

[摘要] 目的
探討反復禁錮應激對野生型C57BL6/J小鼠內(nèi)側(cè)前額葉皮質(zhì)(mPFC)錐體神經(jīng)元突觸活動的影響。
方法 將12~20周齡雄性小鼠隨機分為對照組和禁錮組。禁錮組給予反復禁錮應激刺激,每天1 h,連續(xù)4 d。采用高架十字迷宮實驗評估小鼠的焦慮樣行為,采用全細胞膜片鉗技術記錄小鼠mPFC腦區(qū)錐體神經(jīng)元的興奮性和抑制性突觸后電流。
結(jié)果 禁錮組的小鼠焦慮樣行為明顯增加(t=3.069,Plt;0.01);mPFC腦區(qū)錐體神經(jīng)元微小興奮性突觸后電流的頻率增加(t=4.009,Plt;0.01),微小抑制性突觸后電流的幅度增加(t=2.172,Plt;0.05)。
結(jié)論 反復禁錮應激能夠增強小鼠mPFC腦區(qū)錐體神經(jīng)元的興奮性和抑制性突觸傳遞。這些mPFC腦區(qū)錐體神經(jīng)元突觸傳遞的可塑性改變可能與反復禁錮應激導致的焦慮相關行為改變密切相關。
[關鍵詞] 應激,生理學;額葉前皮質(zhì);神經(jīng)元;突觸傳遞;小鼠
[中圖分類號] R338.2
[文獻標志碼] A
[文章編號] 2096-5532(2024)05-0680-04
doi:10.11712/jms.2096-5532.2024.60.175
[網(wǎng)絡出版] https://link.cnki.net/urlid/37.1517.R.20241127.0855.004;2024-11-27 15:05:14
Effect of repeated restraint stress on synaptic activity of pyramidal neurons in the medial prefrontal cortex of mice
DU Anqi, LI Nan, WANG Sihan, YAN Zhen, SHEN Ruowu, ZHOU Yu
(Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[Abstract]Objective To investigate the effect of repeated restraint stress on synaptic activity of pyramidal neurons in the medial prefrontal cortex (mPFC) of wild-type C57BL6/J mice.
Methods Male C57BL6/J mice, aged 12-20 weeks, were randomly divided into control group and restraint group, and the mice in the restraint group were given repeated restraint stress, 1 hour per day for 4 consecutive days. The elevated plus maze test was used to evaluate the anxiety-like behaviors of mice, and whole-cell patch clamp technique was used to record the excitatory and inhibitory postsynaptic currents of pyramidal neurons in the mPFC.
Results The mice in the restraint group had a significant increase in anxiety-like behaviors (t=3.069,Plt;0.01), as well as significant increases in the frequency of miniature excitatory postsynaptic currents (t=4.009,Plt;0.01) and the amplitude of miniature inhibitory postsynaptic currentsin pyramidal neurons of the mPFC (t=2.172,Plt;0.05).
Conclusion Repeated restraint stress can enhance the excitatory and inhibitory synaptic transmission in pyramidal neurons of the mPFC, and such plasticity changes in synaptic transmission of pyramidal neurons in the mPFC may be closely associated with the changes in anxiety-related behaviors caused by repeated restraint stress.
