廣州 510725)

六方氮化硼(hBN)是一種天然的范德瓦爾斯雙曲材料,在兩個紅外波長范圍內表現出雙曲色散關系,可用于加強光與物質的相互作用.在目前的工作中,設計了矩形層狀光柵hBN(RLG)結構,通過數值模擬發現能夠增大Goos-H?nchen(GH)位移的同時具有較高的反射率.利用電場分布直接揭示了GH位移增強歸因于RLG結構中的高局域的電場.值得注意的是,GH峰值的頻率和寬度也可以由入射光偏振,hBN層各向異性軸方向的高度和厚度等參數來調控.基于GH位移的RLG結構傳感特性,靈敏度高達1.401 μm/ RIU.這些結果可以為高靈敏光學傳感器、光學開關和光電子探測器的設計提供有益參考.

Goos-H?nchen位移;hBN光柵;光學傳感器

在幾何光學中,入射光束和反射光束嚴格滿足反射定律,但在1947年,Goos和H?nchen[1]兩位科學家在實驗中首次發現光束在兩種界面上發生全反射時,反射光束相對于幾何光學反射光束會產生橫向位移,后來人們把這種現象稱為Goos-H?nchen(GH)位移[2].1948年Artmann[3]在物理上提出了穩態相位法,對這種現象做出了理論解釋,同時還給出了求GH位移的公式

GH位移可以被介電光柵層中導模共振的激發增強[18-21].例如:LI[22]等研究了SLG、介電光柵、銀膜和1DPC雜化結構中的GH位移,其GH位移可以被來自于金屬層中的SPR和1DPC中的波導模式聯合效應在特定角度下最大增大到波長的7430倍,證實了GH位移可以通過改變SLG的費米能量來調整.ZHU[23]等研究了單層二硫化鉬和對稱/不對稱介電光柵組合結構中反射波的生長激素位移.當單層二硫化鉬接到對稱和非對稱介電光柵層上時,GH位移可以被顯著增強,其增強可歸因于介電光柵層中導模共振的激發.單層二硫化鉬不對稱光柵實現了高達9490倍的波長.巨大的GH位移往往伴隨著極低的反射率,這在一定程度上給研究造成了阻礙,這種情況一般采用弱測量的方法進行精密測量.弱測量是被Aharonov[24]等在1988年首次提出的,他們認為測量得到的弱值可以遠遠大于可觀測量的范圍.直到1991年,Ritchie[25]等在實驗中驗證了這一理論的正確性.弱測量為量子測量提供了新方法,更重要的是,弱測量的弱值放大效應為微弱信號的精密測量提供了嶄新的思路.但是,對弱信號的捕捉、放大和檢測也必然需要很大的工作量.

本文利用中心光束法,研究了矩形hBN層狀光柵增強GH位移的可能性.研究發現,GH位移可以有效地被該結構增大,特別是在GH位移達到峰值時,相應波長上的反射率[26]也很高,這克服了GH值和反射率之間的困難.

1 理論模型

圖1 矩形hBN層狀光柵結構示意圖

圖2 不同頻率情況下hBN的介電常數

中心光束法是計算GH位移的一種有效方法.基于斯奈爾公式和有效的瓊斯矩陣[29],它可以很容易地描述光束的波場變換和結構的接觸面,并確定光束質心坐標.其計算公式可以表示為[30]

2 結果與討論

圖3 矩形hBN層狀光柵結構GH位移和反射率隨頻率的變化

圖4 矩形hBN層狀光柵結構在不同頻率下電場分布

圖5 橫電(TE)波和橫磁(TM)波分別入射及各項異軸平行于軸時的GH位移和反射率

注:黑色的虛線表示TE波;紅色的實線代表TM波;插圖顯示了TM波在相應頻率的局部放大圖.

