

摘要:針對水環(huán)境中抗生素、農(nóng)藥及其代謝產(chǎn)物等污染物的污染現(xiàn)狀,綜述污染物對浮游植物的毒性效應(yīng)研究進展,分別從生物群落、種群、細胞和生物分子4個水平闡述污染物對浮游植物的毒性作用機制及影響因素,關(guān)注抗生素與農(nóng)藥對浮游植物的聯(lián)合毒性效應(yīng),討論污染物暴露與浮游植物多樣性之間的關(guān)聯(lián)性,評述現(xiàn)階段污染物對浮游植物的毒性效應(yīng)研究中存在的問題,并展望污染物對浮游植物的毒性效應(yīng)的未來研究重點。
關(guān)鍵詞:抗生素;農(nóng)藥;代謝產(chǎn)物;浮游植物;毒性
中圖分類號:X592
文獻標(biāo)志碼:A
開放科學(xué)識別碼(OSID碼):
Research Progress on Toxic Effects of
Antibiotics and Pesticides on Phytoplankton
ZHANG Tianxu1,2, SUN Shaohua2, SONG Yan2, LI Wei2, ZHAO Qinghua2, JIA Ruibao2
(1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China;
2. Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan 250101, Shandong, China)
Abstract: In view of pollution status of pollutants including antibiotics, pesticides and their metabolites in water environment, research progress on toxic effects of the pollutants on phytoplankton was reviewed. Mechanism of toxicity action and influencing factors of the pollutants on phytoplankton were described respectively from four levels of biocommunity, population, cell, and biomolecule, and combined toxic effects of antibiotics and pesticides on phytoplankton were focused. Relevance between the pollutants exposure and phytoplankton diversity was discussed, and problems existing in research on toxic effects of the pollutants on phytoplankton were reviewed. Future research emphases for toxic effects of the pollutants on phytoplankton were prospected.
Keywords: antibiotic; pesticide; metabolite; phytoplankton; toxicity
浮游植物作為初級生產(chǎn)者,在生物地球化學(xué)循環(huán)和食物供應(yīng)等方面起著重要的生態(tài)作用,是淡水生態(tài)系統(tǒng)的重要組成部分。水體中常見的浮游植物種類有綠藻門、藍藻門、黃藻門、硅藻門、隱藻門、金藻門、裸藻門和甲藻門八大門類[1]。浮游植物生物量的增加可能會引起赤潮,導(dǎo)致大量魚類死亡和貝
收稿日期:2022-05-07 網(wǎng)絡(luò)首發(fā)時間:2023-03-23T09∶39∶37
基金項目:國家自然科學(xué)基金項目(42007231);山東省中央引導(dǎo)地方科技發(fā)展資金項目(YDZX20203700001642);山東省重點研發(fā)計
劃項目(2020CXGC011406);山東省泰山學(xué)者建設(shè)工程專項(ts201712084)
第一作者簡介:張?zhí)煨瘢?998—),女,吉林公主嶺人。碩士研究生,研究方向為資源與環(huán)境。E-mail: 1915605228@qq.com。
通信作者簡介:孫韶華(1966—),女,山東海陽人。研究員,學(xué)士,碩士生導(dǎo)師,研究方向為供排水水質(zhì)監(jiān)測及污染物去除相關(guān)技術(shù)。
E-mail: jngpsjc_sunshaohua@163.com。
