

















摘要:非線性發(fā)展方程是現(xiàn)代數(shù)學(xué)的一重要分支,其精確解的計(jì)算一直都是非線性科學(xué)領(lǐng)域的主流與焦點(diǎn)問(wèn)題.lump解是精確解析解的一種特殊形式,以(3+1)維Hirota雙線性方程為例對(duì)此展開(kāi)研究.首先,利用Hirota雙線性方法研究其經(jīng)典lump解.其次,以雙線性神經(jīng)網(wǎng)絡(luò)方法為基礎(chǔ),借助符號(hào)計(jì)算方法,得到方程的高階lump解,主要是4階lump解的計(jì)算.最后,通過(guò)對(duì)參數(shù)賦予一些特殊值,借助Maple軟件,繪制出相關(guān)的三維圖、密度圖、相圖以及傳播圖等,得到一些新的現(xiàn)象,同時(shí)展示了所求出的解的動(dòng)力學(xué)行為.
關(guān)鍵詞:(3+1)維Hirota雙線性方程;符號(hào)計(jì)算法;雙線性神經(jīng)網(wǎng)絡(luò)方法;lump解
中圖分類(lèi)號(hào):O175.29 文獻(xiàn)標(biāo)志碼:A
Lump Solutions of (3+1) -dimensional Hirota Bilinear Equation
QIN Chun-yan, JIN Shou-bo, REN Min, LI Zhuang-zhuang
(School of Mathematics and Statistics, Suzhou University, Suzhou 234000, Anhui, China)
Abstract:Nonlinear evolution equations are an important branch of modern mathematics, and the calculation of their exact solutions has always been the mainstream and focus of nonlinear science. Lump solutions are a special form of exact analytic solutions. This paper takes (3+1)-dimensional Hirota bilinear equation as an example to study this. Firstly, the classical lump solution is studied by using Hirota bilinear method. Then, based on bilinear neural network method, with the help of symbolic calculation method, the higher order lump solution of the equation is obtained, mainly the calculation of fourth-order lump solution. By assigning some special values to the parameters, with the help of Maple software, the related three-dimensional plots, density plots, phase plots and propagation plots are drawn, and some new phenomena are obtained. At the same time, the dynamic behavior of the solution is shown.
Key words:(3+1)-dimensional Hirota bilinear equation; symbolic calculation method; bilinear neural network method; Lump solution
0 引言
非線性演化方程的精確解在孤子理論中占有重要地位,而怪波解作為精確解的一種特殊形式,在自然現(xiàn)象和科學(xué)問(wèn)題中都有出現(xiàn).作為怪波的一種,lump波解是一種有理函數(shù)解,在空間各方向上都局域化.
它出現(xiàn)在好多領(lǐng)域中,如海洋波[1]、光纖[2]、玻色-愛(ài)因斯坦凝聚體[3-4]和金融市場(chǎng)[5]等.所以對(duì)lump解的深入研究可以有效地進(jìn)一步理解非線性現(xiàn)象和非線性系統(tǒng).馬文秀[6]介紹了一種利用Hirota雙線性方法求得非線性演化方程的lump解或lump型解的新方法,這把lump的研究推向了一個(gè)嶄新的階段,也同時(shí)引起了國(guó)內(nèi)外許多學(xué)者的關(guān)注[7-10].然而,單一的lump解都是低階的有理解,很難找到高階的多l(xiāng)ump解.Clarkson和Dowie[11]推導(dǎo)了非線性薛定諤方程、Boussinesq方程和Kadomtsev-Petviashvili I方程的多l(xiāng)ump解.扎其勞[12]提出了一種新的利用符號(hào)計(jì)算方法構(gòu)造可積方程的高階lump解.目前,已經(jīng)有很多學(xué)者利用這種方法成功地構(gòu)造出一些非線性演化方程的高階lump解[13-16].
