










摘 要:為探索結(jié)直腸癌(CRC)相關(guān)的競(jìng)爭(zhēng)性內(nèi)源RNA(ceRNA)網(wǎng)絡(luò)調(diào)控機(jī)制,尋找治療CRC的潛在靶點(diǎn),本研究從基因表達(dá)綜合(GEO)數(shù)據(jù)庫(kù)中下載CRC相關(guān)環(huán)狀RNA(circRNA)數(shù)據(jù)集,應(yīng)用穩(wěn)健排序整合(RRA)算法、加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)篩選差異表達(dá)circRNA,采用實(shí)時(shí)熒光定量PCR(RT-qPCR)驗(yàn)證了篩選的circRNA(hsa_circRNA_057090、hsa_circRNA_092566)呈環(huán)狀,且在CRC組織、CRC細(xì)胞系中均高表達(dá)。在circBank及CircInteractome數(shù)據(jù)庫(kù)中預(yù)測(cè)與circRNA相結(jié)合的微RNA(miRNA),在TargetScan、miRDB數(shù)據(jù)庫(kù)中預(yù)測(cè)miRNA的靶基因,從癌癥基因組圖譜(TCGA)數(shù)據(jù)庫(kù)中篩選CRC差異表達(dá)mRNA,兩者取交集后得到差異表達(dá)靶基因,構(gòu)建出ceRNA調(diào)控網(wǎng)絡(luò)。應(yīng)用DAVID軟件、String數(shù)據(jù)庫(kù)、Cytoscape軟件及基因表達(dá)譜互動(dòng)分析(GEPIA)數(shù)據(jù)庫(kù)對(duì)靶基因進(jìn)行基因本體(GO)富集分析、京都基因和基因百科全書(KEGG)富集分析、蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò)(PPI)構(gòu)建及生存分析。從PPI網(wǎng)絡(luò)中篩選出10個(gè)核心基因,最終構(gòu)建出circRNA-miRNA-核心基因網(wǎng)絡(luò)。GO富集分析和KEGG富集分析顯示,核心基因主要參與化學(xué)突觸傳遞、配體門控離子通道活性等過(guò)程,且在cAMP等多個(gè)信號(hào)通路中顯著富集。生存分析顯示,2個(gè)核心基因SNAP25、ATP2B2的表達(dá)水平與CRC患者預(yù)后顯著相關(guān)。本研究鑒定的hsa_circRNA_057090、hsa_circRNA_092566及構(gòu)建的ceRNA調(diào)控網(wǎng)絡(luò)可能為CRC提供新的生物標(biāo)志物或潛在的治療靶點(diǎn)。
關(guān)鍵詞:結(jié)直腸癌;環(huán)狀RNA;競(jìng)爭(zhēng)性內(nèi)源RNA;核心基因網(wǎng)絡(luò);治療靶點(diǎn)
中圖分類號(hào):R574.6 " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)志碼:ADOI:10.3969/j.issn.1007-7146.2024.04.009
Role of ceRNA Regulatory Network in Colorectal Cancer Based
on Bioinformatics
LIU Lin, FEI Sujuan, MIAO Bei*
(Department of Gastroenterolody, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China)
Abstract: To explore the regulatory mechanisms of the competing endogenous RNA (ceRNA) network associated with colorectal cancer (CRC) and to find potential targets for CRC treatment, The CRC-related circRNA datasets were downloaded from the Gene Expression Omnibus (GEO) database, differentially expressed circRNAs were screened using the robust rank aggregation (RRA) algorithm and weighted gene co-expression network analysis (WGCNA) analysis. Real-time fluorogenic quantitative PCR (RT-qPCR) was used to verify that screened circRNAs (hsa_circRNA_057090, hsa_circRNA_092566) were circular and both highly expressed in CRC tissues and CRC cell lines. And miRNAs bound to circRNAs were predicted on the circBank and CircInteractome databases. Target genes of miRNAs were predicted on the TargetScan and miRDB databases, differentially expressed mRNAs in CRC were screened on The Cancer Genome Atlas (TCGA) databases, after intersection, differentially expressed target genes were recognized. Then, the ceRNA regulatory network was constructed. Gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, protein interaction network construction, and survival analysis were performed on target genes using DAVID software, String database, Cytoscape software, and Gene Expression Profiling Interactive Analysis (GEPIA) database, respectively. Ten core genes were identified from PPI network containing 427 mRNAs. Finally, the circRNA-miRNA-coregene network was constructed. GO enrichment analysis and KEGG enrichment analysis showed that core genes were mainly involved in chemical synaptic transmission, ion transmembrane transport and were significantly enriched in several signaling pathways, such as cAMP. Survival analysis showed that the expression levels of two core genes SNAP25, ATP2B2 were significantly correlated with the prognosis of CRC patients. The hsa_circRNA_057090, hsa_circRNA_092566 identified and ceRNA network constructed might provide novel biomarkers or potential therapeutic targets for CRC.