[Key words] stress, physiological; prefrontal cortex; neurons; synaptic transmission;mice
焦慮是機體對外源性和內(nèi)源性刺激的適應性反應,但長期或反復的應激刺激可誘發(fā)一系列情感障礙性精神疾病,包括焦慮癥、抑郁癥及創(chuàng)傷后應激障礙綜合征等[1-3]。內(nèi)側(cè)前額葉皮質(zhì)(mPFC)是大腦中重要的情感調(diào)控腦區(qū)之一[4-5]。大量研究表明,mPFC與基底外側(cè)杏仁核和腹側(cè)海馬區(qū)之間存在著千絲萬縷的投射關系,這些相互聯(lián)系在調(diào)控動物的焦慮行為方面發(fā)揮重要作用[6-8]。目前,焦慮和應激誘發(fā)焦慮障礙的具體機制仍然不清楚[9-11]。有研究發(fā)現(xiàn),興奮性/抑制性神經(jīng)遞質(zhì)系統(tǒng)失衡可能引發(fā)各腦區(qū)之間功能連接異常以及突觸水平的改變,而這些改變在焦慮障礙的發(fā)生和發(fā)展中起著關鍵作用[12-14]。本研究通過反復禁錮應激建立小鼠焦慮模型,并從離體小鼠腦片上記錄mPFC腦區(qū)錐體神經(jīng)元的興奮性和抑制性突觸后電流的變化,以探討焦慮的可能突觸機制。
1 材料與方法
1.1 實驗動物
12~20周齡、體質(zhì)量24~32 g的C57BL6/J雄性小鼠,購自北京維通利華實驗動物技術有限公司。小鼠每籠4只飼養(yǎng),可自由飲水和攝食。鼠籠置于濕度為40%~60%、溫度為(21±2) ℃、12 h晝夜循環(huán)光照的動物中心。實驗開始前,小鼠需要適應實驗環(huán)境至少1周。
1.2 試劑及儀器
人工腦脊液(ACSF)、電極內(nèi)液、腦片切片液、腦片恢復液、犬尿喹啉酸、AP-5、河鲀毒素(TTX)及印防己毒素(Picrotoxin)(Tocris和Sigma公司),體積分數(shù)0.95 O2及體積分數(shù)0.05 CO2混合氣體(青島德海偉業(yè)科技有限公司),異氟烷(北京科月華誠科技有限公司)。玻璃微電極和震動切片機(美國WPI),禁錮器(河南智科弘潤環(huán)保科技有限公司),膜片鉗放大器(美國Axon700B),數(shù)模轉(zhuǎn)換器(Molecular Devices,USA),膜片鉗電動微操縱儀(美國Sutter),正置熒光顯微鏡及其成像系統(tǒng)(Olymplus),精密蠕動泵(蘇州阿爾法生物實驗器材有限公司)。
1.3 實驗方法
1.3.1 反復禁錮應激模型構建 每天禁錮小鼠1 h,
連續(xù)4 d。在禁錮前,先用異氟烷將小鼠輕微麻醉,然后將其放入禁錮器中,以確保其四肢和軀干不能自由活動。在放置過程中,將小鼠保持頭下尾上的姿勢。隨后,將禁錮器置于與地面成 45° 角的支架上。在禁錮期間,觀察小鼠的生命體征并維持其平穩(wěn)狀態(tài)。行為測試和電生理記錄在禁錮后7~12 d進行。
1.3.2 高架十字迷宮(EPM)實驗 EPM是整體距地高度40 cm的四臂呈“十”字相交的迷宮,包含2個平坦且四周無遮擋的開放臂、2個有三面包圍的閉合臂和1個四臂相交的中心區(qū)[15]。在測試過程中,先將實驗鼠置于弱光且安靜的環(huán)境中,并從中心區(qū)將其釋放進入EPM,隨后的10 min讓小鼠在迷宮中自由探索。同時,利用Noduls EthoVision XT 8.5自動分析系統(tǒng)精準采集實驗鼠在各區(qū)域內(nèi)的停留時間。
1.3.3 小鼠離體腦片的制備 實驗鼠麻醉后迅速用切片液經(jīng)心臟灌注,快速取腦后置入體積分數(shù)0.95 O2及體積分數(shù)0.05 CO2飽和的冰冷切片液中。用震動切片機制備厚度為300 μm含有mPFC的冠狀腦切片。將腦片轉(zhuǎn)入盛有恢復液的孵育缸中,在33 ℃恒溫孵育30 min,然后室溫孵育至少1 h。
1.3.4 mPFC腦片全細胞膜片鉗記錄 將孵育好的腦片轉(zhuǎn)入膜片鉗記錄槽中,利用蠕動泵以2 mL/min的流量灌流氧飽和的ACSF溶液。通過光鏡定位mPFC腦區(qū),并根據(jù)放電活動和細胞形態(tài)挑選活性較好的錐體神經(jīng)元進行記錄。為了分離興奮性和抑制性突觸后電流,將不同類型的阻斷劑加入到ACSF中。在ACSF中添加3 mmol/L Kynurenic acid以記錄抑制性突觸后電流(sIPSCs),隨后,再追加1.0 μmol/L TTX來記錄微小抑制性突觸后電流(mIPSCs)。而在記錄興奮性突觸后電流(sEPSCs)時則加入50 μmol/L Picrotoxin和50.0 μmol/L AP-5,在此基礎上再追加1.0 μmol/L TTX記錄微小興奮性突觸后電流(mEPSCs)。記錄電極電阻為 4~6 MΩ,接入電阻為10~30 MΩ。記錄時,如果串聯(lián)電阻或電池電容偏離初始值>20%,則立即停止記錄。數(shù)據(jù)收集使用pClamp10.2軟件,待電流狀態(tài)穩(wěn)定以后開始記錄,加藥采樣3~5 min,使用pClampfit10.2(Molecular Devices)取后半段60 s平穩(wěn)階段的數(shù)據(jù)進行分析。