本文主要研究如下的(3+1)維Hirota雙線性方程[17]:
uyt-u3xy-3(uxuy)x-3uxx+3uzz=0.(1)
文獻(xiàn)中提到該模型是完全可積的,并且具有N孤子解.除此之外,它還可以簡(jiǎn)化為經(jīng)典的Korteweg-de Vries方程.因此,該方程和KdV方程具有相似的物理意義.2016年,基于維數(shù)約化的Hirota雙線性方程,LV X等 [18]求出該方程的lump解.此外,文獻(xiàn)[19]中作者利用Hirota方法研究了方程(1)的N孤子解、呼吸波、lump波和怪波解.董敏杰等[20]研究了該方程的孤立波,同宿呼吸波和怪波解.與此同時(shí),劉文豪等[21]利用扎其勞老師提出的新方法研究了該模型的一階、二階以及三階怪波解.
目前為止,盡管學(xué)者們對(duì)lump解的研究已經(jīng)取得了一系列成果,但據(jù)了解該方程的經(jīng)典的lump解以及高階lump解(四階)的研究文獻(xiàn)很少.因此,本文主要是基于以上工作同時(shí)結(jié)合雙線性神經(jīng)網(wǎng)絡(luò)方法[22],進(jìn)一步來(lái)討論方程(1)的經(jīng)典lump解和高階lump解.
1 經(jīng)典lump解
引入適當(dāng)?shù)妮o助變量
u=2(lnf)x,(2)
則方程(1)可以轉(zhuǎn)化為以下雙線性形式:
(DtDy-D3xDy-3D2x+3D2z)f·f=0.(3)
根據(jù)Hirota雙線性算子的相關(guān)知識(shí)可知,式(3)等價(jià)于
ffty-fyft+f3xfy-ff3xy+3fxf2xy-3f2xfxy-3(ffxx-f2x)+3(ffzz-f2z)=0.(4)
接下來(lái)使用擬解的方法,通過(guò)方程(4)來(lái)研究方程(1).假設(shè)方程(4)有以下形式的二次函數(shù)解:
f=(s1x+s2y+s3z+s4t+s5)2+(s6x+s7y+s8z+s9t+s10)2+s11,(5)
其中si(1≤i≤10)都是待定參數(shù).經(jīng)過(guò)簡(jiǎn)單的計(jì)算,得到5組解.為了簡(jiǎn)單起見(jiàn),這里只列出其中的一組,即
把公式(6)代入表達(dá)式(5),可以得到二次函數(shù)解,
由上述分析可知,(3+1)維Hirota雙線性方程的lump解可以表示成如下形式:
這個(gè)lump解含有7個(gè)參數(shù),其中s5,s10,s11為任意常數(shù).
通過(guò)選取特定的參數(shù)s1=1,s3=2,s5=1,s6=1,s8=1,s10=1,s11=1,繪制了(3+1)維Hirota雙線性方程的lump解的傳播演化圖,如圖1所示.其中:(a)為立體圖;當(dāng)z=t=0時(shí),(b)為對(duì)應(yīng)(a)的相圖;(c)為對(duì)應(yīng)(a)的沿y軸傳播形式;(d)為立體圖;當(dāng)y=t=0時(shí),(e)對(duì)應(yīng)(d)的相圖;(f)為對(duì)應(yīng)(d)的沿x軸傳播形式;
(g)立體圖;當(dāng)x=t=0時(shí),(h)對(duì)應(yīng)(g)的相圖;(k)為對(duì)應(yīng)(g)的沿z軸傳播形式.
2 高階lump解
在這一節(jié)中,選擇“4-2-4-1”的神經(jīng)網(wǎng)絡(luò)模型(如圖2所示)來(lái)求解方程(1)的高階lump解.