Key words: colorectal cancer; circRNA; ceRNA; core gene network; treatment targets
(Acta Laser Biology Sinica, 2024, 33(4): 365-376)
結(jié)直腸癌(colorectal cancer,CRC)是一種常見(jiàn)的惡性腫瘤,在全球癌癥中發(fā)病率排名第三,死亡率排名第二,嚴(yán)重威脅著我們的健康和生命[1]。除了高收入國(guó)家的人口老齡化和飲食習(xí)慣外,肥胖、缺乏體育鍛煉和吸煙等不利風(fēng)險(xiǎn)因素都會(huì)增加患CRC的風(fēng)險(xiǎn)[2]。目前,隨著腫瘤生物標(biāo)志物、結(jié)腸鏡檢查、腹腔鏡手術(shù)和放化療等技術(shù)的發(fā)展[3],CRC患者的治療選擇有所增加。然而,治療后的問(wèn)題包括復(fù)發(fā)、轉(zhuǎn)移、耐藥等都與預(yù)后不良有關(guān)[4]。因此,積極尋找CRC早期分子標(biāo)志物及潛在的治療靶點(diǎn),對(duì)提高CRC的預(yù)后有重要意義。
環(huán)狀RNA(circular RNA,circRNA)在40多年前首次被發(fā)現(xiàn),是一類內(nèi)源性非編碼RNA,沒(méi)有5'端帽和3'末端poly(A)尾[5]。其獨(dú)特的結(jié)構(gòu)使得circRNA比傳統(tǒng)的線性RNA更穩(wěn)定,更耐降解[6]。隨著高通量測(cè)序技術(shù)的最新發(fā)展,circRNA被發(fā)現(xiàn)與許多人類疾病密切相關(guān),包括癌癥、心血管疾病、自身免疫性疾病等[7-9]。作為內(nèi)源性生物分子,circRNA的表達(dá)具有普遍性、保守性、組織/細(xì)胞特異性和穩(wěn)定性,這些特征使其成為理想的生物標(biāo)志物[10]。
circRNA可通過(guò)多種方式發(fā)揮作用,如充當(dāng)微RNA(microRNA,miRNA)海綿、調(diào)節(jié)轉(zhuǎn)錄、作為circRNA-蛋白復(fù)合物的支架,翻譯成蛋白質(zhì)等[6,11-12]。根據(jù)近來(lái)的研究,circRNA中存在保守的miRNA反應(yīng)元件(miRNA response elements,MREs),其富含miRNA的結(jié)合位點(diǎn)充當(dāng)miRNA海綿,可競(jìng)爭(zhēng)性結(jié)合并抑制miRNA在3'端非翻譯區(qū)與信使RNA(messenger RNA,mRNA)的相互作用,進(jìn)而調(diào)控下游靶基因,以此作為競(jìng)爭(zhēng)性內(nèi)源RNA(competing endogenous RNA,ceRNA)在人類癌癥進(jìn)展的調(diào)控中發(fā)揮作用。例如,circRNF20可通過(guò)miR-487a調(diào)節(jié)缺氧誘導(dǎo)因子1α (hypoxia inducible factor 1 alpha,HIF-1α)和己糖激酶2(hexokinase 2,HK2)的表達(dá),促進(jìn)乳腺癌腫瘤的發(fā)生[13]。circBFAR可通過(guò)上調(diào)miR-34b-5p激活間充質(zhì)-上皮轉(zhuǎn)化因子 (mesenchymal-epithelial transition factor,MET)促進(jìn)胰腺導(dǎo)管腺癌的進(jìn)展[14]。Liu等[15]的研究證明,hsa_circ_0040809、hsa_circ_0000467可通過(guò)充當(dāng)ceRNA在CRC的進(jìn)展中發(fā)揮關(guān)鍵作用,最終構(gòu)建出包括2個(gè)circRNA(hsa_circ_0040809和hsa_circ_0000467)、3個(gè)miRNA(miR-326、miR-330-5p和miR-330-3p)和2個(gè)mRNA(FADS1和RUNX1)的ceRNA可視化網(wǎng)絡(luò)。
本研究以基因表達(dá)綜合(Gene Expression Omnibus,GEO)數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.niih.gov/geo/)、癌癥基因組圖譜(the Cancer Genome Atlas,TCGA)數(shù)據(jù)庫(kù)(https://www.cancer.gov/tcga/)為數(shù)據(jù)源,采用穩(wěn)健排序整合(robust rank aggregation,RRA)算法整合排序CRC中差異表達(dá)的circRNA,利用加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(weighted gene co-expression network analysis,WGCNA)篩選CRC中的關(guān)鍵circRNA模塊,采用實(shí)時(shí)熒光定量PCR(real-time fluorogenic quantitative