999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高溫作用下植筋套筒拉拔性能的有限元分析

2024-01-11 07:41:48孟曉陽唐興榮
常州工學院學報 2023年6期
關鍵詞:承載力有限元

孟曉陽,唐興榮

(蘇州科技大學土木工程學院,江蘇 蘇州 215011)

0 引言

植筋技術廣泛應用于建筑結構的加固改造領域,國內外學者對常溫下植筋錨固性能進行了較為完整的試驗研究和理論分析[1-11],已得到大量常溫下植筋錨固性能的研究成果,促進了后植筋錨固技術的廣泛應用。在實際工程中,植筋錨固構件也可能會受到火災(高溫)等的影響,高溫時植筋膠的黏結性能會明顯降低,導致植筋錨固性能退化甚至失效。目前,國內外學者[12-16]對高溫作用下植筋錨固性能的研究不多,因此,進一步開展高溫作用下植筋套筒試件的拉拔性能的研究有現實意義。本文采用Abaqus有限元軟件,以受熱溫度、植筋錨固長度等為參數,對高溫作用下的植筋套筒拉拔性能進行模擬分析,為高溫下后植筋錨固技術提供技術支撐。

1 有限元模型的建立

1.1 材料本構關系

1.1.1 鋼材的應力-應變本構關系

根據《混凝土結構加固技術規范》(GB 50367—2013)[17]附錄C中的鋼套筒要求,套筒材料為45號碳素鋼,植筋采用HRB400級鋼筋。溫度作用下套筒、植筋的應力-應變本構關系選用文獻[18]提出的溫度作用下鋼材的本構關系(見圖1),即:

(1)

η=(1.5ξ-0.5ξ3)0.62

(2)

強化段曲線所取的相對坐標(ξ,η)按式(3)計算,

(3)

(4)

(5)

(6)

(7)

fy、fu、Es分別為常溫下鋼材的屈服強度、極限強度及彈性模量。

(8)

(9)

1.1.2 膠-筋界面黏結-滑移本構關系

有限元模擬試件與文獻[14]鋼套筒拉拔試件采用的植筋膠均為FISV360S。高溫下膠-筋界面黏結-滑移本構關系采用文獻[14]通過高溫套筒試驗得到的不同溫度下膠-筋界面黏結-滑移本構關系,即:

(10)

式中:a、b為系數,取a=1,b=0.5;τ0、S0分別為不同溫度下植筋膠黏結-滑移曲線最大黏結應力及其對應的滑移量,按表1取值。

表1 不同溫度時最大黏結應力及其對應的滑移量

1.2 單元的類型

不同溫度作用下的植筋、套筒均采用八節點六面體單元C3D8R。植筋與套筒之間黏結作用采用Spring2彈簧單元進行模擬。

1.3 網格的劃分

鋼筋與膠層部件接觸部分是整個植筋體系受力最復雜的地方,在網格劃分時,鋼筋埋深范圍內的網格劃分要相對密集。因為膠-筋界面之間的黏結作用使用非線性彈簧定義,所以套筒和鋼筋這兩個實體單元在埋深范圍內布種的密度應該相同,本文采用按邊布種的方法,套筒和鋼筋單元沿埋深方向布置12個局部種子,在鋼筋周長與套筒內徑周長上布置16個局部種子,每個鋼筋和套筒單元的長度為 3 mm。以此保證兩者單元大小相等,使鋼筋單元和套筒單元的相應節點重合。各部件網絡劃分如圖2所示。

(a)鋼筋

1.4 交界面上黏結應力的定義

鋼筋與套筒間的黏結采用Spring2彈簧單元進行模擬。Spring2非線性彈簧單元定義了節點之間的荷載和滑移(P-S)之間的關系。根據各界面不同的黏結-滑移本構關系確定P-S關系曲線。Spring2非線性彈簧是有3個方向的作用單元。本模擬z方向為切向彈簧,是模擬黏結力和位移關系的非線性彈簧。x和y方向為法向彈簧。本次模擬只考慮z方向上的拉伸,x和y兩個方向不施加荷載,x和y方向的彈簧剛度為無限大,忽略x和y方向的相對滑移,輸入一個較大的數字即可,參考已有文獻[7—11],本模型彈簧剛度選用大于植筋膠彈性模量數量級的一個數值,將x、y方向的彈簧剛度設為7 800 000 N/mm。