賈瑞寶(1968—),男,山東費縣人。研究員,博士,博士生導(dǎo)師,研究方向為水環(huán)境污染特征與控制。E-mail:jiaruibao
1968@163.com。
網(wǎng)絡(luò)首發(fā)地址:https://kns.cnki.net/kcms/detail/37.1378.N.20230322.1046.002.html
類污染,而浮游植物生物量的減少可能會改變高等營養(yǎng)生物的生物群落(簡稱群落)組成,影響漁業(yè)和水產(chǎn)養(yǎng)殖業(yè)的發(fā)展[2]。
目前抗生素和農(nóng)藥是水環(huán)境中普遍存在的兩大類痕量有機污染物。農(nóng)藥在地表水[3]、養(yǎng)殖池塘[4]、海域[5],甚至是瓶裝飲用水[6]中均有分布,不同水體中農(nóng)藥的種類和含量差異顯著。農(nóng)藥可以通過地表徑流或土壤侵蝕釋放到水生生態(tài)系統(tǒng)中,對水生生物甚至人類構(gòu)成潛在風(fēng)險,因此,近年來水環(huán)境中農(nóng)藥的污染問題引起了廣泛關(guān)注。抗生素具有化學(xué)結(jié)構(gòu)復(fù)雜、不易降解等特點,不能完全被生物體吸收,通過糞便、尿液等方式排出進入地表水中[7-8]。我國地表水環(huán)境中存在的抗生素主要包括磺胺類、四環(huán)素類、大環(huán)內(nèi)酯類和喹諾酮類[9-10]。已有研究表明,抗生素殘留會影響浮游植物的生長、密度和光合作用,最終改變浮游植物群落的組成、結(jié)構(gòu)和功能[11-14]。
值得關(guān)注的是,目前在水環(huán)境中不僅存在數(shù)量多、濃度低的多種污染物,而且發(fā)現(xiàn)了污染物的代謝產(chǎn)物及生物或非生物轉(zhuǎn)化產(chǎn)物,其濃度比母體化合物更高[15],然而關(guān)于代謝產(chǎn)物和轉(zhuǎn)化產(chǎn)物暴露對生物體的影響研究尚不多見。本文中綜述不同抗生素、農(nóng)藥及其代謝產(chǎn)物暴露下對浮游植物不同終點的毒性效應(yīng)及影響因素,關(guān)注抗生素和農(nóng)藥對浮游植物的聯(lián)合毒性效應(yīng),闡述污染物暴露與浮游植物多樣性變化之間的關(guān)聯(lián)性,并分析污染物對浮游植物毒性效應(yīng)研究中存在的問題及應(yīng)用前景。
1 污染物對浮游植物群落的影響
農(nóng)藥和抗生素等污染物的暴露能夠影響浮游植物物種組成和豐度,造成浮游植物生物多樣性的變化[16-17]。不同物種之間對污染物的敏感性差異會導(dǎo)致耐受物種的豐度增大,敏感物種的豐度減小[18]。Lozano等[19]分析了不同濃度草甘膦暴露下的浮游植物種類組成和豐度的變化,發(fā)現(xiàn)魚星鼓藻屬Staurastrum sp.在草甘膦的質(zhì)量濃度為3、6 mg/L的暴露下的豐度均減小,衣藻屬Chlamydomonas sp.和細鞘絲藻屬Leptolyngbya sp.的豐度在草甘膦的質(zhì)量濃度為6 mg/L時減小。草甘膦的質(zhì)量濃度為0.3 mg/L時能夠促進微小四角藻Tetraedron minimum的生長,但對豐度沒有影響。Hernndez-García等[20]通過綜合生物標(biāo)志物反應(yīng)實驗評估了草甘膦對微藻群落的影響,結(jié)果顯示,草甘膦抑制了鐮形纖維藻Ankistrodesmus falcatus、小球藻Chlorella vulgaris、月牙藻Pseudokirchneriella subcapitata和厚頂柵藻Scenedesmus incrassatulus的生長速率,但能促進銅綠微囊藻Microcystis aeruginosa的生長,原因可能是銅綠微囊藻產(chǎn)生的微囊藻毒素等生物活性物質(zhì)限制了其他微藻的生長。與綠藻相比,藍藻在分類上更接近細菌,抗生素可以使原核微生物產(chǎn)生遺傳和表型變異,影響細胞的生理活動[21]。Zhou等[22]評估了左氧氟沙星和土霉素對藍藻、真核藻類的毒性。左氧氟沙星和土霉素對銅綠微囊藻、偽魚腥藻Pseudanabaena sp.、聚球藻Synechococcus 7942等藍藻的生長均有抑制作用,但只有在土霉素的質(zhì)量濃度為1~10 mg/L時抑制真核藻類小球藻和單針藻Monoraphidium sp.的生長。2種物質(zhì)通過破壞原核微生物的脫氧核糖核酸(DNA)拓撲異構(gòu)酶II和真核微生物的30S核糖體亞基影響浮游植物的生長。