圖6 不同參數下GH位移和反射率隨頻率的變化

式中:定義為峰值波長;在的條件下,;為光在空氣中的速度;,為入射波頻率;,為上方空間的介電常數,折射率與介電常數的關系為.在從左側入射的情況下,對介電常數很敏感(見圖7).本文分析了RLG結構在GH位移中的作用,以探討其在傳感器中的潛在應用.利用靈敏度因子對該傳感器的性能進行了表征.當介電常數從1.001到1.01,掃描間隔為0.00 1時,尋找GH位移最大最高的靈敏性,其靈敏度可達到.值得注意的是,空氣的介電常數為1,溫度可以改變其介電常數.

3 結語

[1] Goos F,Hanchen H.Ein neuer und fundamentaler versuch zurtotalreflexion[J].Ann Pays,1947,436(7):333-346.

[2] Goos F,Lindberg-H?nchen H.Neumessung des strahlversetzungseffektes bei totalreflexion[J].Annalen der Physik,1949,440(3):251-252.

[3] Artmann K.Berechnung der Seitenversetzung des totalreflektieren Strahles[J].Ann Phys,1948,437(1/2):87.

[4] Das C M,Kang L,Hu D,et al.Graphene Coated Gold Chips for Enhanced Goos Hanchen Shift Plasmonic Sensing[J].Physica Status Solidi(a),2021,218(8):2000690.

[5] Olaya C M,Hayazawa N,Balois-Oguchi M V,et al.Molecular Monolayer Sensing Using Surface Plasmon Resonance and Angular Goos-H?nchen Shift[J].Sensors,2021,21(13):4593.

[6] ZHANG Xiangli,WANG Yuhan,ZHAO Xiang,et al.Fano resonance based on long range surface phonon resonance in the mid-infrared region[J].IEEE Photonics Journal,2019,11(2):1-8.

[7] Petrov N I,Sokolov Y M, Stoiakin V V,et al.Observation of Giant Angular Goos-Hanchen Shifts Enhanced by Surface Plasmon Resonance in Subwavelength Grating[C]//Photonics MDPI,2023,10(2):180.

[8] Jahani D,Akhavan O,Hayat A,et al.Optical Goos H?nchen effect in uniaxially strained graphene[J].JOSA A,2023,40(1):21-26.

[9] YU Tianyi,LI Honggen,CAO Zhang,et al.Oscillating wave displacement sensor using the enhanced Goos H?nchen effect in a symmetrical metal-cladding optical waveguide[J].Optics Letters,2008,33(9):1001-1003.

[10] Wan R G,Zubairy M S.Tunable and enhanced Goos-H?nchen shift via surface plasmon resonance assisted by a coherent medium[J].Optics Express,2020,28(5):6036-6047.

[11] ZHOU Xiang,LIU Shuoqing,DING Yiping,et al.Precise control of positive and negative Goos-H?nchen shifts in graphene[J].Carbon,2019,149: 604-608.

[12] HAN Lei,PAN Jianxing,WU Cuiming,et al.Giant Goos-H?nchen shifts in Au-ITO-TMDCs-graphene heterostructure and its potential for high performance sensor[J].Sensors,2020,20(4):1028.

[13] Ogawa S,Fukushima S,Shimatani M.Extraordinary optical transmission by hybrid phonon plasmon polaritons using hBN embedded in plasmonic nanoslits[J].Nanomaterials,2021,11(6):1567.

[14] SONG Haoyuan,ZHOU Sheng,SONG Yuling,et al.Tunable propagation of surface plasmon-phonon polaritons in graphene-hBN metamaterials[J].Optics & Laser Technology,2021,142:107232.

[15] LI Yubo,SONG Haoyuan,ZHANG Yuqi,et al.Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN[J].Chinese Physics B,2022,31(6):064207.

[16] YUE Qinxin,ZHEN Weiming,DING Yiping,et al.Giant Goos-H?nchen shifts controlled by exceptional points in a PT-symmetric periodic multilayered structure coated with graphene[J].Optical Materials Express,2021,11(12):3954-3965.

[17] DU Xiaodong,DA Haixia.Large and controlled Goos H?nchen shift in monolayer graphene covered multilayer photonic crystals grating[J].Optics Communications,2021,483:126606.