PCR,RT-qPCR)驗(yàn)證目的circRNA在CRC組織及細(xì)胞系中高表達(dá),構(gòu)建相關(guān)的circRNA-miRNA-mRNA網(wǎng)絡(luò),構(gòu)建蛋白質(zhì)互作(protein-protein interaction network,PPI)網(wǎng)絡(luò),篩選出ceRNA調(diào)控網(wǎng)絡(luò)的核心基因并進(jìn)行基因本體(gene ontology,GO)富集分析、京都基因和基因百科全書(Kyoto encyclopedia of genes and genomes,KEGG)富集分析和生存分析,為CRC提供可能的新型生物標(biāo)志物或潛在的治療靶點(diǎn)。
1 材料與方法
1.1 主要儀器及試劑
CO2恒溫培養(yǎng)箱、Heraeus Megafuge 8R高速冷凍離心機(jī)均購(gòu)自Thermo公司,熒光定量 PCR儀LC960購(gòu)自Roche公司。人結(jié)直腸黏膜上皮細(xì)胞FHC及人CRC細(xì)胞系HT29、HCT116、SW480、LoVo和DLD1均購(gòu)自中國(guó)科學(xué)院細(xì)胞庫(kù)。RPMI-1640培養(yǎng)基(含雙抗)、Dulbecco改良培養(yǎng)基(Dulbecco’s modified Eagle medium,DMEM)(含雙抗)購(gòu)自江蘇凱基生物技術(shù)有限公司,胎牛血清購(gòu)自Gibco公司,Trizol試劑購(gòu)自Glpbio公司,HisScript II qRT SuperMix for qPCR試劑盒、ChamQ SYBR qPCR Master Mix均購(gòu)自南京諾唯贊生物科技有限公司,RNase R購(gòu)自武漢賽維爾生物科技有限公司。
1.2 方法
1.2.1 收集表達(dá)數(shù)據(jù)及臨床樣本
從GEO數(shù)據(jù)庫(kù)中檢索結(jié)直腸組織中circRNA表達(dá)譜的微陣列數(shù)據(jù)集。所選數(shù)據(jù)集符合以下條件:1)circRNA表達(dá)譜來(lái)源于CRC患者的癌組織和正常組織;2)每組的樣本量至少為4個(gè)。最終,4個(gè)微陣列數(shù)據(jù)集GSE121895、GSE159669、GSE126094、GSE197991入組。從癌癥基因組圖譜結(jié)腸癌(the Cancer Genome Atlas Colon Adenocarcinoma,TCGA-COAD)數(shù)據(jù)庫(kù)和癌癥基因組圖譜直腸癌(the Cancer Genome Atlas Rectum Adenocarcinoma,TCGA-READ)數(shù)據(jù)庫(kù)(https://cancergenome.nih.gov/)中獲取CRC患者的癌組織和正常組織的RNA測(cè)序數(shù)據(jù),共獲得616個(gè)CRC組織和51個(gè)相鄰正常組織的mRNA表達(dá)譜,對(duì)其進(jìn)行差異表達(dá)分析。本研究已獲得徐州醫(yī)科大學(xué)附屬醫(yī)院倫理委員會(huì)的批準(zhǔn)。遵照倫理相關(guān)規(guī)定,收集10例CRC患者(年齡范圍為30~75歲,平均年齡為63歲)的腫瘤組織和匹配的鄰近正常結(jié)直腸組織(距離腫瘤邊緣至少5 cm)。這些患者均于2021年9月至2022年9月在徐州醫(yī)科大學(xué)附屬醫(yī)院接受了常規(guī)根治性手術(shù)。
1.2.2 篩選差異表達(dá)的circRNA及mRNA
使用RobustRankAggreg包對(duì)GSE126094、GSE197991、GSE121895數(shù)據(jù)集的所有DEcircRNA進(jìn)行整合排序,使用pheatmap包生成展示RRA分析結(jié)果的熱圖。合并數(shù)據(jù)集GSE121895、GSE159669、GSE197991后,利用WGCNA包對(duì)合并數(shù)據(jù)集篩選得到的差異表達(dá)circRNA矩陣進(jìn)行分析,計(jì)算各差異circRNA之間的Person相關(guān)系數(shù),確定合適的軟閾值β并構(gòu)建無(wú)尺度網(wǎng)絡(luò),表達(dá)相似的circRNA歸為一類并建立模塊,選擇與CRC相關(guān)系數(shù)最高的模塊進(jìn)行進(jìn)一步分析。DEmRNA的篩選標(biāo)準(zhǔn):Plt;0.05且|log2(FC)|gt;2。使用ggplot2包生成展示差異表達(dá)結(jié)果的火山圖。
1.2.3 細(xì)胞培養(yǎng)
將人結(jié)直腸黏膜上皮細(xì)胞FHC培養(yǎng)于含10%胎牛血清的DMEM培養(yǎng)基(含雙抗)內(nèi),CRC細(xì)胞系HT29、HCT116、SW480、LoVo和DLD1培養(yǎng)于含10%胎牛血清、含雙抗的 RPMI-1640培養(yǎng)基內(nèi),所有細(xì)胞系均培養(yǎng)在37℃、5% CO2的加濕培養(yǎng)箱中。
1.2.4 RT-qPCR
