999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于生成對抗網絡的車載網絡入侵檢測系統

2024-01-10 06:59:04王理冬
關鍵詞:檢測模型

王理冬

(1.安徽省電子產品監督檢驗所,安徽 合肥 230061;2.安徽省信息安全測評中心,安徽 合肥 230061)

0 引言

近年來,隨著車聯網技術的飛速發展,現代汽車已經由傳統的人工控制向網絡控制的方向邁進。車聯網的概念源自物聯網,即車輛物聯網,在這種模式下,車輛充當了信息感知對象的角色,借助新一代的信息通信技術,實現了車輛內部設備之間、車輛與車輛、車輛與人以及車輛與平臺之間的網絡連接。文中討論的車載網絡,指由車載控制單元組成的局域通信網絡,主要用于車內網絡。

針對車載網絡,大量的學者進行了研究,涉及了如車載網絡通信[1]、車輛隱私保護[2]等方面。然而,隨著車載網絡的連接性和可及性不斷地提高,導致目前車載網絡的受攻擊面越來越廣,網絡數據可以通過多種途徑進入車載網絡內部,因此車輛會面臨大量外來數據入侵的威脅。如果缺乏基本的安全措施,網絡攻擊者能輕易地對這些車載網絡發起攻擊并導致系統崩潰。為車載網絡提供保護已成為目前亟待解決的問題。

1 背景介紹

生成對抗網絡是一種深度學習模型,由生成器和判別器兩個組件組成,在實際的應用中,生成器和判別器可以有多個。生成對抗網絡的目標在于通過訓練生成器和判別器之間的對抗博弈來生成具有逼真度的數據樣本[3]。

首先,生成器通過神經網絡模型學習真實數據的分布,生成虛假數據;然后判別器學習真數據和假數據的分布,對數據進行判別,并將反饋傳遞給生成器,激勵生成器生成的數據更接近真實數據。生成對抗網絡的核心思想是通過兩個相互對抗的模型之間的競爭,交替訓練生成器和判別器,逐漸提升生成器生成樣本的逼真度,使其盡可能地與真實數據相似,同時讓判別器更加準確地區分真假樣本。

車載網絡是汽車內部傳感器、控制器和執行器之間進行點對點信號傳遞從而形成復雜的網狀結構。控制器區域網(Controller Area Network,CAN)總線作為車載網絡中的標準總線,被廣泛用于車載網絡的通信,支持所有電子控制單元(Electronic Control Unit,ECU)之間的高效通信。

入侵檢測系統(Intrusion Detection System,IDS)用于對網絡上的數據流進行收集,并分析其中的信息,以檢測網絡中是否存在違背安全策略和進行攻擊的流量,為系統提供實時有效的保護。它可以實時監控車內系統,實時檢測ECU 產生的可疑網絡事件[4]。當前IDS 已經成為許多專家學者研究的熱點。Song 等人提出了一種基于CAN 數據時間間隔分析的檢測模型,Lee 等人提出了一種通過監測CAN 數據的請求和響應的時間間隔來檢測入侵的方法。

2 系統總體方案設計

本系統可應用于容易受到攻擊的車載網絡中,對車載網絡接收的流量進行分析,識別出惡意流量。由于本系統部署在輕量級的設備上,所占用的車內體積極小,也可以直接集成在資源有所剩余的車載網絡當中,從而大大節省車輛空間和成本。

CAN 總線支持電子控制單元之間的通信。在CAN 總線中,消息頻繁傳輸,CAN 總線每秒大約接受2000 個CAN 數據,入侵檢測系統必須能夠處理由電子控制單元生成的大量實時CAN 數據。因此,將連續27 個CAN 數據合成一張彩色圖,用于快速檢測數據。

首先,把正常的數據和惡意的數據一起放入判別器D1 進行判別,以區分惡意數據和正常數據,然后把隨機的數據放入生成器中,生成假的數據,判別器D2 只接收正常的數據和生成的數據。通過不斷的訓練,可以得到性能良好的判別器,以用于車載網絡的攻擊檢測。其框架流程如圖1 所示。

圖1 框架流程圖

本系統還融入了深度學習技術。GAN 是一種深度學習模型,通常被用來生成與真實圖像相似的假圖像,將其應用于設計IDS。對車載網絡的攻擊檢測過程如圖2 所示。

圖2 檢測過程圖

其中,判別器D1 的輸入是CAN 數據,用來檢測已知攻擊,若輸出結果小于閾值則認為存在已知的惡意數據;若輸出結果不小于閾值,則放入判別器D2 中檢測未知攻擊,如果判別器D2 的輸出結果小于閾值,則認為存在未知的惡意數據,不小于閾值則認為數據正常。一般將判別器D1 和判別器D2的閾值定義為0.1。