農(nóng)藥和其他化學(xué)物質(zhì)的交互作用對浮游植物的種類組成有一定的影響。Wijewardene等[23]發(fā)現(xiàn),在營養(yǎng)物質(zhì)PO4-P和農(nóng)藥毒性的同時作用下,浮游植物物種組成由更有優(yōu)勢的浮游植物(具角擬衣藻Chloromonas angustissima、披針舟形藻Navicula lanceolata和小形異極藻Gomphonema parvulum)向適應(yīng)速度快且耐受的浮游植物(膨脹色球藻Chroococcus turgidus、威氏多甲藻Peridinium willei和囊裸藻Trachelomonas spp.等)轉(zhuǎn)變,說明化學(xué)物質(zhì)和農(nóng)藥的交互作用可以改變浮游植物的物種組成。浮游植物群落的變化受到棲息地特征、物理化學(xué)條件和生物相互作用等因素影響[24]。研究表明,浮游植物群落變化與總磷、溫度、溶解無機磷和溶解無機氮等各種物理化學(xué)物質(zhì)密切相關(guān)[25],因此,在評估浮游植物群落對污染物的反應(yīng)機制時,不能忽視其他環(huán)境因子的影響。
此外,污染物的暴露還會改變浮游植物群落的結(jié)構(gòu)和功能[26]。群落密度可以改變?nèi)郝渲懈鱾€物種的比例關(guān)系,即改變?nèi)郝涞木鶆蚨群蛢?yōu)勢度,從而影響整個生態(tài)系統(tǒng)的功能[27-28]。Pan等[29]研究了諾氟沙星對四尾柵藻Scenedesmus quadricauda、斜生柵藻Scenedesmus obliquus和小球藻Chlorella vulgaris共存下的長期(時間長達70 d)動態(tài)影響,發(fā)現(xiàn)初始階段總藻密度會隨著諾氟沙星濃度的增加而增加,隨后隨著營養(yǎng)物質(zhì)的減少,總藻密度明顯降低。綠藻或藍藻過多會導(dǎo)致浮游植物水華,群落結(jié)構(gòu)也隨之變化[30]。Lu等[31]研究發(fā)現(xiàn),環(huán)丙沙星的質(zhì)量濃度為7 μg/L群落主要物種組成時沒有明顯改變,但藍藻的相對豐度略微增加,真核生物的相對豐度降低。環(huán)丙沙星暴露后15 d,藍藻成為優(yōu)勢種,導(dǎo)致水華的發(fā)生。
2 污染物對浮游植物種群的影響
不同污染物暴露對浮游植物種群的生長存在不利影響, 生長率、細胞密度、干重和產(chǎn)量等生物量指標(biāo)可以衡量污染物對不同浮游植物細胞的急、慢性毒性, 進一步反映浮游植物的種群變化[32]。Wan等[33]研究發(fā)現(xiàn),萊茵衣藻Chlamydomonas reinhardtii的生長速率隨敵百蟲暴露時間的延長而減小,其干重隨敵百蟲濃度的增加而明顯減小。半數(shù)效應(yīng)濃度(EC50)通常用來評價污染物的毒性大小,以質(zhì)量濃度表示。聶湘平等[34]通過細胞密度得出暴露96 h后的三氯異氰尿酸、鹽酸環(huán)丙沙星對蛋白核小球藻Chlorella pyrenoidosa的EC50分別為0.31、20.61 mg/L。Xu等[35]研究了四環(huán)素及其降解產(chǎn)物(脫水四環(huán)素和差向脫水四環(huán)素)對小球藻生長的影響,結(jié)果顯示,暴露96 h后的四環(huán)素、脫水四環(huán)素、差向脫水四環(huán)素對藻細胞EC50值分別為7.73、5.96、8.42 mg/L,說明在種群水平上污染物的暴露會抑制藻類的生長。
浮游植物種群動態(tài)可以反映污染物對浮游植物的敏感性大小。不同種類抗生素、農(nóng)藥對不同浮游植物的毒性分別見表1、2。由表可以看出,不同浮游植物對污染物的敏感性不同。Vendrell等[46]采用平均特定生長率值比較了4種浮游植物(尖葉珊藻Scenedesmus acutus、柵藻亞種Scenedesmus subspicatus、小球藻和嗜糖小球藻Chlorella saccharophila)在不同暴露條件下的生長情況,發(fā)現(xiàn)這幾種藻類生長速率隨草甘膦濃度的增加而減小,柵藻對草甘膦的敏感性高于小球藻。Chen等[47]評價了抗生素頭孢拉定及降解產(chǎn)物對銅綠微囊藻和斜生柵藻的敏感性大小,發(fā)現(xiàn)它們對銅綠微囊藻的敏感性要強于對斜生柵藻的,并且由于頭孢拉定紫外線降解片段具有聯(lián)合或協(xié)同作用,因此它對2種藻類的毒性都大于頭孢拉定。張曉晗等[48]分析了不同濃度抗生素對斜生柵藻和小球藻的敏感性,結(jié)果發(fā)現(xiàn)磺胺間甲氧嘧啶和磺胺二甲基嘧啶對小球藻更敏感。氧氟沙星和磺胺間甲氧嘧啶聯(lián)合暴露與氧氟沙星單一暴露效果一致,均對斜生柵藻更敏感。各污染物的組分、濃度以及暴露時間、暴露次序等因素都會使混合物的相互作用更加復(fù)雜,對浮游植物的毒性產(chǎn)生顯著差異。土霉素-環(huán)丙沙星2種抗生素和戊唑醇-環(huán)丙沙星農(nóng)藥抗生素二元混合體系產(chǎn)生的協(xié)同作用分別隨著暴露時間延長而逐漸增強[49],說明2種混合體系均具有明顯的時間依賴性。此外,不同抗生素對浮游植物的敏感性存在差異,在同一暴露時間下單一抗生素對羊角月牙藻Selenastrum capricornutum的敏感性由高到低順序為土霉素、戊唑醇、環(huán)丙沙星[49];暴露10 d后的3種鹽酸類抗生素對銅綠微囊藻敏感性由高到低依次為鹽酸土霉素、鹽酸四環(huán)素、鹽酸金霉素[50]。