1.4 統(tǒng)計學分析
使用IBM SPSS Statistics軟件進行數(shù)據(jù)的統(tǒng)計分析,應用Mini Analysis軟件對突觸電流的幅度及頻率進行詳細分析。計量數(shù)據(jù)以±s表示,兩組間比較采用成組t檢驗。Plt;0.05為差異有統(tǒng)計學意義。
2 結(jié) "果
2.1 反復禁錮對小鼠焦慮樣行為的影響
評價實驗鼠焦慮程度的EPM測試結(jié)果顯示,對照組和禁錮組小鼠在開放臂的活動時間分別為(38.93±20.81)、(13.77±13.10)s(n=6),與對照組相比較,禁錮組小鼠在EPM開放臂的活動時間明顯縮短,差異有統(tǒng)計學意義(t=3.069,Plt;0.01)。
2.2 反復禁錮應激對小鼠mPFC腦區(qū)錐體神經(jīng)元sEPSCs的影響
膜片鉗結(jié)果表示,與對照組相比較,禁錮組小鼠mPFC腦區(qū)錐體神經(jīng)元mEPSCs頻率增加,差異有統(tǒng)計學意義(t=4.009,Plt;0.01),但幅度保持不變(P>0.05);而禁錮組小鼠mPFC腦區(qū)錐體神經(jīng)元sEPSCs的幅度、頻率均無變化(P>0.05)。見表1。
2.3 反復禁錮應激對小鼠mPFC腦區(qū)錐體神經(jīng)元sIPSCs的影響
與對照組相比較,禁錮組小鼠mPFC腦區(qū)錐體神經(jīng)元mIPSCs幅度增加,差異有統(tǒng)計學意義(t=2.172,Plt;0.05),但頻率保持不變(P>0.05);而禁錮組小鼠mPFC腦區(qū)錐體神經(jīng)元sIPSCs頻率和幅度均不變(P>0.05)。見表2。
3 討 "論
焦慮障礙在我國的發(fā)病率極高[16-18],是一種常見的以過度擔憂和不安為特征的精神疾患。焦慮障礙的病因尚不完全清楚[19-20]。一般認為,焦慮障礙是由生物遺傳、心理和社會環(huán)境等多方面因素共同作用所致。有研究表明,應激性刺激可誘發(fā)焦慮障礙、抑郁癥、精神分裂癥等多種情感障礙性精神疾病[21-22]。反復禁錮作為一種經(jīng)典的單一性應激源,可以顯著誘發(fā)小鼠的焦慮表型[23-25]。本研究通過連續(xù)4 d反復禁錮應激刺激構建的焦慮小鼠模型已在實驗室被反復驗證,并獲得成功[26]。關于EPM行為學數(shù)據(jù)分析,目前大多數(shù)實驗分析軟件以小鼠四只爪全都進入某個臂作為完全進臂標準,也有以動物軀干中心或前爪入臂為進臂標準[27-28],這些差異與分析軟件的計算方式有關。本研究采用的軟件是以整只小鼠進入EPM的某個臂為標準,這比其他分析標準更嚴格。通過EPM行為學實驗檢測小鼠在反復禁錮4 d后的焦慮水平,結(jié)果顯示,小鼠在反復禁錮后焦慮樣行為明顯增加。
以往的研究表明,大腦內(nèi)谷氨酸受體介導的興奮性突觸傳遞和γ-氨基丁酸受體介導的抑制性突觸傳遞共同調(diào)節(jié)焦慮相關行為[29-30]。研究表明,慢性應激通過調(diào)節(jié)谷氨酸的釋放和重攝取、降低突觸α-氨基-3-羧基-5-甲基異惡唑-4-丙酸受體的可利用性、降低突觸的密度和直徑等來影響大腦皮質(zhì)的功能[31],從而導致mPFC和海馬突觸的減少與突觸重塑,并破壞焦慮行為神經(jīng)環(huán)路的穩(wěn)定性[29]。然而,本研究發(fā)現(xiàn),反復禁錮后,小鼠mPFC腦區(qū)中的錐體神經(jīng)元的抑制性和興奮性突觸傳遞都得到了增強,表現(xiàn)為mEPSCs頻率和mIPSCs幅度的增加。一般認為,頻率的改變可能與突觸前釋放概率和(或)突觸數(shù)目的變化有關[32],而幅度的改變可能與突觸后膜上的受體數(shù)量密切相關。在正常情況下,谷氨酸興奮性神經(jīng)遞質(zhì)與γ氨基丁酸抑制性神經(jīng)遞質(zhì)共同維持中樞神經(jīng)系統(tǒng)的穩(wěn)態(tài)[33-35],但在反復禁錮后興奮性/抑制性突觸傳遞失衡可能與小鼠明顯的焦慮樣行為有關,但具體機制有待進一步研究。
綜上所述,本研究結(jié)果顯示,反復禁錮應激增強了小鼠mPFC腦區(qū)錐體神經(jīng)元的興奮性和抑制性突觸傳遞,這種突觸傳遞的可塑性變化可能是導致小鼠產(chǎn)生焦慮樣行為的關鍵細胞機制。這一發(fā)現(xiàn)有助于闡明焦慮障礙的發(fā)生與應激之間的腦機制關系,并為相關精神疾病的精準治療提供可能的理論指導。
[參考文獻]
[1]RADLEY J J, HERMAN J P. Preclinical models of chronic stress: adaptation or pathology?[J]. Biological Psychiatry, 2023,94(3):194-202.