3 實現技術

原始數據集選用韓國HCRL 實驗室的Car-Hacking 數據集,其中既包含文本文件,也包含表格文本。為了方便觀察,統一把文本文件轉換成表格文件,在對表格文件觀察時,發現數據中存在一些“臟數據”,即一些十六進制數據位置發生了移位,同時,還有一些數據存在空值,通過使用python中的pandas 擴展程序庫,對數據位置異常的原始樣本進行歸位,但有些數據中某幾項為空值,從而導致了數據的格式異常,刪除格式異常的數據樣本。形成如表1 所示的干凈數據集。

表1 干凈數據集

其中,Label 為0,代表的是正常的數據;Label為1,代表的是每分鐘轉數(RPM)欺騙攻擊;Label為2,代表的是齒輪(Gear)欺騙攻擊;Label 為3,代表的是拒絕服務(Dos)攻擊;Label 為4,代表的是模糊(Fuzzy)攻擊。

每分鐘轉數欺騙攻擊是通過干擾車輛的車速傳感器和控制系統來誤導或欺騙車輛的計算機系統,使其錯誤地顯示或記錄轉速信息。齒輪欺騙攻擊是通過欺騙車輛或機械設備的傳動系統,誤導其顯示或傳輸錯誤的齒輪信息。拒絕服務攻擊是通過不斷向目標服務器或網絡發送大量請求或惡意數據流量,耗盡其資源,導致系統過載或崩潰,從而使合法用戶無法訪問該系統或網絡。模糊攻擊通常用于發現軟件或系統中潛在的漏洞和錯誤。

由于卷積神經網絡在圖像分類上具有突出的優勢,因此把原始數據集轉化為圖像數據,利用卷積神經網絡進行數據處理。首先,將表1 中ID 和Data 數據(D0~D7)轉換成9 個重要特征,然后把重要特征中的十六進制數據轉換為十進制數據,最后對數據進行歸一化,結果如表2 所示。

表2 歸一化后的數據集

數據歸一化后,根據干凈數據集中的Timestamp(時間戳)和特征大小,將數據樣本轉換為塊狀。由于歸一化后的數據有9 個重要的特征,為了將數據樣本轉換為塊狀數據,就選取27 個連續時間戳的樣本(27×9=9×9×3),轉換成形狀大小為9×9×3 的方形彩色圖像。因此,每個轉換后的圖像是一個具有三通道(紅、綠、藍)的方形彩色圖像。由于這些彩色圖像是根據連續的時間戳生成的數據樣本,因此能夠保留數據的時序完整性。

在把CSV 文件進行處理并轉換成RGB 圖像后,下一步將對生成對抗網絡進行設計和訓練。判別器由三層的卷積神經網絡組成,生成器由五層的反卷積神經網絡組成,將圖片數據通過反卷積減少通道數、擴展維數,使得與判別器的輸入數據大小相同,從而形成一幅圖像。生成器和判別器通過反向傳播計算損失,從而減少模型實際值和輸出之間的誤差。

判別器D1 接收從車輛中提取的正常CAN 圖像和異常CAN 圖像。判別器D1 在訓練過程中使用了已知的攻擊數據,所以只能對已知的攻擊進行檢測。生成器和判別器D2 通過一個對抗博弈的過程進行訓練,生成器通過使用隨機噪聲來生成假圖像,判別器D2 接收正常的CAN 圖像和生成器生成的圖像,并計算接收到的圖像是真實CAN 圖像的概率。也就是說,判別器D2 鑒別輸入的圖像是真實的CAN 圖像還是由生成器生成的假圖像。生成器和判別器D2 相互競爭,提高了它們的性能。在訓練的過程中,判別器D2 最終取勝,因此判別器D2 可以檢測到與真實CAN 圖像相似的假圖像。