從圖2可以看出輸入層中的4個(gè)神經(jīng)元x,y,z,t 分別以1,a,1,-b為神經(jīng)元權(quán)重系數(shù)形成隱藏層1,而隱藏層1包含2個(gè)神經(jīng)元,分別是Y和z.接下來(lái)又由這兩個(gè)神經(jīng)元的權(quán)重系數(shù)am,l,bm,l,cm,l(m,l∈{0,2,4,6,…,n(n+1)})構(gòu)成隱藏層2,隱藏層2由4個(gè)神經(jīng)元Fn+1(Y,z),Pn(Y,z),Qn(Y,z),F(xiàn)n-1(Y,z)組成.最后以1,2αz,2βY,α2+β2為隱藏層2的權(quán)重系數(shù),求出輸出層f.
上面提到的神經(jīng)網(wǎng)絡(luò)模型表達(dá)式為
f=Fn+1(Y,z;α,β)=Fn+1(Y,z)+
2αzPn(Y,z)+2βYQn(Y,z)+(α2+β2)Fn-1(Y,z),
將式(10)和(11)代入因變量變換的式子,可以求出方程(1)的如下形式的四階lump解:
u=u0+2(lnF4Y,z;α,β)Y.
為簡(jiǎn)單起見(jiàn),這里只考慮控制中心α=β=0的情況,其他參數(shù)取值情況為u0=1,b12,0=1,c10,2=1,a=1,b=-4,繪制了(3+1)維Hirota雙線性方程的四階lump解的傳播演化圖,如圖3所示,其中(a)為立體圖;(b)為對(duì)應(yīng)(a)的密度圖;(c)為對(duì)應(yīng)(a)的相圖;(d)為對(duì)應(yīng)(a)的沿Y軸傳播形式.顯而易見(jiàn),4階lump波解具有雙波峰結(jié)構(gòu)而且在沿著Y軸傳播時(shí)出現(xiàn)4個(gè)波峰.然而,根據(jù)文獻(xiàn)[12]的結(jié)果,可以預(yù)見(jiàn)的是:如果參數(shù)α和β足夠大,那么四階lump波具有1個(gè)中心峰和7個(gè)峰.
文獻(xiàn)[21]中,作者分別繪制了1階、2階以及3階lump解的三維圖、密度圖和相圖,但是相對(duì)應(yīng)的傳播圖并沒(méi)有給出,這里
通過(guò)選取特定的三組參數(shù)u0=1,α=β=-5,a=1,b=-5;u0=1,α=β=1000,a=1,b=-5,b2,0=c2,0=1和u0=1,α=β=50000,a=1,b=-4,分別繪制出一階、二階以及三階lump解的傳播圖(圖4)
,發(fā)現(xiàn)1階lump解在沿著Y軸傳播時(shí)出現(xiàn)一個(gè)波峰,2階lump解在沿著Y軸傳播時(shí)出現(xiàn)兩個(gè)波峰,3階lump解在沿著Y軸傳播時(shí)出現(xiàn)3個(gè)波峰.
3 結(jié)語(yǔ)
本文綜合利用雙線性方法、符號(hào)計(jì)算法以及雙線性神經(jīng)網(wǎng)絡(luò)方法對(duì)(3+1)維Hirota雙線性方程展開(kāi)討論,分別得到了經(jīng)典的lump解和四階lump解.其中值得注意的是,高階lump波解具有 的性質(zhì).通過(guò)數(shù)學(xué)軟件,繪制出相關(guān)的圖像,展示了模型的動(dòng)力學(xué)行為.如果雙線性方程的每一項(xiàng)都不包含混合偏導(dǎo)數(shù),則可以利用本文所用到的方法構(gòu)造該雙線性方程的多l(xiāng)ump解.研究哪一類(lèi)雙線性方程具有多l(xiāng)ump解將是一個(gè)有趣的課題,本文中所用到的符號(hào)計(jì)算法以及雙線性神經(jīng)網(wǎng)絡(luò)方法能否適用于分?jǐn)?shù)階的以及耦合的或者薛定諤類(lèi)的方程,這將是未來(lái)要研究的問(wèn)題.