[2]CHEN Y X, YAO S Y, SHU X L, et al. Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice[J]. Behavioural Brain Research, 2023,438:114211.
[3]朱明好,蔣寧,周文霞. 不確定性空瓶飲水刺激法和束縛應激法建立小鼠焦慮模型及比較[J]. 中國藥理學與毒理學雜志, 2019,33(2):102-108.
[4]XU P, CHEN A, LI Y P, et al. Medial prefrontal cortex in neurological diseases[J]. Physiological Genomics, 2019,51(9):432-442.
[5]CAI Y Q, GE J L, PAN Z Z. The projection from dorsal me-
dial prefrontal cortex to basolateral amygdala promotes beha-
viors of negative emotion in rats[J]." Frontiers in Neuroscience, 2024,18:1331864.
[6]ZHANG W H, LIU W Z, HE Y, et al. Chronic stress causes projection-specific adaptation of amygdala neurons via small-conductance calcium-activated potassium channel downregulation[J]. Biological Psychiatry, 2019,85(10):812-828.
[7]LIU D L, ZHENG X F, HUI Y Q, et al. Lateral hypothalamus orexinergic projection to the medial prefrontal cortex modulates chronic stress-induced anhedonia but not anxiety and despair[J]." Translational Psychiatry, 2024,14(1):149.
[8]REN X, ZHAO X L, LI J W, et al. The hippocampal-ventral medial prefrontal cortex neurocircuitry involvement in the association of daily life stress with acute perceived stress and cortisol responses[J]." Psychosomatic Medicine, 2022,84(3):276-287.
[9]TOVOTE P, FADOK J P, LTHI A. Neuronal circuits for
fear and anxiety[J]. Nature Reviews Neuroscience, 2015,16(6):317-331.
[10]CALHOON G G, TYE K M. Resolving the neural circuits of anxiety[J]. Nature Neuroscience, 2015,18(10):1394-1404.
[11]ZHAO H Q, ZHOU M, LIU Y, et al. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms[J]." Animal Models and Experimental Medicine, 2023,6(6):559-572.
[12]LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety[J]. Nature Communications, 2020,11(1):2221.
[13]ZHENG Z H, TU J L, LI X H, et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala[J]. Brain, Beha-
vior, and Immunity, 2021,91:505-518.
[14]TONG X H, WU J J, SUN R Z, et al. Elevated dorsal medial prefrontal cortex to lateral habenula pathway activity mediates chronic stress-induced depressive and anxiety-like behaviors[J]." Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2024(9):49.