彈簧P-S的數學表達式如下:

P=τ(S,xi)×Ai

(11)

(12)

式中:τ(S,xi)為界面滑移S下相對埋深x處的黏結應力;i為彈簧單元個數;Ai為單個彈簧的控制面積;D為交界面直徑,即植筋鋼筋直徑;la為植筋黏結長度;n為控制面積內的彈簧個數。

通過布置非線性彈簧的方式,可以將膠-筋界面的黏結-滑移規律轉化為彈簧力與彈簧拉伸長度。在Abaqus中僅能設置線性彈簧,由于膠-筋界面的黏結-滑移本構關系為非線性,因此,需要對INP文件進行編寫,以完成非線性彈簧單元的設置。在INP文件編寫過程中,黏結-滑移本構關系定義的力與相對位移值必須按照升序排列,否則有限元模型運行過程中會出現錯誤。

2 有限元模型可行性的驗證

為了驗證上述有限元模型的可行性,對文獻[14]中鋼套筒高溫下拉拔試驗進行模擬分析。套筒材料為45號碳素鋼,其屈服強度fy=439 MPa,極限強度fu=647 MPa,彈性模量Es=2.1×105N/mm2,泊松比υ=0.3;植筋采用HRB400級,其屈服強度fy=415 MPa,極限強度fu=640 MPa,彈性模量Es=2.1×105N/mm2,泊松比υ=0.3。套筒外徑40 mm,植筋端內徑16 mm,植筋深度36 mm,螺桿端內徑24 mm,螺紋長度24 mm。不同溫度下試件的荷載-滑移(P-S)曲線模擬值與試驗值比較如圖3所示。

(a)T=60 ℃

不同溫度下試件主要結果的模擬值與試驗值比較如表2所示。

表2 不同溫度下試件主要結果的模擬值與試驗值比較

3 植筋套筒拉拔性能的模擬分析

以溫度T(20、60、80、100、120、160、200 ℃)、植筋深度與直徑比la/d(2.5、3、4、5)等為模擬參數進行28個試件分析。套筒材料為45號碳素鋼,套筒外徑為40 mm,植筋端內徑為20 mm,用以植入直徑d=16 mm的HRB400級鋼筋,植筋深度la分別為2.5d、3d、4d和5d。另一端內徑為24 mm,用以擰入螺桿。鋼套筒植筋試件見圖4。

圖4 鋼套筒植筋試件(單位:mm)

3.1 溫度的影響

圖5為la/d=3,d=16 mm時,試件在不同溫度下的荷載-滑移(P-S)曲線;圖6為la/d=3,d=16 mm時,植筋試件拉拔承載力降低系數(Pu,i/Pu)與溫度(T)的關系;表3給出了la/d=3,d=16 mm時,試件在不同溫度下的主要分析結果。

表3 不同溫度下各試件主要分析結果

圖5 不同溫度下試件荷載-滑移曲線

圖6 拉拔承載力降低系數與溫度關系圖

由圖5、圖6、表3可知,隨著溫度的升高,植筋套筒試件的拉拔承載力與拉拔承載力對應的滑移量逐漸降低。溫度為60、80、100、120、160、200 ℃時,試件的拉拔承載力分別為常溫(20 ℃)試件拉拔承載力的74%、65%、46%、27%、20%、10%。當當溫度達到100 ℃時,植筋套筒試件的拉拔承載力約為常溫時的50%。溫度達到200 ℃時,植筋套筒拉拔承載力僅為常溫時的10%,基本喪失承載力。

圖7為不同溫度下,拉拔極限承載力時,植筋應力沿錨固長度的分布規律。由圖7可見,植筋的應力隨著其埋深的增加而逐漸減小,越是靠近套筒頂部應力就越大,植筋鋼筋在整個拉拔過程中沒有屈服。