參考文獻(xiàn):
[1] GRIMSHAW R,PELINOVSKY E,TAIPOVA T,et al.Rogue internal waves in the ocean:Long wave model[J].Eur Phys J Special Topics,2010,185(1):195-208.
[2] ZUO D W,GAO Y T,XUE L,et al.Rogue waves for the generalized nonlinear Schrdinger-Maxwell-Bloch system in optical-fiber communication[J].Appl Math Lett,2015,40:78-83.
[3] HE J S,CHARALAMPIDIS E G,KEVREKIDIS P G,et al.Rogue waves in nonlinear Schrdinger models with variable coefficients:Application to Bose-Einstein condensates[J].Phys Lett A,2014,378(5-6):577-583.
[4] ZHAO L C.Dynamics of nonautonomous rogue waves in Bose-Einstein condensate[J].Ann Phys,2013,329:73-79.
[5] YAN Z Y.Vector financial rogue waves[J].Phys Lett A,2011,375(48):4274-4279.
[6] MA W X.Lump solutions to the Kadomtsev-Petviashvili equation[J].Phys Lett A,2015,379(36):1975-1978.
[7] 周小紅,鄧昌瑞.(3+1)維變系數(shù) Kadomtsev-Petviashvili方程的lump解[J].南昌大學(xué)學(xué)報(bào)(理科版),2019,43(1):19-22.
[8] 萬(wàn)亮.廣義變系數(shù)五階 Korteweg-de Vries方程的lump解[J].南昌大學(xué)學(xué)報(bào)(理科版),2019,43(6):524-527.
[9] MINZONI A A,SMYTH N F.Evolution of lump solutions for the KP equation[J].Wave Motion,1996,24(3):291-305.
[10] SATSUMA J.Two-dimensional lumps in nonlinear dispersive systems[J].J Math Phys,1979,20(7):1496-1503.
[11] CLARKSON P A,DOWIE E.Rational solutions of the Boussinesq equation and applications to rogue waves[J].Transactions of Mathematics and its App-lications,2017,1(1):1-26.
[12] ZHA Q L.A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems[J].Comput Math Appl,2018,75(9):3331-3342.
[13] 鄭彭丹,席小忠.(3+1)維Boussinesq方程的多怪波解[J].南昌大學(xué)學(xué)報(bào) (理科版),2021,45(3):224-228.
[14] 袁娜.廣義Hietarinta-type方程的多l(xiāng)ump解[J].南昌大學(xué)學(xué)報(bào) (理科版),2021,45(1):20-25.
[15] ZHAO Z L,HE L C.Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuya-ma equation[J].App Math Lett,2019,95:114-121.
[16] LIU W H,ZHANG Y F.Multiple rogue wave solutions of the (3+ 1)-dimensional Kadomtsev-Petviashvili-Boussinesq equation[J].Rangew Math Phys,2019,70:1-12.
[17] GAO L N,ZHAO X Y,ZI Y Y,et al.Resonant behavior of multiple wave solutions to a Hirota bili-near equation[J].Comput Math Appl,2016,72 (5) :1225-1229.
[18] LV X,MA W X.Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation[J].Nonlinear Dynam,2016,85 (2):1217-1222.
[19] YUE Y,HUANG L,CHEN Y.N-solitons,breathers,lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation[J].Comput Math Appl,2018,75 (7):2538-2548.
[20] DONG M J,TIAN S F,YAN X W,et al.Solitary waves,homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation[J].Comput Math Appl,2018,75 (3):957-964.
[21] LIU W H,ZHANG Y F.Multiple rogue wave solutions for a (3+ 1)-dimensional Hirota bilinear equation[J].App Math Lett,2019,98:184-190.
[22] ZHANG R F,BILIGE S D.Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon[J].Nonlinear Dynam,2019,95(4):3041-3048.
[責(zé)任編輯:趙慧霞]