[15]PELLOW S, CHOPIN P, FILE S E, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat[J]. Journal of Neuroscience Methods, 1985,14(3):149-167.
[16]PAN K Y, VAN TUIJL L, BASTEN M, et al. The mediating role of health behaviors in the association between depression, anxiety and cancer incidence: an individual participant data meta-analysis[J]." Psychological Medicine, 2024:1-14.
[17]CHENG Y, FANG Y, ZHENG J X, et al. The burden of depression, anxiety and schizophrenia among the older population in ageing and aged countries: an analysis of the Global Burden of Disease Study 2019[J]." General Psychiatry, 2024,37(1):e101078.
[18]CAO H R, WU Y, YIN H, et al. Global trends in the incidence of anxiety disorders from 1990 to 2019: joinpoint and age-period-cohort analysis study[J]." JMIR Public Health and Surveillance, 2024,10:e49609.
[19]VICARIO C M, ALI SALEHINEJAD M, FELMINGHAM K, et al. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders[J]. Neuroscience amp; Biobehavioral Reviews, 2019,96:219-231.
[20]LIN J B. Editorial: The etiology and pathogenesis of affective disorders[J]." Frontiers in Psychology, 2023,14:1233256.
[21]BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020,107(2):234-256.
[22]TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression: a review[J]. The European Journal of Neuroscience, 2021,53(1):151-171.
[23]SHOJI H, MIYAKAWA T. Differential effects of stress exposure via two types of restraint apparatuses on behavior and plasma corticosterone level in inbred male BALB/cAJcl mice[J]. Neuropsychopharmacology Reports, 2020,40(1):73-84.
[24]ZHU Y Q, KLOMPARENS E A, GUO S C, et al. Neuroinflammation caused by mental stress: the effect of chronic restraint stress and acute repeated social defeat stress in mice[J]. Neurological Research, 2019,41(8):762-769.
[25]LIU W Z, WANG C Y, WANG Y, et al. Circuit- and laminar-specific regulation of medial prefrontal neurons by chronic stress[J]." Cell amp; Bioscience, 2023,13(1):90.
[26]孫曉敏,張萌,遲宜嘉,等. 禁錮應激對小鼠焦慮相關腦區(qū)c-Fos表達的影響[J]. 青島大學學報(醫(yī)學版), 2020,56(2):177-180.
[27]WALF A A, FRYE C A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents[J]. Nature Protocols, 2007, 2(2):322-328.
[28]DRINGENBERG H C, LEVINE Y, MENARD J L. Electrical stimulation of dorsal, but not ventral hippocampus reduces behavioral defense in the elevated plus maze and shock-probe burying test in rats[J]. Behavioural Brain Research, 2008,186(1):143-147.
[29]HARTMANN J, DEDIC N, PHLMANN M L, et al. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor[J]. Molecular Psychiatry, 2017, 22(3):466-475.
[30]REN Z, PRIBIAG H, JEFFERSON S J, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment[J]. Biological Psychiatry, 2016,80(6):457-468.
[31]JING X Y, WANG Y, ZOU H W, et al. mGlu2/3 receptor in the prelimbic cortex is implicated in stress resilience and vulnerability in mice[J]. European Journal of Pharmacology, 2021,906:174231.
[32]QU Y G, YANG C, REN Q, et al. Regional differences in dendritic spine density confer resilience to chronic social defeat stress[J]. Acta Neuropsychiatrica, 2018,30(2):117-122.
[33]INOTSUKA R, UDONO M, YAMATSU A, et al. Exosome-mediated activation of neuronal cells triggered by γ-aminobutyric acid (GABA)[J]. Nutrients, 2021,13(8):2544.
[34]MOUSTEN I V, SRENSEN N V, CHRISTENSEN R H B, et al. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis[J]. JAMA Psychiatry, 2022,79(6):571-581.
[35]WANG J, GAO Y, XIAO L Y, et al. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice[J]. iScience, 2023,26(8):107476.
(本文編輯 牛兆山)
[收稿日期]2022-03-02; [修訂日期]2024-04-20
[基金項目]山東省自然科學基金重大基礎研究項目(ZR20-19ZD34)
[第一作者]杜安琪(1993-),女,碩士研究生。
[通信作者]周宇(1973-),女,博士,教授,博士生導師。E-mail:
yuzhou7310@163.com。