[18] LI Tingwei,DA Haixia,DU Xiaoming,et al.Giant enhancement of Goos H?nchen shift in graphene-based dielectric grating[J].Journal of Physics D:Applied Physics,2020,53(11):115108.

[19] ZHANG Changwei,YE Hong,LI Zhengyang,et al.Giant and controllable Goos H?nchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure[J].Applied Optics,2022,61(3):844-850.

[20] MA Shanshan,ZHU Xiaojun,LU Delian,et al.Dual dielectric grating-assisted enhancement of Goos-H?nchen shift in monolayer graphene[J].Physica Scripta,2022,97(8):085504.

[21] WU Feng,LUO Ma,WU Jiaju,et al.Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-H?nchen shifts with perfect reflection[J].Physical Review A,2021,104(2):023518.

[22] LI Zhengyang,ZHANG Changwei,YE Hong,et al.Enhanced Goos-H?nchen shift of graphene via hybrid structure with dielectric grating,metallic layer and photonic crystal[J].Physica E:Low-dimensional Systems and Nanostructures,2022,142:115272.

[23] ZHU Xiaojun,LU Delian,MA Shanshan,et al.Guided mode resonance-driven giant Goos–H?nchen shift in monolayer MoS2based dielectric grating structure[J].Physica B:Condensed Matter,2022,643:414173.

[24] Aharonov Y,Albert D Z,Vaidman L.How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J].Physical Review Letters,1988,60(14):1351.

[25] Ritchie N W M,Story J G,Hulet Randall G Realization of a measurement of a“weak value”[J].Physical Review Letters,1991, 66(9):1107.

[26] LU Delian,MA Shanshan,ZHU Xiaojun,et al.Temperature controllable Goos H?nchen shift and high reflectance of monolayer graphene induced by BK7 glass grating[J].Nanotechnology,2022,33(48):485201-485209.

[27] Glover P W J.Geophysical Properties of the Near Surface Earth:Electrical Properties-ScienceDirect[J].Treatise on Geophysics (Second Edition),2015,11:89-137.

[28] Ogawa S,Fukushima S,Shimatani M.Extraordinary optical transmission by hybrid phonon plasmon polaritons using hBN embedded in plasmonic nanoslits[J].Nanomaterials,2021,11(6):1567.

[29] Mishalov V D,Bachinsky V T,Vanchuliak O Y,et al.Jones matrix mapping of polycrystalline networks of layers of main types of amino acids[C]//Photonics Applications in Astronomy,Communications,Industry,and High-Energy Physics Experiments,2019.

[30] FU Shufang,WANG Xiangguang,ZHAN Yuqi,et al.Spin-splitting in a reflective beam off an antiferro magnetic surface[J].Optics Express,2021,29,39125-39136.

[31] Haneef M,Bacha B A,Khan H,et al.Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect[J].Chinese Physics B. 2018,27(11):114215.

[32] ZHANG Jing,JIANG Bo,SONG Yibin,et al.Surface phonon resonance enhanced Goos-H?nchen shift and its sensing application in the mid-infrared region[J].Optics Express,2021,29(21/11):32973-32982.

Goos-Hanchen shift in rectangular hBN layered gratings

ZHAO Yue1,JIN Gao1,ZHOU Sheng1,2

(1. School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China;2. Department of Basic Teaching,Guangzhou Navigation University,Guangzhou 510725,China)

hBN is a van der Waals material which is expected to a naturally occurring hyperbolic material,exhibits natural hyperbolic dispersion relations in tworangesofinfrared wavelengths that can strengthen light-matter interactions.In the present work,a rectangular laminar grating hBN(RLG)structure is designed,which is found to be able to increase the Goos-H?nchen(GH)shift with high reflectivity through numerical simulations.The electromagnetic field distribution in this structure directly reveals that enhanced GH shift can be attributed to electric field of the high localization in the RLG structure.It is worth noting that the frequency and width of the GH peak can also be regulated by parameters such as incident light polarization,height and thickness of the direction of the anisotropic axis of the hBN layer.In addition,the structure-sensing properties based on the GH shift was evaluated with a sensitivity of up to 1.401 μm/ RIU.The increased and controlled GH shift in the RLG structure shows promise for the applications,such as,optical sensors,optical switches and optoelectronic detectors.