3 污染物對浮游植物細胞的影響
細胞變化是浮游植物在外界脅迫下受到影響的直觀表現(xiàn),細胞大小、形態(tài)和超微結(jié)構(gòu)等指標(biāo)能夠從細胞水平反映單細胞的動態(tài)變化。細胞大小是所有生物體的一個基本特征,與內(nèi)外刺激有關(guān)[51]。污染物的暴露能導(dǎo)致浮游植物細胞體積改變和形態(tài)異常[52]。Machado等[53]評價紅霉素暴露下羊角月牙藻的生物體積變化,發(fā)現(xiàn)未暴露于紅霉素的藻類細胞(對照組)平均體積為19 μm3,而暴露在紅霉素中的藻類細胞平均體積增加到22~31 μm3,證實了經(jīng)紅霉素處理后的藻類細胞體積增加的結(jié)論。
污染物能破壞浮游植物細胞結(jié)構(gòu)引起細胞凋亡,因此可通過直接觀察細胞形態(tài)和超微結(jié)構(gòu)研究污染物對浮游植物細胞的影響[54]。農(nóng)藥會使浮游植物的細胞形態(tài)發(fā)生改變,例如硝磺草酮不僅影響小球藻的細胞形態(tài),導(dǎo)致胞質(zhì)分裂,細胞器形狀模糊,葉綠體及蛋白核超微結(jié)構(gòu)受損,而且能破壞細胞膜的完整性,改變細胞體積,增加細胞內(nèi)的復(fù)雜性[55]。Zhao等[56]通過透射電鏡圖像觀察,研究了苯唑草酮對小球藻細胞內(nèi)部結(jié)構(gòu)的影響,結(jié)果表明,經(jīng)過苯唑草酮處理96 h后,藻細胞內(nèi)部結(jié)構(gòu)發(fā)生改變,細胞器變模糊,細胞質(zhì)滲漏,質(zhì)膜退化,說明苯唑草酮破壞了藻細胞的葉綠體和細胞膜,對光合作用產(chǎn)生嚴重影響,引發(fā)細胞凋亡。Martínez-Ruiz等[57]觀察到銅綠微囊藻暴露在2, 4-二氯苯氧乙酸的質(zhì)量濃度分別為33.58、71.20 mg/L時細胞的變化,發(fā)現(xiàn)類囊體紊亂,細胞膜和細胞壁均增厚,污染物濃度增大時,對細胞的損傷則更加明顯。與農(nóng)藥一樣,抗生素及代謝產(chǎn)物的暴露也會致使浮游植物的細胞損傷。金霉素及其異構(gòu)體降解產(chǎn)物異金霉素及異差向金霉素均會改變細胞膜通透性,導(dǎo)致藻細胞的代謝過程紊亂,對斜生柵藻細胞膜造成一定程度的損傷[58]。
4 污染物對浮游植物生物分子的影響
浮游植物的生物分子變化有助于揭示污染物的毒性作用機制。一些抗生素和農(nóng)藥污染物具有葉綠素色素、蛋白質(zhì)、碳水化合物和核酸等特定的分子靶標(biāo),特定的污染物暴露可以促進或抑制這些生物分子的產(chǎn)生。
污染物影響浮游植物的光合作用,進而引發(fā)細胞凋亡。葉綠素含量是衡量光合能力的指標(biāo)[59],可以估算活性細胞的濃度。葉綠素色素的破壞或浮游植物種群的變化可能導(dǎo)致葉綠素含量的變化[60],但是,葉綠素含量的變化趨勢并不總是與種群密度一致。暴露在金霉素的質(zhì)量濃度為0.5 mg/L環(huán)境中的銅綠微囊藻的種群密度高于對照組的,但其葉綠素a含量低于對照組的[61],表明金霉素可以促進浮游植物的生長,也可以破壞葉綠素色素。除此之外,與光合作用過程相關(guān)的生化參數(shù)還有很多,包括三磷酸腺苷(ATP)形成、二氧化碳(CO2)固定、碳吸收和葉綠素?zé)晒狻H~綠素?zé)晒馐菧y量光合效率的指標(biāo)[62],Liu等[63]通過測定光合速率和葉綠素?zé)晒獾葏?shù),研究了紅霉素、環(huán)丙沙星和磺胺甲惡唑3種抗生素對羊角月牙藻光合作用過程的影響,結(jié)果表明,3種抗生素均能顯著抑制電子傳遞和碳同化等生理過程,其中紅霉素對羊角月牙藻光合作用的毒害作用最強。
抗生素、農(nóng)藥均能影響浮游植物的生理生化特性。活性氧(ROS)的產(chǎn)生、細胞結(jié)構(gòu)損傷、細胞活性降低和脫氧核糖核酸(DNA)損傷是環(huán)境污染物對水生生物的主要毒理學(xué)效應(yīng)[64-65]。毒性化合物應(yīng)激能夠打破浮游植物細胞ROS產(chǎn)生和清除的動態(tài)平衡,誘導(dǎo)包括單線態(tài)氧(1O2)、超氧化物(·O-2)、過氧化氫(H2O2)和羥基自由基(·OH)在內(nèi)的ROS的過量產(chǎn)生[66],ROS可與多種分子相互作用,導(dǎo)致生物分子DNA、核糖核酸(RNA)、蛋白質(zhì)和脂質(zhì)損傷,進而導(dǎo)致藻類細胞氧化損傷和凋亡。當(dāng)四環(huán)素及其降解產(chǎn)物(脫水四環(huán)素和差向脫水四環(huán)素)質(zhì)量濃度大于5 mg/L時,小球藻細胞的ROS含量增大,進而刺激抗氧化系統(tǒng),破壞亞細胞結(jié)構(gòu)和生理功能,導(dǎo)致細胞的生長速度下降[34]。