使用Trizol試劑從CRC組織、鄰近正常組織、CRC細(xì)胞系及正常結(jié)直腸黏膜上皮細(xì)胞FHC中提取總RNA,并按說(shuō)明使用HisScript II qRT SuperMix for qPCR試劑盒逆轉(zhuǎn)錄為cDNA。選擇GADPH作為內(nèi)參,使用ChamQ SYBR qPCR Master Mix在LC960儀器中測(cè)定RNA的相對(duì)表達(dá)水平。使用的引物序列如下:hsa_circRNA_057090正向?yàn)?′-AACACCATGCCAACAGAGGT-3′;hsa_circRNA_057090反向?yàn)?′-CACAAGCATTCACTGATCCTTCA-3′;hsa_circRNA_092566正向?yàn)?′-GGAAGAAGTATCCAAGCGGAC-3′;hsa_circRNA_092566反向?yàn)?′-ATCCAAAGAGGAGGTTCGCC-3′;PDK1正向?yàn)?′-CTGTGAAGATGAGTGACCGAGGAG-3′;PDK1反向?yàn)?′-GAGGTCTCAACACGAGGTCTTGG-3′;GLCCI1正向?yàn)?5′-TGCTTCATCTCCCAAACCAAACAAC-3′;GLCCI1反向?yàn)?′-CGCCATTTCCTCAAAGACCTTCAC-3′;GAPDH正向?yàn)?′-TGACAACTTTGGTATCGTGGAAGG-3′;GAPDH反向?yàn)?′-AGGCAGGGATGATGTTCTGGAGAG-3′。采用2?△△Ct法計(jì)算2種circRNA的相對(duì)表達(dá)水平。
1.2.5 預(yù)測(cè)靶miRNA及靶mRNA
在circBank數(shù)據(jù)庫(kù)(http://www.circbank.cn/index.html)和CircIntercome數(shù)據(jù)庫(kù)(http://circInteractome.nia.nih.gov/)中預(yù)測(cè)與circRNA結(jié)合的miRNA,同時(shí)被2個(gè)數(shù)據(jù)庫(kù)預(yù)測(cè)的miRNA則被認(rèn)為是潛在的靶miRNA。在TargetScanHuman7.2(htpp://www.targetscan.org/vert 72/)和miRDB(http://mirdb.org/)2個(gè)數(shù)據(jù)庫(kù)中預(yù)測(cè)與miRNA結(jié)合的靶mRNA。
1.2.6 構(gòu)建ceRNA網(wǎng)絡(luò)
對(duì)預(yù)測(cè)的靶mRNA和由TCGA-COAD、TCGA-READ數(shù)據(jù)庫(kù)篩選的DEmRNA取交集作為構(gòu)建ceRNA調(diào)控網(wǎng)絡(luò)的候選基因,基于ceRNA理論構(gòu)建circRNA-miRNA-mRNA網(wǎng)絡(luò),ceRNA網(wǎng)絡(luò)由Cytoscape軟件(版本3.8.2)可視化。
1.2.7 GO富集分析與KEGG富集分析
利用DAVID數(shù)據(jù)庫(kù)(https://david.ncifcrf.gov/)對(duì)核心基因進(jìn)行GO功能富集分析和KEGG通路富集分析,導(dǎo)出基因富集數(shù)據(jù)至Excel表格,運(yùn)用Graphpad prism 9軟件繪制GO富集分析圖,運(yùn)用colorspace包、string包分析KEGG富集分析相關(guān)通路,Plt;0.05代表富集結(jié)果顯著。
1.2.8 核心基因生存分析
應(yīng)用基因表達(dá)譜互動(dòng)分析(Gene Expression Profiling Interactive Analysis,GEPIA)數(shù)據(jù)庫(kù)(http://gepia.cancer-pku.cn/index.html)對(duì)核心基因進(jìn)行生存分析,腫瘤類型選擇“COAD,READ”,設(shè)置cut-off值,前25%定義為高表達(dá),檢測(cè)核心基因的表達(dá)對(duì)CRC患者總生存期(overall survival,OS)的影響。
1.3 統(tǒng)計(jì)學(xué)方法
采用GraphPad Prism9軟件進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差(x±s)進(jìn)行統(tǒng)計(jì)描述;兩組比較采用獨(dú)立樣本t檢驗(yàn),使用單因素方差分析分析多組之間的差異,Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果與分析
2.1 篩選基于RRA算法的8個(gè)DEcircRNA
使用RRA算法對(duì)GSE126094、GSE197991、
GSE121895的DEcircRNA進(jìn)行整合和排序,最終選擇了包含4個(gè)上調(diào)circRNA和4個(gè)下調(diào)circRNA的前8名DEcircRNA,差異具有統(tǒng)計(jì)學(xué)意義(圖1)。