4 實驗結果

由于數據集中存在攻擊數據和正常數據,因此對公式中相關符號的定義如表3 所示。

表3 相關符號的定義

對準確率、精準度和召回率的具體計算方法作如下定義。

公式(1)中Accuracy 是模型的準確率,如果模型能把攻擊流量和正常流量準確識別,那么模型準確率為100%。

公式(2)中Precison 是模型的精準度,如果模型不把正常流量識別為攻擊流量,那么模型的精準度為100%。

公式(3)中Recall 是模型的召回率,如果模型能識別所有的攻擊流量,那么模型的召回率為100%。

首先,我們測試了判別器D1 的性能。根據表4 中判別器D1 對每個已知攻擊的精準度分析,判別器D1對使用的攻擊數據表現出了很好的檢測能力。然而,實驗結果也表明,未用于訓練的攻擊數據很難被判別器D1 檢測出來,例如“Fuzzy”行與“RPM精準度”列交叉處代表的是用Fuzzy數據訓練的判別器D1 對RPM攻擊檢測的精準度為32.6%。因此,我們使用正常數據和生成的數據訓練了判別器D2。這樣,判別器D2將能夠更好地應對未知攻擊數據的檢測需求。

表4 判別器D1 的性能

其次,我們通過準確率、精準度和召回率對判別器D2 進行性能評估。評估情況如表5 所示。

表5 判別器D2 的性能

判別器D2 在訓練過程中沒有使用任何攻擊數據。實驗結果表明,判別器D2 對四種攻擊的平均準確率為98%。雖然精準度低于99%,但我們可以通過將判別器D2 與使用攻擊數據進行訓練的判別器D1 相結合,來提高模型的精準度。

5 結束語

當前的研究與實踐中,將生成對抗網絡應用于入侵檢測系統的方法并不多見,文章提出的技術路線,為構建入侵檢測系統提供了新的思路。考慮到車載網絡的實際情況,我們選擇在資源量較少的樹莓派中運行,以更好地符合實際工況。在某些特殊情況下,也可以直接把體積較小的樹莓派植入汽車系統,集成在車載網絡中,以確保入侵檢測系統的有效部署。

猜你喜歡
檢測模型
一半模型
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 久草视频一区| 精品国产免费第一区二区三区日韩| 看国产一级毛片| 99这里只有精品6| 无码日韩人妻精品久久蜜桃| 高清无码手机在线观看| 久久免费精品琪琪| 国产簧片免费在线播放| 日本少妇又色又爽又高潮| 伊人婷婷色香五月综合缴缴情 | 午夜无码一区二区三区| 久久精品嫩草研究院| 国产精品99在线观看| 亚洲国产成熟视频在线多多| 在线观看亚洲精品福利片| 亚洲系列中文字幕一区二区| 日韩av无码精品专区| 九色在线视频导航91| 中文字幕无码电影| 国产成人精品一区二区免费看京| 漂亮人妻被中出中文字幕久久| 国产小视频a在线观看| 亚洲成人黄色在线观看| 国禁国产you女视频网站| 久久久久亚洲av成人网人人软件| 99re66精品视频在线观看| 亚洲黄网视频| 精品国产www| 亚洲免费成人网| 日韩一级毛一欧美一国产| 亚洲欧美综合另类图片小说区| 亚洲欧美日韩成人在线| 国产精品久久久久久影院| 亚洲AⅤ永久无码精品毛片| 久久天天躁狠狠躁夜夜2020一| 欧美亚洲国产一区| 大香伊人久久| 日韩精品一区二区三区大桥未久 | 亚洲熟女偷拍| 天堂成人av| 亚洲综合国产一区二区三区| 国产欧美日韩18| av一区二区三区高清久久| 五月丁香在线视频| 亚洲视频免费在线| 国产成人综合在线视频| 亚洲妓女综合网995久久| 九色91在线视频| 成人午夜亚洲影视在线观看| 欧美日韩91| 久久成人国产精品免费软件| 国产成人乱码一区二区三区在线| 国产成人综合亚洲欧美在| 国产成年女人特黄特色毛片免| 久久久亚洲国产美女国产盗摄| 亚洲天堂网2014| 一区二区三区毛片无码| 国产精品熟女亚洲AV麻豆| 午夜啪啪网| 嫩草在线视频| 亚洲欧美激情另类| 国产麻豆精品在线观看| 亚洲最大情网站在线观看| 国产成人高精品免费视频| 中文字幕亚洲另类天堂| 亚洲色婷婷一区二区| 欧美亚洲一区二区三区在线| 亚洲视频四区| 成人伊人色一区二区三区| 亚洲精品777| 亚洲欧洲一区二区三区| 日本福利视频网站| 性69交片免费看| 亚洲黄色成人| 国产欧美日韩资源在线观看 | 日本伊人色综合网| 伊人久综合| 色婷婷综合激情视频免费看| 伊人天堂网| 被公侵犯人妻少妇一区二区三区| 在线日韩日本国产亚洲| 欧美a√在线|