藻細胞對ROS的應(yīng)激反應(yīng)可以產(chǎn)生抗氧化酶,如超氧化物歧化酶(SOD)和過氧化氫酶(CAT),抗氧化酶SOD可以將·O-2轉(zhuǎn)化為H2O2,而CAT進一步將H2O2進一步轉(zhuǎn)化為H2O,最終部分或完全消除氧化損傷[67-68]。污染物濃度的變化導(dǎo)致ROS的過量產(chǎn)生,進而影響抗氧化系統(tǒng)的防御功能,改變SOD、CAT等抗氧化酶的活性,損害藻細胞的生理功能。細胞膜由不飽和磷脂組成,易受氧自由基攻擊,導(dǎo)致丙二醛(MDA)積累。MDA作為一種主要的過氧化產(chǎn)物,是脂質(zhì)過氧化的指標(biāo),可以反映環(huán)境脅迫下細胞的氧化損傷[69]。此外,葉綠體和線粒體是浮游植物產(chǎn)生ROS的2個主要位點[62],兩者都可能被ROS的過量產(chǎn)生所破壞。Zhou等[70]研究了土霉素和磺胺甲惡唑?qū)︺~綠微囊藻和小球藻的影響,結(jié)果表明,高濃度的土霉素和磺胺甲惡唑能提高SOD活性和MDA、蛋白質(zhì)含量,表明抗生素引起的應(yīng)激刺激了蛋白質(zhì)的產(chǎn)生,并且細胞破裂也導(dǎo)致可溶性蛋白的釋放。Tao等[71]研究了乙酰甲胺磷、敵百蟲和草甘膦3種有機磷農(nóng)藥對淡水綠藻蛋白核小球藻的單獨和聯(lián)合毒性。在3種農(nóng)藥單獨及其三元混合的作用下,蛋白核小球藻葉綠素含量和SOD活性降低,而MDA含量增加。3種農(nóng)藥及其混合物可能由于光合色素、光合效率等因素影響光合作用,同時破壞藻細胞內(nèi)酶的活性,抑制蛋白核小球藻的生長,因此對藻細胞造成氧化損傷,進而產(chǎn)生毒性效應(yīng)。
近年來,將先進的組學(xué)技術(shù)與經(jīng)典毒理學(xué)終點相結(jié)合已成為揭示污染物毒性機制的有效方法。組學(xué)分析可以揭示水生生物系統(tǒng)中多種物質(zhì)間相互作用的機制[72-73]。浮游植物通過上調(diào)與活性氧清除、光合作用、碳固定、電子傳遞和氧化磷酸化等相關(guān)的蛋白及相應(yīng)的基因來保護氧化應(yīng)激和細胞氧化還原穩(wěn)態(tài),減少污染物脅迫下的光合損失[74]。Xu等[75]研究了農(nóng)藥草甘膦與抗生素(阿莫西林、磺胺甲惡唑、四環(huán)素和環(huán)丙沙星)聯(lián)合暴露下銅綠微囊藻的蛋白質(zhì)組學(xué)機制,揭示了混合物對銅綠微囊藻的毒性作用機制。結(jié)果顯示,抗生素和草甘膦對銅綠微囊藻產(chǎn)生協(xié)同作用,大量蛋白的上調(diào)促進了光合作用、細胞分裂、碳固定和葉綠素合成,最終導(dǎo)致抗生素和農(nóng)藥草甘膦聯(lián)合暴露下銅綠微囊藻的加速生長。
5 總結(jié)與展望
目前抗生素和農(nóng)藥對浮游植物的毒性研究多以綠藻和藍藻為研究對象,對其他浮游植物的研究尚不多見,并且大多數(shù)研究都是針對單一抗生素或農(nóng)藥對浮游植物的毒性效應(yīng)以及生態(tài)風(fēng)險,關(guān)于抗生素和農(nóng)藥聯(lián)合對浮游植物的影響的研究還較少。此外,抗生素與農(nóng)藥聯(lián)合作用的機制說法不一,環(huán)境因素也會影響污染物的毒性。現(xiàn)階段的大多數(shù)研究都在實驗室中進行,在真實的環(huán)境介質(zhì)中污染物間的相互作用更加復(fù)雜。與單一污染物相比,研究復(fù)合污染有更多的困難,因此,今后需要對以下幾方面進行深入研究:
一是要關(guān)注更多的浮游植物物種在污染物暴露下的毒性效應(yīng),比如隱藻和甲藻等,為生態(tài)風(fēng)險評估提供更豐富的科學(xué)數(shù)據(jù)。
二是要對污染物的混合毒性進行深入的研究,包括污染物的暴露順序、手性結(jié)構(gòu)和化合物之間的相互作用等方面。
三是要進一步研究抗生素或農(nóng)藥對浮游植物毒性反應(yīng)的內(nèi)在機制,例如代謝途徑和遺傳損傷等,同時關(guān)注污染物代謝產(chǎn)物對浮游植物的影響。
參考文獻:
[1] 胡鴻鈞, 魏印心. 中國淡水藻類: 系統(tǒng)、生態(tài)及分類[M]. 北京: 科學(xué)出版社, 2006: 3-10.