Goos-H?nchen shift;hBN gratings;optical sensors

1007-9831(2023)11-0032-07

O43∶TB32

A

10.3969/j.issn.1007-9831.2023.11.007

2023-09-17

哈爾濱師范大學研究生課程建設項目;哈爾濱師范大學研究生創新項目(HSDSSCX2022-49)

招月(1999-),女,黑龍江綏化人,在讀碩士研究生,從事微納光學研究.E-mail:2291346449@qq.com

周勝(1978?),男,黑龍江哈爾濱人,教授,碩士生導師,從事微納光學研究.E-mail:zhousheng_wl@126.com

猜你喜歡
測量結構
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
把握四個“三” 測量變簡單
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
滑動摩擦力的測量和計算
滑動摩擦力的測量與計算
測量的樂趣
論《日出》的結構
測量
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
主站蜘蛛池模板: 97国产精品视频自在拍| 爆乳熟妇一区二区三区| 国产91特黄特色A级毛片| 国产日韩欧美一区二区三区在线| 亚洲人成日本在线观看| 97久久免费视频| 激情午夜婷婷| 91精品国产91久久久久久三级| 黄色三级毛片网站| 亚洲成人网在线观看| 青青草一区| 无码综合天天久久综合网| 国产性生交xxxxx免费| 成人免费一级片| 伊人国产无码高清视频| 伊人成人在线视频| 日本91在线| 国产成人福利在线视老湿机| 91精品aⅴ无码中文字字幕蜜桃| 亚亚洲乱码一二三四区| 亚洲swag精品自拍一区| 国产午夜人做人免费视频中文| 亚洲天堂首页| 亚洲精品无码日韩国产不卡| 日韩精品一区二区深田咏美| 欧美亚洲一区二区三区导航| 高清视频一区| 中文字幕啪啪| 国产精品无码久久久久AV| 国产精品免费电影| 亚洲一区免费看| 伊伊人成亚洲综合人网7777| 少妇人妻无码首页| 高h视频在线| 最新午夜男女福利片视频| 国产无遮挡裸体免费视频| 中文字幕在线观| 欧美一级一级做性视频| 精品少妇三级亚洲| 欧美日韩在线成人| 亚洲Va中文字幕久久一区 | 亚洲无码四虎黄色网站| 国产成在线观看免费视频| 国产中文一区a级毛片视频| 国产免费怡红院视频| 亚洲一区二区精品无码久久久| 2019年国产精品自拍不卡| 亚洲va欧美ⅴa国产va影院| 国产电话自拍伊人| 国产特级毛片aaaaaaa高清| 91美女视频在线| 91在线播放国产| 久久九九热视频| 蜜芽一区二区国产精品| 欧美亚洲国产精品久久蜜芽| 国内精品免费| 精品国产成人高清在线| 国产免费精彩视频| 成人亚洲国产| 欧美天堂在线| 欧美精品亚洲日韩a| 成人免费网站久久久| 国产高清在线观看91精品| 亚洲视频影院| 国产日产欧美精品| 日本精品视频一区二区| 2048国产精品原创综合在线| 中文字幕久久波多野结衣 | 国产 在线视频无码| 国产在线视频自拍| 婷婷六月激情综合一区| 日韩在线欧美在线| 她的性爱视频| 亚洲视屏在线观看| 亚洲小视频网站| 亚洲开心婷婷中文字幕| 五月婷婷亚洲综合| 国产美女精品在线| 91欧美亚洲国产五月天| 黄色在线不卡| 91精品情国产情侣高潮对白蜜| 免费无码AV片在线观看国产|