





[摘要] 目的
探討發生重癥急性胰腺炎(SAP)時5-羥色胺(5-HT)在腸黏膜屏障損傷中的作用。
方法 將大鼠隨機分為假手術組(SO組)、模型組(SAP組)和干預組(SAP+對氯苯丙氨酸(PCPA)組),每組10只。通過膽胰管內注射50 g/L牛磺膽酸鈉誘導SAP大鼠模型。SAP大鼠模型構建后24 h時檢測各組大鼠血清脂肪酶、淀粉酶、腫瘤壞死因子-α(TNF-α)、白細胞介素-6(IL-6)、5-HT水平以及回腸組織5-HT含量,采用蘇木精-伊紅染色評估胰腺和回腸的形態學變化,采用Western blot方法和免疫熒光技術檢測回腸組織緊密連接蛋白(occludin、claudin-1和ZO-1)的表達。
結果 SAP組大鼠的血清脂肪酶、淀粉酶、TNF-α、IL-6水平以及回腸組織5-HT含量較SO組明顯增高,SAP+PCPA組上述指標較SAP組明顯下降(F=34.54~479.90,P<0.01)。各組胰腺和腸道損傷病理評分比較,SAP組明顯高于SO組,SAP+PCPA組顯著低于SAP組(F=207.80、33.69,P<0.01)。SAP組回腸組織中occludin、claudin-1和ZO-1蛋白的表達較SO組顯著減少,SAP+PCPA組上述蛋白的表達較SAP組顯著升高,差異具有統計學意義(F=10.29~23.63,P<0.01)。
結論 SAP發生時抑制腸道5-HT的產生可以減輕腸黏膜屏障損傷。
[關鍵詞] 血清素;胰腺炎;腸黏膜;緊密連接部
[中圖分類號] R971.9;R576.1
[文獻標志碼] A
[文章編號] 2096-5532(2024)05-0653-05
doi:10.11712/jms.2096-5532.2024.60.147
[網絡出版] https://link.cnki.net/urlid/37.1517.R.20241029.1619.001;2024-10-30 13:59:21
The role of 5-HT in intestinal mucosal barrier injury in rats with severe acute pancreatitis
WEI Zhongran, LI Tianqi, LI Hongbo, JIANG Yingjian, DU Junjie
(Qingdao University Medical College, Qingdao 266071, China)
[Abstract]Objective To investigate the role of 5-hydroxytryptamine (5-HT) in intestinal mucosal barrier injury in severe acute pancreatitis (SAP).
Methods Rats were randomly divided into sham-operation group (SO group), model group (SAP group), intervention group (SAP+ p-chlorophenylalanine (PCPA) group), with 10 rats in each group. A rat model of SAP was induced by injecting 50 g/L sodium taurocholate into the biliopancreatic duct. At 24 h after the construction of the rat model of SAP, each group of rats was tested for the levels of serum lipase, amylase, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and 5-HT and the content of 5-HT in the ileal tissue. Morphological changes inthe pancreas and small intestine were evaluated by hematoxylin-eosin staining. Western blot and immunofluorescence techniques were used to determine the expression of tight junction proteins (occludin, claudin-1, and ZO-1) in the ileal tissue.
Results Compared with the SO group, the SAP group had significantly increased levels of serum lipase, amylase, TNF-α, and IL-6 and content of 5-HT in the ileal tissue. Compared with the SAP group, the SAP+PCPA group had significant reductions in the above indices (F=34.54-479.90,Plt;0.01). The pathological scores of pancreatic and intestinal injury were significantly higher in the SAP group than in the SO group and were significantly lo-
wer in the SAP+PCPA group than in the SAP group (F=207.80,33.69,Plt;0.01). Meanwhile, the protein expression of occludin, claudin-1, and ZO-1 was significantly lower in the SAP group than in the SO group and was significantly higher in the SAP+PCPA group than in the SAP group (F=10.29-23.63,Plt;0.01).
Conclusion The production of intestinal 5-HT is inhibited during the development of SAP, which can reduce the intestinal mucosal barrier injury.