[2] XIN X Y, HUANG G, ZHANG B Y. Review of aquatic toxicity of pharmaceuticals and personal care products to algae[J]. Journal of Hazardous Materials, 2021, 410: 124619.
[3] 周怡彤, 李清雪, 王斌, 等. 太湖流域西北部地表水中農(nóng)藥的污染特征及生態(tài)風(fēng)險評價[J]. 生態(tài)毒理學(xué)報, 2020, 15(3): 171-183.
[4] 黃曉麗, 高磊, 黃麗, 等. 哈爾濱地區(qū)養(yǎng)殖池塘中除草劑類農(nóng)藥殘留及分布特征[J]. 水產(chǎn)學(xué)雜志, 2019, 32(2): 37-43.
[5] LI H X, JIANG W W, PAN Y L, et al. Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China[J]. Marine Pollution Bulletin, 2021, 162: 111906.
[6] 徐志華, 唐冬梅, 劉超, 等. SPE-LC/MS/MS法測定包裝飲用水中30種有機磷農(nóng)藥殘留[J]. 現(xiàn)代食品, 2020(6): 191-197.
[7] ZHANG B, XU L, HU Q P, et al. Occurrence, spatiotemporal distribution and potential ecological risks of antibiotics in Dongting Lake, China[J]. Environmental Monitoring and Assessment, 2020, 192(12): 804.
[8] N?DLER K, LICHA T, BARBIERI M, et al. Evidence for the microbially mediated abiotic formation of reversible and non-rever-sible sulfamethoxazole transformation products during denitrification[J]. Water Research, 2012, 46(7): 2131-2139.
[9] ZHANG L L, SHEN L N, QIN S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods[J]. Environmental Pollution, 2020, 256: 113458.
[10] YAN M T, XU C, HUANG Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 631/632: 840-848.
[11] HANNA N, SUN P, SUN Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131-142.
[12] PAUMELLE M, DONNADIEU F, JOLY M, et al. Effects of sulfonamide antibiotics on aquatic microbial community composition and functions[J]. Environment International, 2021, 146: 106198.
[13] CEDERGREEN N, RASMUSSEN J J. Low dose effects of pesticides in the aquatic environment[J]. ACS Symposium Series, 2017, 1249: 167-187.
[14] STALEY Z R, HARWOOD V J, ROHR J R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems[J]. Critical Reviews in Toxicology, 2015, 45(10): 813-836.
[15] ULRICH U, PFANNERSTILL M, OSTENDORP G, et al. Omnipresent distribution of herbicides and their transformation pro-ducts in all water body types of an agricultural landscape in the North German Lowland[J]. Environmental Science and Pollution Research, 2021, 28: 44183-44199.
[16] MARSHALL P A, EDGAR G J. The effect of the Jessica grounding on subtidal invertebrate and plant communities at the Galápagos wreck site[J]. Marine Pollution Bulletin, 2003, 47(7/8): 284-295.
[17] SABATER S, TIMONER X, BORREGO C, et al. Stream biofilm responses to flow intermittency: from cells to ecosystems[J]. Frontiers in Environmental Science, 2016, 4: 00014.
[18] ERIKSSON K M, JOHANSSON C H, FIHLMAN V, et al. Long-term effects of the antibacterial agent triclosan on marine periphyton communities[J]. Environmental Toxicology and Chemistry, 2015, 34(9): 2067-2077.
[19] LOZANO V L, VINOCUR A, SABIO GARCíA C A, et al. Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach[J]. Ecotoxicology and Environmental Safety, 2018, 148: 1010-1019.
[20] HERNáNDEZ-GARCíA C, MARTíNEZ-JERóNIMO F. Multi-stressor negative effects on an experimental phytoplankton community: the case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae[J]. Science of the Total Environment, 2020, 717: 137186.
[21] FRESIA P, ANTELO V, SALAZAR C, et al. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters[J]. Microbiome, 2019, 7(1): 35.
[22] ZHOU Z G, ZHANG Z Y, FENG L, et al. Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities[J]. Science of the Total Environment, 2020, 734: 139499.