圖7 極限荷載下植筋應力沿錨固長度的分布規律

3.2 植筋深度與直徑比(la/d)的影響

圖8分別給出了la/d為2.5、4、5,d=16 mm時,試件在不同溫度下的荷載-滑移(P-S)曲線;圖9分別給出各個溫度下,la/d為2.5、3、4、5,d=16 mm時,試件的荷載-滑移(P-S)曲線;圖10給出了la/d為2.5、4、5,d=16 mm時,試件拉拔承載力與溫度的關系(P-T)。

(a)la/d=2.5

(a)T=20 ℃

圖10 不同la/d下拉拔承載力與溫度關系圖

由圖8、圖10可見,在植筋深度與直徑比la/d相同的情況下,隨著植筋受熱溫度的升高,植筋試件的拉拔承載力降低,拉拔承載力對應的滑移也逐漸減小。隨著試件受熱溫度的升高,植筋試件P-S曲線的斜率逐漸減小,這表明植筋黏結剛度隨溫度升高而降低;在溫度低于120 ℃時,黏結剛度降低不明顯,溫度高于120 ℃時,黏結剛度隨試件溫度升高而降低顯著。

由圖9可見,在受熱溫度相同的情況下,植筋深度與直徑比la/d的增大,可使植筋拉拔承載力增大;由圖10也可看出,植筋深度與直徑比la/d越大,溫度對于拉拔承載力的影響越小,la/d為3、4、5的試件在各個溫度下的拉拔承載力分別為相同溫度下la/d為2.5試件拉拔承載力的1.20倍、1.33倍、1.67倍左右。

4 黏結應力位置函數

黏結-滑移本構關系是根據平均黏結強度理論得到的,主要反映界面之間的黏結力的水平變化,而計算得到的是植筋界面之間的平均黏結力大小。但是實際情況下,在滑移界面之間黏結應力沿鋼筋埋深的方向并非均勻分布。在受力過程中,需要考慮界面間的變形協調,黏結應力并非線性分布,通過位置函數可以清楚描述出黏結應力沿著鋼筋埋深方向的分布規律。

在有限元模擬過程中,在場輸出中勾選“NFORC,單元應力導致的節點力”并沿著一縱列彈簧方向建立節點集(set-point),在有限元分析結束之后,在運行結果中選擇ODB場變量輸出,輸出變量位置選擇唯一單元節點NFORC3,單元/節點選擇節點集set-point,得到沿著鋼筋埋深方向分布的一列非線性彈簧,以及植筋試件在拉拔過程中黏結應力在埋深方向的分布。

為了將不同溫度下黏結應力分布曲線統一到同一坐標軸,將有限元模擬得到的黏結應力的分布曲線根據埋深的方向進行歸一化處理,這樣可以使不同溫度模擬出的結果放在同一坐標軸上進行分析,x坐標軸是相對埋深比,y坐標軸是相對黏結應力,如圖11所示。

圖11 峰值荷載階段黏結應力位置函數曲線

模擬得到的黏結應力位置函數與文獻[5]中得到的黏結應力位置函數的分布趨勢一致,利用文獻[5]中給出的位置函數折線模型進行簡化處理,簡化模型如圖12所示,模型由3條折線組成,4個控制點為A(0,y0)、B(x1,y1)、C(x2,y2)及D(1.0,y3),位置函數折線模型中各特征點坐標值見表4。

表4 各特征點坐標值

圖12 位置函數折線模型

由表4可以看出,各個溫度下黏結應力位置函數特征點坐標值相差很小,并且當溫度低于200 ℃時,鋼材的力學性能也沒有明顯改變,只有植筋膠的力學性能發生變化,而這種變化在基本本構關系中已經表達,因此黏結應力位置函數不考慮溫度影響。取各特征點值A(0,0.994 8),B(0.30,1.007 0),C(0.90,0.993 8)和D(1.0,0.972 5),則黏結應力位置函數表達式如下:

(11)

5 結論

1)隨著溫度的增加,植筋試件的拉拔承載力降低,模擬溫度為60、80、100、120、160、200 ℃時拉拔承載力為常溫(20 ℃)的74%、65%、46%、27%、20%、10%。當溫度達到100 ℃時,植筋試件的承載力約為常溫時的50%。