[Key words] serotonin; pancreatitis; intestinal mucosa; tight junctions
重癥急性胰腺炎(SAP)是一種起病快、病死率高的嚴重疾病[1-2]。它常發生多種并發癥[3-4]。感染是SAP病人晚期死亡的主要原因[5-6]。已經證實,腸黏膜通透性增加導致的細菌易位(BT),是SAP敗血癥和全身感染的主要來源方式[7-10]。而腸黏膜屏障的緊密連接(TJ)在調節腸黏膜屏障功能中起著重要作用[11-12]。5-羥色胺(5-HT)作為一種典型的神經遞質,在整個腸道的生理活動中發揮著重要作用[13-14]。SAP引起腸黏膜損傷的過程極其復雜,其機制尚未完全闡明。但是目前的研究發現,在SAP引起的腸黏膜損傷中存在嚴重氧化應激、活性氧(ROS)代謝產物增多等現象,并伴有腸上皮細胞凋亡、鐵死亡的發生[15-19]。近年來有研究表明,內源性5-HT在腸道的釋放可以加重小鼠胰腺炎的進展[20]。在其他胃腸疾病研究中也發現,抑制5-HT的合成可以保護腸黏膜屏障[21-22]。但目前尚無5-HT在SAP大鼠腸道TJ屏障損傷中作用的相關研究,因此本實驗利用5-HT合成抑制劑對氯苯丙氨酸(PCPA)來探究5-HT在SAP大鼠腸黏膜屏障損傷中的作用。
1 材料和方法
1.1 動物分組及處理
實驗選用30只7周齡健康雄性Wistar大鼠(購自青島大學動物中心),體質量220~280 g,在實驗室適應性飼養3周。所有大鼠飼養于標準溫度(25±2)℃、相對濕度50%~70%、12 h明暗循環的環境中,可自由進食和飲水。將大鼠隨機分為假手術組(SO組,A組)、模型組(SAP組,B組)和干預組(SAP+PCPA組,C組),每組10只。SAP大鼠模型建立按照文獻方法[23]。干預組大鼠在SAP誘導前24 h腹腔注射PCPA(200 mg/kg)。所有實驗方案均符合美國國立衛生研究院《實驗動物指南》的要求,并經青島大學動物倫理委員會批準。
1.2 樣本采集
各組大鼠在SAP誘導24 h后再次麻醉,穿刺下腔靜脈采集血樣,離心獲得血清,-80 ℃保存待測。大鼠實施安樂死,采集其胰腺和回腸末端組織,立即將一部分組織固定于40 g/L多聚甲醛中用于制備組織切片,其余組織保存于-80 ℃作進一步檢測分析。
1.3 生化和酶聯免疫吸附試驗檢測
使用自動化生化分析儀(Olympus公司)測定血清淀粉酶和脂肪酶水平;腫瘤壞死因子-α(TNF-α)、白細胞介素-6(IL-6)、5-HT的血清濃度和回腸組織5-HT含量使用市售標準化診斷試劑盒(建成生物技術),按照試劑盒說明書進行測定。
1.4 胰腺和腸道組織病理觀察
各組大鼠胰腺和回腸組織經固定、石蠟包埋、切片后,行蘇木精-伊紅(HE)染色,在光鏡下觀察。由兩名病理醫師根據有關文獻的評分標準進行獨立的病理評分[19]。
1.5 Western blot方法檢測大鼠回腸組織TJ蛋白的表達
按照文獻的方法進行檢測[23],所用occludin、claudin-1以及ZO-1蛋白兔抗體購于三鷹公司,β-actin蛋白兔抗體購于Abways公司。利用Image J軟件進行灰度值分析,以β-actin蛋白為內參計算各目的蛋白的表達水平,最后以SO組為標準進行數據標準化處理。
1.6 免疫熒光染色觀察回腸組織TJ蛋白的表達
按照文獻方法進行免疫熒光染色[23],在熒光顯微鏡下觀察大鼠回腸組織中occludin、claudin-1和ZO-1蛋白的表達。
1.7 統計學分析
采用GraphPad Prism 8軟件進行數據統計分析。正態分布的計量數據以±s表示,多組比較采用單因素方差分析和Bonferroni檢驗,以P<0.05為差異有統計學意義。
2 結 "果
2.1 各組有關生化指標的比較
SAP組大鼠的血清脂肪酶、淀粉酶、TNF-α、IL-6水平以及回腸組織5-HT含量較SO組明顯增高,SAP+PCPA組上述指標較SAP組明顯下降,差異均有統計學意義(F=34.54~479.90,P<0.01);各組血清5-HT水平比較差異無顯著性(P>0.05)。見表1。
2.2 各組胰腺和腸道組織病理學比較