[23] WIJEWARDENE L, WU N C, QU Y M, et al. Influences of pesticides, nutrients, and local environmental variables on phytoplankton communities in lentic small water bodies in a German lowland agricultural area[J]. Science of the Total Environment, 2021, 780: 146481.
[24] PEREIRA A S, D?MASO-RODRIGUES M L, AMORIM A, et al. Aquatic community structure in Mediterranean edge-of-field waterbodies as explained by environmental factors and the presence of pesticide mixtures[J]. Ecotoxicology, 2018, 27: 661-674.
[25] GREGORIO V, BüCHI L, ANNEVILLE O, et al. Risk of herbicide mixtures as a key parameter to explain phytoplankton fluctuation in a great lake: the case of Lake Geneva, Switzerland[J]. Ecotoxicology, 2012, 21(8): 2306-2318.
[26] SEGUINF,LEBOULANGERC,RIMETF,etal.Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(2): 198-208.
[27] PURVIS A, HECTOR A. Getting the measure of biodiversity[J]. Nature, 2000, 405: 212-219.
[28] 賀金生, 方精云, 馬克平, 等. 生物多樣性與生態(tài)系統(tǒng)生產(chǎn)力:為什么野外觀測和受控實驗結(jié)果不一致?[J]. 植物生態(tài)學(xué)報, 2003, 27(6): 835-843.
[29] PANY,DONGJY,WANLL,et al. Norfloxacin pollution alters species composition and stability of plankton communities[J]. Journal of Hazardous Materials, 2020, 385: 121625.
[30] MA J, CHEN J, WANG P, et al. Comparative sensitivity of eight freshwater phytoplankton species to isoprocarb, propargite, flumetralin and propiconazole[J]. Polish Journal of Environmental Studies, 2008, 17(4): 525-529.
[31] LU T, ZHU Y C, KE M J, et al. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin[J]. Environment International, 2019, 126: 268-278.
[32] KüHNEL D, NICKEL C. The OECD expert meeting on ecotoxicology and environmental fate: towards the development of improved OECD guidelines for the testing of nanomaterials[J]. Science of the Total Environment, 2014, 472: 347-353.
[33] WAN L, WU Y X, DING H J, et al. Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii[J]. Journal of Agricultural and Food Chemistry, 2020, 68(6): 1645-1653.
[34] 聶湘平, 王翔, 陳菊芳, 等. 三氯異氰尿酸與鹽酸環(huán)丙沙星對蛋白核小球藻的毒性效應(yīng)[J]. 環(huán)境科學(xué)學(xué)報, 2007, 27(10): 1694-1701.
[35] XU D M, XIAO Y P, PAN H, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174: 43-47.
[36] 王作銘, 陳軍, 陳靜, 等. 地表水中抗生素復(fù)合殘留對水生生物的毒性及其生態(tài)風(fēng)險評價[J]. 生態(tài)毒理學(xué)報, 2018, 13(4): 149-160.
[37] 徐冬梅, 王艷花, 饒桂維. 四環(huán)素類抗生素對淡水綠藻的毒性作用[J]. 環(huán)境科學(xué), 2013, 34(9): 3386-3390.
[38] GONZáLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064.
[39] ROBINSON A A, BELDEN J B, LYDY M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms[J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430.
[40] GORENOGLU E, AYDIN E, TOPUZ E, et al. Effect of triclosan and its photolysis products on marine bacterium V. fischeri and freshwater alga R. subcapitata[J]. Journal of Environmental Management, 2018, 211: 218-224.
[41] 王滔, 班龍科, 張瑾, 等. 三嗪類農(nóng)藥復(fù)合污染物對蛋白核小球藻的聯(lián)合毒性作用評估[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2020, 39(3): 482-495.
[42] XI J J, SHAO J, WANG Y, et al. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris[J]. Pesticide Biochemistry and Physiology, 2019, 158: 135-142.
[43] RALSTON-HOOPER K, HARDY J, HAHN L, et al. Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms[J]. Ecotoxicology, 2009, 18(7): 899-905.
[44] 宗照飛, 宋偉華, 張燕, 等. 12種除草劑對羊角月芽藻的毒性研究[J]. 農(nóng)藥科學(xué)與管理, 2017, 38(2): 25-29.
[45] 李鳳超, 曹衛(wèi)榮, 王勝波, 等. 除草劑莠去津?qū)π鄙鷸旁宸N群的毒性效應(yīng)[J]. 安徽農(nóng)業(yè)科學(xué), 2008, 36(17): 7427-7428.
[46] VENDRELL E, FERRAZ D G D B, SABATER C, et al. Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5): 538-542.
[47] CHEN J Q, GUO R X. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae[J]. Journal of Hazardous Materials, 2012, 209/210: 520-523.
[48] 張曉晗, 萬甜, 程文, 等. 喹諾酮類和磺胺類抗生素對綠藻生長的影響[J]. 水資源與水工程學(xué)報, 2018, 29(4): 115-120.