2)植筋深度與直徑比la/d相同時,隨著溫度升高,植筋試件拉拔承載力和拉拔承載力對應滑移逐漸減小。

3)試件受熱溫度相同時,隨著植筋深度與直徑比la/d的增加,試件的極限承載力增大,溫度相同時,la/d為3、4、5的試件拉拔承載力分別為la/d為2.5試件拉拔承載力的1.20倍、1.33倍、1.67倍左右。在溫度低于200 ℃時,la/d的增大可以提高高溫下植筋的拉拔承載力。

4)根據模擬結果,得到膠-筋界面黏結應力沿鋼筋埋深方向的位置函數模型和表達式。

猜你喜歡
承載力有限元
再生混凝土抗剪鍵接縫受剪性能及承載力計算
結構工程師(2022年2期)2022-07-15 02:22:56
新型有機玻璃在站臺門的應用及有限元分析
上海節能(2020年3期)2020-04-13 13:16:16
基于有限元的深孔鏜削仿真及分析
基于有限元模型對踝模擬扭傷機制的探討
CFRP-PCP板加固混凝土梁的抗彎承載力研究
PVA-ECC抗剪加固帶懸臂RC梁承載力計算研究
基于SAP2000的光伏固定支架結構承載力分析
太陽能(2015年6期)2015-02-28 17:09:30
磨削淬硬殘余應力的有限元分析
潛艇極限承載力計算與分析
基于SolidWorks的吸嘴支撐臂有限元分析
主站蜘蛛池模板: 72种姿势欧美久久久大黄蕉| 国产激情在线视频| 18禁影院亚洲专区| 熟女视频91| 国产成人久久综合777777麻豆 | 欧美色综合久久| 午夜国产精品视频黄| 日韩a级片视频| 精品无码专区亚洲| 久热精品免费| 狠狠五月天中文字幕| 91视频99| 激情六月丁香婷婷| 亚洲欧美综合另类图片小说区| 在线免费看片a| 77777亚洲午夜久久多人| 欧美色亚洲| 国产精品手机视频| 亚洲第一页在线观看| 亚洲精品无码日韩国产不卡| 国产欧美亚洲精品第3页在线| 久久香蕉国产线看观| 国产亚洲精品自在久久不卡| 1024你懂的国产精品| a级免费视频| 99热这里只有精品5| 女人毛片a级大学毛片免费| 亚洲丝袜第一页| 制服丝袜一区| 久久婷婷六月| 久久不卡国产精品无码| 人妻免费无码不卡视频| 五月天久久婷婷| 久操线在视频在线观看| 国产精品亚洲专区一区| 亚洲精品无码av中文字幕| 久久久久久久蜜桃| 欧美日韩另类在线| 国产欧美网站| 国产毛片不卡| av在线人妻熟妇| 1024国产在线| 免费A级毛片无码无遮挡| 国产a网站| 欧美中文字幕在线播放| 国产成人精品一区二区不卡| 国产精品欧美激情| 亚洲国产精品一区二区第一页免 | 亚洲一级毛片在线观| 婷婷亚洲最大| 亚洲一区波多野结衣二区三区| 波多野结衣国产精品| 国产精品久久久久久久久kt| 性欧美在线| 露脸真实国语乱在线观看| 最新无码专区超级碰碰碰| 国产精品99久久久久久董美香 | 国产一区二区三区在线精品专区| 婷婷久久综合九色综合88| 亚洲成人播放| 波多野结衣在线一区二区| 91在线无码精品秘九色APP| 无码高潮喷水在线观看| 久久精品66| 亚洲无码免费黄色网址| 久久96热在精品国产高清| 激情午夜婷婷| 波多野结衣一区二区三区四区| 日韩av电影一区二区三区四区| 九九热视频在线免费观看| 四虎影视库国产精品一区| 国产aⅴ无码专区亚洲av综合网| 国产丝袜无码一区二区视频| 日韩人妻精品一区| 国产乱人伦精品一区二区| 亚洲毛片在线看| 高清无码一本到东京热| 日韩国产亚洲一区二区在线观看 | 99热这里只有精品2| 波多野结衣视频网站| 亚洲中文字幕日产无码2021| 国产特一级毛片|