SO組大鼠胰腺及回腸組織未見明顯損傷;SAP組和SAP+PCPA組大鼠胰腺組織出現出血和脂肪壞死,間質水腫,小葉結構紊亂,腺泡細胞廣泛壞死,炎癥細胞浸潤。見圖1。各組大鼠胰腺和腸道損傷病理評分比較,SAP組明顯高于SO組,SAP+PCPA組顯著低于SAP組(F=207.80、33.69,P<0.01)。見表2。
2.3 各組TJ蛋白表達的比較
Western blot檢測結果顯示,SAP組回腸組織中occludin、claudin-1和ZO-1蛋白的表達較SO組顯著減少,SAP+PCPA組上述蛋白的表達較SAP組顯著升高,差異均有統計學意義(F=10.29~23.63,P<0.01)。見圖2、表3。免疫熒光染色結果顯示,與SO組相比,SAP組和SAP+PCPA組TJ蛋白表達水平明顯降低,而SAP+PCPA組TJ蛋白表達水平明顯高于SAP組,與Western blot檢測結果一致。見圖3。
3 討 "論
SAP是一種發病急、并發癥多、病死率高的急型的神經遞質,在整個腸道的生理活動中發揮著重要作用,但其在SAP引起的腸黏膜損傷中的作用機制尚未完全闡明,故本實驗利用5-HT合成抑制劑PCPA的干預對此進行了探究。
PCPA可以抑制5-HT合成反應中的限速酶色氨酸羥化酶,進而降低腸道5-HT濃度。有研究表明,腸道內源性釋放的5-HT能激活5-HT2A受體,促進胰腺炎小鼠炎癥的進展,并加重小鼠胰腺的損傷[20]。之前有研究已證明,SAP大鼠模型的炎癥在24 h內是持續進展的[19],因此本實驗選擇在SAP模型建立24 h后收集樣本進行研究。本研究結果顯示,SAP大鼠腸道組織中5-HT含量較SO組顯
著升高,證明發生SAP時腸道中的5-HT產生和釋放會明顯增加,這與之前的研究結果是相同的。本研究中SAP+PCPA組各項炎癥指標水平及腸道損傷病理評分較SAP組顯著降低,表明通過PCPA干預來減少腸道5-HT合成及釋放,會減輕炎癥的程度。同時,本研究Western blot及免疫熒光實驗結果顯示,SAP+PCPA組與SAP組相比TJ蛋白的表達水平顯著升高,說明腸道5-HT產生減少減輕了腸黏膜屏障損傷,這與在其他胃腸疾病中得到的研究結論相同[21-22]。
綜上所述,SAP發生時抑制腸道5-HT的產生可以減輕腸黏膜屏障損傷。雖然這種改善并未能逆轉腸道損傷,但我們認為這對于SAP病人安穩度過高病死率的急性反應期是有意義的。
[參考文獻]
[1]ZEREM E. Treatment of severe acute pancreatitis and its complications[J]. World Journal of Gastroenterology, 2014,20(38):13879-13892.
[2]WEN E, XIN G, SU W, et al. Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway[J]. Molecular Immunology, 2022,142:63-75.
[3]THOENI R F. The revised Atlanta classification of acute pancreatitis: its importance for the radiologist and its effect on treatment[J]. Radiology, 2012,262(3):751-764.
[4]BARON T H, DIMAIO C J, WANG A Y, et al. American gastroenterological association clinical practice update: ma-
nagement of pancreatic necrosis[J]. Gastroenterology, 2020,158(1):67-75.e1.
[5]ZHOU H J, MEI X, HE X H, et al. Severity stratification and prognostic prediction of patients with acute pancreatitis at early phase: a retrospective study[J]. Medicine, 2019,98(16):e15275.