2.2 篩選基于WGCNA分析的關(guān)鍵circRNA共表達(dá)模塊
為鑒定CRC中circRNA的關(guān)鍵模塊,合并GSE121895、GSE159669、GSE197991數(shù)據(jù)集并去除批次效應(yīng),對(duì)合并數(shù)據(jù)集進(jìn)行WGCNA分析。在本研究中設(shè)置R2gt;0.85且所有circRNA的平均連接性lt;100,最終選擇9為最佳軟閾值(圖2a、2b)。使用聚類分析對(duì)12個(gè)共表達(dá)模塊進(jìn)行分類,其聚類樹狀圖見(jiàn)圖2c。各模塊與CRC之間關(guān)系的計(jì)算結(jié)果見(jiàn)圖2d。由此可以發(fā)現(xiàn),含有474個(gè)circRNA的黃綠色模塊與CRC組織具有最強(qiáng)的正相關(guān)(r=0.53,P=0.04)。此外,從圖2e中可看出,黃綠色模塊中模塊成員與基因顯著性的散點(diǎn)圖也顯示出顯著的相關(guān)性(r=0.25,P=3.5×10-8)。對(duì)黃綠色模塊中的474個(gè)circRNA與RRA算法鑒定的8個(gè)DEcircRNA取交集,最終篩選出2個(gè)circRNA(hsa_circRNA_057090,hsa_circRNA_092566)(圖2f)。
2.3 鑒定差異表達(dá)的靶mRNA
利用TCGA數(shù)據(jù)庫(kù)共篩選出2 115個(gè)在CRC中差異表達(dá)的mRNA(997個(gè)上調(diào),1 118個(gè)下調(diào))(圖3a)。利用TargetScan、miRDB數(shù)據(jù)庫(kù)預(yù)測(cè)得到4 120個(gè)miRNA的下游靶mRNA。對(duì)2 115個(gè)DEmRNA與4 120個(gè)靶mRNA取交集,最終篩選出427個(gè)在CRC中差異表達(dá)的靶mRNA(圖3b)。
2.4 2種circRNA的基本特征
2種circRNA的詳細(xì)信息在表1中。為驗(yàn)證hsa_circRNA_057090、hsa_circRNA_092566的差異表達(dá),本研究在CRC組織、鄰近正常組織及CRC細(xì)胞系、正常結(jié)直腸黏膜上皮細(xì)胞中檢測(cè)了2種circRNA的相對(duì)表達(dá)水平。結(jié)果顯示,在CRC組織及CRC細(xì)胞系中,hsa_circRNA_057090、hsa_circRNA_092566均表達(dá)上調(diào),結(jié)果具有統(tǒng)計(jì)學(xué)意義(圖4)。為驗(yàn)證hsa_circRNA_057090、hsa_circRNA_092566呈環(huán)狀,選擇HCT116細(xì)胞系,使用RNase R處理2種circRNA及其宿主基因,并進(jìn)行RT-qPCR檢測(cè)其相對(duì)表達(dá)水平。圖5結(jié)果顯示,與RNase R(-)組相比,RNase R(+)組的2種mRNA表達(dá)水平顯著降低,但hsa_circRNA_057090、hsa_circRNA_092566的表達(dá)水平差異無(wú)統(tǒng)計(jì)學(xué)意義,表明這2種circRNA是存在的。
2.5 構(gòu)建ceRNA初級(jí)調(diào)控網(wǎng)絡(luò)
RT-qPCR結(jié)果顯示,hsa_circRNA_057090、hsa_circRNA_092566在CRC組織及CRC細(xì)胞系中均高表達(dá),可以進(jìn)行進(jìn)一步分析。在circBank和CircInteractome數(shù)據(jù)庫(kù)中預(yù)測(cè)hsa_circRNA_057090、hsa_circRNA_092566的靶miRNA,取交集后獲得10個(gè)靶miRNA。然后,從TargetScan和miRDB數(shù)據(jù)庫(kù)中預(yù)測(cè)這10個(gè)miRNA的靶mRNA。同時(shí),基于TCGA數(shù)據(jù)庫(kù)在CRC中篩選出2 115個(gè)DEmRNA,再合并由數(shù)據(jù)庫(kù)預(yù)測(cè)的靶mRNA,最終得到427個(gè)可能在CRC發(fā)生中起關(guān)鍵作用的mRNA。最后,基于上述circRNA-miRNA和miRNA-mRNA構(gòu)建出包含2個(gè)circRNA、10個(gè)miRNA和427個(gè)mRNA的ceRNA初級(jí)調(diào)控網(wǎng)絡(luò)(圖6)。
2.6 篩選核心基因并重建ceRNA網(wǎng)絡(luò)