[49] 農(nóng)瓊媛, 覃禮堂, 莫凌云, 等. 抗生素與三唑類殺菌劑混合物對羊角月牙藻的長期毒性相互作用研究[J]. 生態(tài)毒理學(xué)報, 2019, 14(4): 140-149.
[50] YE J, HUANG C, SHANG A H, et al. Characteristics of toxin production and release in Microcystis aeruginosa exposed to three tetracycline antibiotics[J]. Environmental Science and Pollution Research, 2020, 27(14): 16798-16805.
[51] BRYAN A K, ENGLER A, GULATI A, et al. Continuous and long-term volume measurements with a commercial Coulter counter[J]. PLoS ONE, 2012, 7(1): e29866.
[52] SOUSA C A, SOARES H M V M, SOARES E V. Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2018, 204: 80-90.
[53] MACHADO M D, SOARES E V. Impact of erythromycin on a non-target organism: cellular effects on the freshwater microalga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2019, 208:179-186.
[54] SCHAAP A, DUMON J, DEN TOONDER J. Sorting algal cells by morphology in spiral microchannels using inertial microfluidics[J]. Microfluidics and Nanofluidics, 2016, 20(9): 125.
[55] ZHANG F W, YAO X F, SUN S A, et al. Effects of mesotrione on oxidative stress, subcellular structure, and membrane integrity in Chlorella vulgaris[J]. Chemosphere, 2020, 247: 125668.
[56] ZHAO F F, XIANG Q Q, ZHOU Y, et al. Evaluation of the toxicity of herbicide topramezone to Chlorella vulgaris: oxidative stress, cell morphology and photosynthetic activity[J]. Ecotoxicology and Environmental Safety, 2017, 143: 129-135.
[57] MARTíNEZ-RUIZ E B, MARTíNEZ-JERóNIMO F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: a green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa)[J]. Science of the Total Environment, 2018, 619/620: 1566-1578.
[58] 張迪, 厲圓, 沈忱思, 等. 金霉素及其異構(gòu)體降解產(chǎn)物對斜生柵藻的毒性效應(yīng)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2019, 38(4): 756-764.
[59] TRETIACH M, PICCOTTO M, BARUFFO L. Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen)[J]. Environmental Science amp; Technology, 2007, 41(8): 2978-2984.
[60] XIN X Y, HUANG G H, LIU X, et al. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: a single cell view using synchrotron-based Fourier transform infrared spectromicroscopy[J]. Environmental Pollution, 2017, 226: 12-20.
[61] GUO R X, CHEN J Q. Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products[J]. Chemosphere, 2012, 87(11): 1254-1259.
[62] KUMAR K S, DAHMS H-U, LEE J-S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology and Environmental Safety, 2014, 104: 51-71.
[63] LIU B Y, NIE X P, LIU W Q, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 1027-1035.
[64] ESPERANZA M, CID á, HERRERO CI, et al. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: screening cytotoxicity and genotoxicity endpoints[J]. Aquatic Toxicology, 2015, 165: 210-221.
[65] TANG J, WU Y H, ESQUIVEL-ELIZONDO S, et al. How microbial aggregates protect against nanoparticle toxicity[J]. Trends in Biotechnology, 2018, 36(11): 1171-1182.
[66] LI J P, MIN Z F, LI W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: toxicity and removal mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110156.
[67] ZHAO P C, WANG Y M, LIN Z Y, et al. The alleviative effect of exogenous phytohormones on the growth, physiology and gene expression of Tetraselmis cordiformis under high ammonia-nitrogen stress[J]. Bioresource Technology, 2019, 282: 339-347.
[68] WU L, QIU Z H, ZHOU Y, et al. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa[J]. Aquatic Toxicology, 2016, 178: 72-79.
[69] XIA B, SUI Q, SUN X M, et al. Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris[J]. Journal of Hazardous Materials, 2018, 346: 1-9.
[70] ZHOU X D, JIANG X C, GAO S, et al. Effects of oxytetracycline dihydrate and sulfamethoxazole on Microcystis aeruginosa and Chlamydomonas microsphaera[J]. Journal of Oceanology and Limnology, 2021, 39: 160-172.
[71] TAO M T, BIAN Z Q, ZHANG J, et al. Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa[J]. Environmental Science: Processes amp; Impacts, 2020, 22(10): 2095-2103.
[72] AMBROSONE A, ROOPIN M, PELAZ B, et al. Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates[J]. Nanotoxicology, 2017, 11(2): 289-303.
[73] MESNAGE R, BISERNI M, BALU S, et al. Integrated trans-criptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126[J]. Archives of Toxicology, 2018, 92(8): 2533-2547.
[74] JIANG Y H, LIU Y, ZHANG J. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels[J]. Journal of Hazardous Materials, 2021, 406: 124722.
[75] XU S J, LIU Y, ZHANG J, et al. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa[J]. Chemosphere, 2021, 267: 129244.
(責(zé)任編輯:于海琴)