[6]DONG X W, MAO W J, KE L, et al. The diagnosis and treatment of local complications of acute necrotizing pancreatitis in China: a national survey[J]. Gastroenterology Research and Practice, 2021,2021:6611149.
[7]BRENCHLEY J M, DOUEK D C. Microbial translocation across the GI tract[J]. Annual Review of Immunology, 2012,30:149-173.
[8]CEBRA J J. Influences of microbiota on intestinal immune system development[J]. The American Journal of Clinical Nutrition, 1999,69(5):1046S-1051S.
[9]WANG H L, LI C, JIANG Y J, et al. Effects of bacterial translocation and autophagy on acute lung injury induced by severe acute pancreatitis[J]. Gastroenterology Research and Practice, 2020,2020:8953453.
[10]NAKAJIMA T, UEDA T, TAKEYAMA Y, et al. Protective effects of vascular endothelial growth factor on intestinal epithelial apoptosis and bacterial translocation in experimental severe acute pancreatitis[J]. Pancreas, 2007,34(4):410-416.
[11]DENG W S, ZHANG J, JU H, et al. Arpin contributes to bacterial translocation and development of severe acute pancreatitis[J]. World Journal of Gastroenterology, 2015,21(14):4293-4301.
[12]HUANG L Q, ZHANG D L, HAN W L, et al. High-mobility group box-1 inhibition stabilizes intestinal permeability through tight junctions in experimental acute necrotizing pancreatitis[J]. Inflammation Research: Official Journal of the European Histamine Research Society, 2019,68(8):677-689.
[13]CAMILLERI M, MADSEN K, SPILLER R, et al. Intestinal barrier function in health and gastrointestinal disease[J]. Neurogastroenterology amp; Motility, 2012,24(6):503-512.
[14]MARTENS E C, NEUMANN M, DESAI M S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J]. Nature Reviews Microbiology, 2018,16(8):457-470.
[15]WU Y P, TANG L, WANG B K, et al. The role of autophagy in maintaining intestinal mucosal barrier[J]. Journal of Cellular Physiology, 2019,234(11):19406-19419.
[16]BUCKLEY A, TURNER J R. Cell biology of tight junction barrier regulation and mucosal disease[J]. Cold Spring Harbor Perspectives in Biology, 2018,10(1):a029314.
[17]SALVO ROMERO E, ALONSO COTONER C, PARDO CAMACHO C, et al. The intestinal barrier function and its involvement in digestive disease[J]. Revista Espanola De Enfermedades Digestivas, 2015,107(11):686-696.
[18]CAMILLERI M. Leaky gut: mechanisms, measurement and clinical implications in humans[J]. Gut, 2019,68(8):1516-1526.
[19]MA D L, JIANG P L, JIANG Y J, et al. Effects of lipid pe-
roxidation-mediated ferroptosis on severe acute pancreatitis-induced intestinal barrier injury and bacterial translocation[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:6644576.
[20]REN Z H, GUO C Y, YU S M, et al. Progress in mycotoxins affecting intestinal mucosal barrier function[J]. International Journal of Molecular Sciences, 2019,20(11):2777.
[21]CAMARA-LEMARROY C R, METZ L, MEDDINGS J B, et al. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics[J]. Brain: a Journal of Neurology, 2018,141(7):1900-1916.
[22]FUNK M C, ZHOU J, BOUTROS M. Ageing, metabolism and the intestine[J]. EMBO Reports, 2020,21(7):e50047.
[23]WANG H L, JIANG Y J, LI H B, et al. Carbachol protects the intestinal barrier in severe acute pancreatitis by regulating Cdc42/F-actin cytoskeleton[J]. Experimental and Therapeutic Medicine, 2020,20(3):2828-2837.
(本文編輯 馬偉平)
[收稿日期]2023-03-06; [修訂日期]2023-08-26
[基金項目]軍隊后勤科研重點項目(BKJ20J004)
[第一作者]魏鐘燃(1995-),男,碩士研究生。
[通信作者]杜俊杰(1968-),男,博士,主任醫師,碩士生導師。E-mail:dujunjie205@hotmail.com。