在String數(shù)據(jù)庫(kù)中查詢427個(gè)靶基因的蛋白質(zhì)互作關(guān)系并構(gòu)建PPI網(wǎng)絡(luò)。去除斷開連接的節(jié)點(diǎn)后,PPI網(wǎng)絡(luò)中共保留了158個(gè)節(jié)點(diǎn)和280條邊緣,結(jié)果由Cytoscape軟件可視化(圖7a)。為找出PPI網(wǎng)絡(luò)中的核心基因,應(yīng)用Cytoscape軟件中的cytoHubba插件篩選出排名前10的基因并鑒定為PPI網(wǎng)絡(luò)中的核心基因(圖7b):GRIA2、SNAP25、SYT4、PRKACB、CA10、ATP2B2、GABRG2、GRIN2A、DLG2、CAMK2A。構(gòu)建核心基因相互作用的子網(wǎng)絡(luò),紅色表示連接度高,黃色表示連接度低,顏色由紅變黃表示相互作用減弱。最后,重新構(gòu)建出由2個(gè)circRNA(hsa_circRNA_057090和hsa_circRNA_092566)、6個(gè)miRNA(hsa-miR-1294、hsa-miR-574-5p、hsa-miR-599、hsa-miR-1278、hsa-miR-548k和hsa-miR-643)和10個(gè)核心基因(GRIA2、SNAP25、SYT4、PRKACB、CA10、ATP2B2、GABRG2、GRIN2A、DLG2、CAMK2A)組成的circRNA-miRNA-coregene調(diào)控網(wǎng)絡(luò)(圖7c)。
2.7 GO富集分析和KEGG富集分析
通過(guò)DAVID數(shù)據(jù)庫(kù)對(duì)上述10個(gè)核心基因進(jìn)行GO和KEGG富集分析。GO分析結(jié)果顯示,生物過(guò)程(biological process,BP)注釋中,核心基因主要參與化學(xué)突觸傳遞、離子跨膜轉(zhuǎn)運(yùn)、谷氨酸受體信號(hào)通路等。細(xì)胞成分(cellular component,CC)注釋中,核心基因最主要的細(xì)胞定位是細(xì)胞質(zhì)膜。分子功能(molecular function,MF)注釋中,核心基因主要參與配體門控離子通道活性、谷氨酸受體結(jié)合、β-淀粉樣蛋白結(jié)合等(圖8)。KEGG分析結(jié)果顯示,核心基因主要富集在cAMP信號(hào)通路、晝夜節(jié)律、多巴胺能神經(jīng)突觸、鈣信號(hào)通路、胰島素分泌、醛固酮合成與分泌等(圖9)。
2.8 核心基因生存分析
用GEPIA數(shù)據(jù)庫(kù)查詢核心基因與CRC患者預(yù)后的關(guān)系,結(jié)果顯示,SNAP25、ATP2B2基因高表達(dá)的CRC患者的OS明顯低于低表達(dá)患者,差異有統(tǒng)計(jì)學(xué)意義,其他8個(gè)基因?qū)RC患者OS的影響不顯著(圖10)。
3 討論
CRC是一種預(yù)后不良的高度惡性癌癥,具有難治療、易轉(zhuǎn)移以及易復(fù)發(fā)等臨床特點(diǎn)[2]。CRC的常規(guī)治療選擇,如手術(shù)治療、化療和放療,無(wú)法滿足對(duì)總生存期和無(wú)進(jìn)展生存期不斷增長(zhǎng)的需求,其高發(fā)病率和死亡率對(duì)人類健康構(gòu)成了巨大的威脅。因此,鑒定特異、高效的生物標(biāo)志物及潛在的治療靶點(diǎn)具有重要意義。越來(lái)越多的證據(jù)表明,circRNA在人類疾病尤其是癌癥中起著至關(guān)重要的作用[16]。circRNA表達(dá)失調(diào)可能導(dǎo)致腫瘤進(jìn)行性、不受控制地生長(zhǎng)和轉(zhuǎn)移[17]。本研究以circRNA為研究對(duì)象,旨在通過(guò)全面的生物信息學(xué)分析識(shí)別CRC相關(guān)的DEcircRNA,并研究其可能的調(diào)控網(wǎng)絡(luò)。
本研究利用RRA算法和WGCNA分析對(duì)數(shù)據(jù)集GSE121895、GSE159669、GSE126094、GSE197991進(jìn)行分析,篩選出2個(gè)circRNA:hsa_circRNA_057090、hsa_circRNA_092566。驗(yàn)證2個(gè)circRNA呈環(huán)狀并在CRC細(xì)胞系中高表達(dá)后,進(jìn)一步預(yù)測(cè)出與之相結(jié)合的miRNA及下游靶基因,并構(gòu)建ceRNA網(wǎng)絡(luò)圖。基于ceRNA調(diào)控網(wǎng)絡(luò)中的mRNA構(gòu)建PPI,從PPI網(wǎng)絡(luò)中篩選出10個(gè)核心基因:GRIA2、SNAP25、SYT4、PRKACB、CA10、ATP2B2、GABRG2、GRIN2A、DLG2、CAMK2A。
對(duì)核心基因進(jìn)行GO和KEGG富集分析。GO富集分析顯示,核心基因在化學(xué)突觸傳遞、配體門控離子通道活性等功能中存在富集。研究表明,配體門控離子通道參與多種腫瘤的進(jìn)展和癥狀,可作為癌癥治療的潛在靶向系統(tǒng)[18]。此外,KEGG富集分析顯示,核心基因在cAMP信號(hào)通路、晝夜節(jié)律等與腫瘤發(fā)生密切相關(guān)的通路中明顯富集。
生存分析提示,核心基因SNAP25、ATP2B2對(duì)CRC患者的OS有影響。其中,SNAP25是SNARE家族的成員,其在神經(jīng)遞質(zhì)釋放、突觸、分泌囊泡的胞吐、細(xì)胞間信號(hào)傳導(dǎo)和離子通道的調(diào)節(jié)中至關(guān)重要[19-21]。已有報(bào)道提示,SNAP25與多種癌癥的預(yù)后相關(guān),如膠質(zhì)瘤[22]、胃癌[23]、胰腺癌[24]等。最近的一項(xiàng)研究表明,SNAP25是一種微環(huán)境相關(guān)基因,可預(yù)測(cè)CRC的不良結(jié)果。基因集富集分析(gene set enrichment analysis,GSEA)結(jié)果表明其參與了多種腫瘤相關(guān)過(guò)程,包括黏附連接、鈣信號(hào)通路、細(xì)胞因子受體相互作用、ECM受體相互作用、JAK-STAT信號(hào)通路、MAPK信號(hào)通路等。此外,SNAP25還參與免疫和代謝過(guò)程,如B細(xì)胞受體信號(hào)通路、細(xì)胞黏附分子、趨化因子信號(hào)通路等。這些可能會(huì)為SNAP25在CRC中的潛在機(jī)制帶來(lái)新的見(jiàn)解[25]。ATP2B2基因編碼PCMA2蛋白,該蛋白是質(zhì)膜Ca2+-ATP酶(plasma membrane Ca2+-ATPase,PMCA)的組成部分之一。據(jù)Watson等[26]報(bào)道,PMCA可通過(guò)調(diào)控鈣信號(hào)通路在細(xì)胞死亡和存活中發(fā)揮重要的作用。維持PMCA活性或PMCA過(guò)表達(dá)通常被視為對(duì)細(xì)胞具有保護(hù)作用,但減弱Ca2+介導(dǎo)的細(xì)胞死亡也可能導(dǎo)致細(xì)胞凋亡抵抗,而這正是癌癥的主要標(biāo)志[27]。
盡管其他8個(gè)核心基因在GEPIA數(shù)據(jù)庫(kù)中顯示對(duì)CRC患者OS的影響不顯著,但已有研究表明,這些基因在CRC的預(yù)測(cè)、發(fā)生發(fā)展以及對(duì)化療藥物產(chǎn)生耐藥性等方面起著重要作用。據(jù)Hatano等[28]報(bào)道,REST被確定為大腸癌發(fā)生的候選抑癌基因,SYT4作為REST的靶向基因可能參與CRC的發(fā)生發(fā)展。據(jù)Lebedeva等[29]報(bào)道,PRKACB可通過(guò)靶向MAPK信號(hào)轉(zhuǎn)導(dǎo)通路增加CRC對(duì)伊立替康的耐藥性。同時(shí),有研究表明,GABRG2的表達(dá)水平對(duì)CRC的發(fā)生具有較高的預(yù)測(cè)價(jià)值[30]。Palaniappan等[31]的研究表明,GRIN2A是結(jié)腸腺癌Ⅱ期進(jìn)展的新型驅(qū)動(dòng)基因。此外,Li等[32]研究發(fā)現(xiàn),DLG2可作為circ0106714/miR‐942‐5p的靶mRNA,通過(guò)促進(jìn)YAP磷酸化抑制CRC的進(jìn)展。Chen等[33]的研究則揭示了CAMK2A可通過(guò)ERK1/2和p38途徑參與調(diào)控結(jié)腸癌的增殖和遷移。
綜上所述,本研究首次發(fā)現(xiàn)了可能與CRC發(fā)生密切相關(guān)的circRNA(hsa_circRNA_057090、hsa_circRNA_092566),并確定了核心基因,建立了circRNA-miRNA-mRNA的ceRNA調(diào)控網(wǎng)絡(luò),拓展了circRNA通過(guò)ceRNA網(wǎng)絡(luò)調(diào)控CRC發(fā)生發(fā)展的分子機(jī)制,為尋找CRC潛在的circRNA生物標(biāo)志物及治療靶點(diǎn)提供了一定的研究依據(jù)。然而,鑒于本研究中ceRNA網(wǎng)絡(luò)是基于生物信息學(xué)分析構(gòu)建的,結(jié)果缺乏循證醫(yī)學(xué)證據(jù),故后續(xù)也需要通過(guò)細(xì)胞和動(dòng)物試驗(yàn)進(jìn)行進(jìn)一步驗(yàn)證。
參考文獻(xiàn)(References):
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.
[3] BUCCAFUSCA G, PROSERPIO I, TRALONGO A C, et al. Early colorectal cancer: diagnosis, treatment and survivorship care[J]. Critical Reviews in Oncology Hematology, 2019, 136: 20-30.
[4] CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA: A Cancer Journal for Clinicians, 2022, 72(4): 372-401.
[5] AUFIERO S, VAN DEN HOOGENHOF M M G, RECKMAN Y J, et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons[J]. RNA, 2018, 24(6): 815-827.
[6] ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Molecular Cancer, 2020, 19(1): 172.
[7] CHEN L, SHAN G. CircRNA in cancer: fundamental mechanism and clinical potential[J]. Cancer Letters, 2021, 505: 49-57.
[8] JU J, SONG Y N, CHEN X Z, et al. CircRNA is a potential target for cardiovascular diseases treatment[J]. Molecular and Cellular Biochemistry, 2022, 477(2): 417-430.
[9] ZHOU Z, SUN B, HUANG S, et al. Roles of circular RNAs in immune regulation and autoimmune diseases[J]. Cell Death and Disease, 2019, 10(7): 503.
[10] ZHANG Q, WANG W, ZHOU Q, et al. Roles of circRNAs in the tumour microenvironment[J]. Molecular Cancer, 2020, 19(1): 14.
[11] CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Molecular Cell Biology, 2020, 21(8): 475-490.
[12] SHI Y, JIA X, XU J. The new function of circRNA: translation[J]. Clinical and Translational Oncology, 2020, 22(12): 2162-2169.
[13] CAO L, WANG M, DONG Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1alpha/HK2[J]. Cell Death and Disease, 2020, 11(2): 145.
[14] GUO X, ZHOU Q, SU D, et al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis[J]. Molecular Cancer, 2020, 19(1): 83.
[15] LIU J, CHEN S, LI Z, et al. Hsa_circ_0040809 and hsa_circ_0000467 promote colorectal cancer cells progression and construction of a circRNA-miRNA-mRNA network [J]. Front Genet, 2022, 13: 993727.
[16] MENG S, ZHOU H, FENG Z, et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J]. Molecular Cancer, 2017, 16(1): 94.
[17] YIN Y, LONG J, HE Q, et al. Emerging roles of circRNA in formation and progression of cancer[J]. Journal of Cancer, 2019, 10(21): 5015-5021.
[18] RAO R, SHAH S, BHATTACHARYA D, et al. Ligand-gated ion channels as targets for treatment and management of cancers[J]. Frontiers in Physiology, 2022, 13: 839437.
[19] BAKER R W, HUGHSON F M. Chaperoning SNARE assembly and disassembly[J]. Nature Reviews Molecular Cell Biology, 2016, 17(8): 465-479.
[20] WANG T, LI L, HONG W. SNARE proteins in membrane trafficking[J]. Traffic, 2017, 18(12): 767-775.
[21] YOON T Y, MUNSON M. SNARE complex assembly and disassembly[J]. Current Biology, 2018, 28(8): 397-401.
[22] HUANG Q, LIAN C, DONG Y, et al. SNAP25 inhibits glioma progression by regulating synapse plasticity via GLS-mediated glutaminolysis[J]. Frontiers in Oncology, 2021, 11: 698835.
[23] RABBEN H L, ANDERSEN G T, OLSEN M K, et al. Neural signaling modulates metabolism of gastric cancer[J]. International Journal of Molecular Sciences, 2021, 24(2): 102091.
[24] SUN H, ZHANG W, CHU Y, et al. Prognostic evaluation of pancreatic cancer based on the model of chemo-radiotherapy resistance-related genes[J]. Journal of Gastrointestinal Oncology, 2023, 14(3): 1525-1545.
[25] ZOU J, DUAN D, YU C, et al. Mining the potential prognostic value of synaptosomal-associated protein 25 (SNAP25) in colon cancer based on stromal-immune score[J]. PeerJ, 2020, 8: e10142 .
[26] WATSON C J, TEMPEL B L. A new Atp2b2 deafwaddler allele, dfwi5, interacts strongly with Cdh23 and other auditory modifiers[J]. Hearing Research, 2013, 304: 41-48.
[27] BRUCE J I E. Metabolic regulation of the PMCA: role in cell death and survival[J]. Cell Calcium, 2018, 69: 28-36.
[28] HATANO Y, YAMADA Y, HATA K, et al. Genetic ablation of a candidate tumor suppressor gene, rest, does not promote mouse colon carcinogenesis[J]. Cancer Science, 2011, 102(9): 1659-1664.
[29] LEBEDEVA I V, MAKONDI P T, CHU C M, et al. Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer[J]. PLoS One, 2017, 12(7): e0180616.
[30] YAN L, GONG Y Z, SHAO M N, et al. Distinct diagnostic and prognostic values of γ?aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma[J]. Oncology Letters, 2020, 20(1): 275-291.
[31] PALANIAPPAN A, RAMAR K, RAMALINGAM S. Computational identification of novel stage-specific biomarkers in colorectal cancer progression[J]. PLoS One, 2016, 11(5): e0156665.
[32] LI S, YAN G, LIU W, et al. Circ0106714 inhibits tumorigenesis of colorectal cancer by sponging miR-942-5p and releasing DLG2 via Hippo-YAP signaling[J]. Molecular Carcinogenesis, 2020, 59(12): 1323-1342.
[33] CHEN W, AN P, QUAN X J, et al. Ca2+/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways[J]. World Journal of Gastroenterology, 2017, 23(33): 6111-6118.