999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DoS攻擊下四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步

2024-02-05 00:00:00印邵勝胡元發(fā)劉小洋

摘要: 研究DoS(Denial-of-Service,拒絕服務(wù))攻擊下受擾的四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步問題.給出新的固定時(shí)間穩(wěn)定性引理,設(shè)計(jì)全新的控制器,得到DoS攻擊下四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步的充分性條件.通過引入四元數(shù)意義下的符號(hào)函數(shù),避免了將四元數(shù)神經(jīng)網(wǎng)絡(luò)分解為4個(gè)實(shí)值子系統(tǒng),解決了四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步問題.最后,通過數(shù)值仿真驗(yàn)證了理論結(jié)果的有效性.

關(guān)鍵詞: 四元數(shù)神經(jīng)網(wǎng)絡(luò);固定時(shí)間同步;聚類同步;拒絕服務(wù)攻擊

中圖分類號(hào): TP183文獻(xiàn)標(biāo)志碼: A doi: 10.3969/j.issn.2095-4298.2024.04..007

Practical fixed-time cluster synchronization of quaternion-valued

neural networks under DoS attacks

Yin Shaosheng, Hu Yuanfa*, Liu Xiaoyang

(School of Computer Science amp; Technology,Jiangsu Normal University,Xuzhou 221116,Jiangsu,China)

Abstract: The practical fixed-time cluster synchronization is investigated for quaternion-valued neural networks being disturbed under DoS (Denial-of-Service) attacks. a novel fixed-time stability lemma is given and a new controller is designed as well. Some sufficient conditions for achieving practical fixed-time cluster synchronization of quaternion-valued neural networks under DoS attacks are obtained. A quaternion-valued signum function is introduced to avoid the decomposition of the original quaternion-valued neural networks into four real-valued subsystems and thus resolve the issue of practical fixed-time cluster synchronization of quaternion-valued neural networks. Finally, the effectiveness of the theoretical results is verified through a numerical example.

Key words: quaternion-valued neural network; fixed-time synchronization; cluster synchronization; DoS attack

近幾十年,神經(jīng)網(wǎng)絡(luò)引起了學(xué)者們的廣泛關(guān)注,并在組合優(yōu)化[1]、模式識(shí)別[2]等多個(gè)領(lǐng)域得到應(yīng)用.已有的關(guān)于神經(jīng)網(wǎng)絡(luò)的研究主要集中于實(shí)值和復(fù)值神經(jīng)網(wǎng)絡(luò),并取得了顯著成果[3-5].四元數(shù)神經(jīng)網(wǎng)絡(luò)作為實(shí)值和復(fù)值神經(jīng)網(wǎng)絡(luò)的擴(kuò)展,通過將神經(jīng)元狀態(tài)替換為四元數(shù)值,在高維數(shù)據(jù)處理方面具有顯著優(yōu)勢(shì).目前,四元數(shù)神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于衛(wèi)星電視、航空航天、彩色圖像處理等領(lǐng)域[6],正逐漸成為研究熱點(diǎn).

同步作為神經(jīng)網(wǎng)絡(luò)的經(jīng)典動(dòng)力學(xué)行為之一,近年來(lái)引起了學(xué)者們的廣泛關(guān)注[7-8].在評(píng)估同步行為時(shí),同步時(shí)間成為一個(gè)關(guān)鍵尺度.為了避免同步時(shí)間趨于無(wú)窮,學(xué)者們對(duì)有限時(shí)間同步問題進(jìn)行了深入研究[9-10].然而,在這些研究中,同步時(shí)間的估計(jì)依賴于系統(tǒng)的初始狀態(tài),而實(shí)際應(yīng)用中系統(tǒng)初始狀態(tài)常常難以準(zhǔn)確測(cè)量.為了解決這一問題,學(xué)者們提出了固定時(shí)間同步,并取得了一系列研究成果[11-12].這些研究對(duì)同步時(shí)間的估計(jì)只依賴于系統(tǒng)參數(shù),與系統(tǒng)狀態(tài)的初值無(wú)關(guān),因此,更符合實(shí)際應(yīng)用的需求.現(xiàn)有的研究結(jié)果[9-12]對(duì)于四元數(shù)神經(jīng)網(wǎng)絡(luò)的一種常見處理方法是將它等價(jià)分解為4個(gè)實(shí)值子系統(tǒng),通過設(shè)計(jì)子系統(tǒng)的控制器討論同步問題.雖然分離方法是可行的,但也存在一些不足.首先,分離方法使得系統(tǒng)的維度增加為原先的4倍,導(dǎo)致計(jì)算量大幅增加.其次,分離方法針對(duì)4個(gè)子系統(tǒng)設(shè)計(jì)控制器,導(dǎo)致控制器和同步條件更加復(fù)雜,對(duì)實(shí)際應(yīng)用造成不便.因此,本文運(yùn)用非分離方法設(shè)計(jì)四元數(shù)形式的控制器以實(shí)現(xiàn)網(wǎng)絡(luò)的同步.

聚類同步作為一種特殊的同步行為,是指網(wǎng)絡(luò)中的節(jié)點(diǎn)被劃分為不相交的類,類內(nèi)節(jié)點(diǎn)達(dá)到同步狀態(tài),而不同類的節(jié)點(diǎn)處于非同步狀態(tài).近年來(lái),聚類同步由于在生物科學(xué)和通信工程中的應(yīng)用而受到越來(lái)越多的關(guān)注[13-15].盡管實(shí)值系統(tǒng)和復(fù)值系統(tǒng)的聚類同步已經(jīng)得到廣泛研究,但四元數(shù)神經(jīng)網(wǎng)絡(luò)中的相關(guān)研究仍然相對(duì)缺乏.

實(shí)際生活中網(wǎng)絡(luò)攻擊普遍存在,因此,在研究神經(jīng)網(wǎng)絡(luò)同步問題時(shí)考慮網(wǎng)絡(luò)攻擊具有重要的現(xiàn)實(shí)意義.DoS攻擊是最常見的網(wǎng)絡(luò)攻擊之一,攻擊者通過頻繁占用通信信道抑制系統(tǒng)的正常通信,從而對(duì)整個(gè)系統(tǒng)造成危害.為了分析DoS攻擊對(duì)神經(jīng)網(wǎng)絡(luò)同步行為的影響,學(xué)者們進(jìn)行了深入研究并取得了一系列成果[16-18].盡管四元數(shù)神經(jīng)網(wǎng)絡(luò)的同步問題已經(jīng)得到廣泛關(guān)注[9-12],但已有研究中沒有考慮網(wǎng)絡(luò)受到DoS攻擊的情況.

基于上述分析,本文采用非分離的方法研究DoS攻擊下四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步問題.在文獻(xiàn)[19]的基礎(chǔ)上,給出了新的固定時(shí)間穩(wěn)定性引理,對(duì)參數(shù)的限制更少,降低了保守性;基于受到DoS攻擊的網(wǎng)絡(luò),實(shí)現(xiàn)了在外部干擾、時(shí)變時(shí)滯和非線性耦合影響下的四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步;采用非分離的方式對(duì)控制器進(jìn)行全新設(shè)計(jì),有效減少了計(jì)算量與控制成本.

1預(yù)備知識(shí)與模型描述

1.1符號(hào)定義

1.2模型描述

1.3DoS攻擊

1.4相關(guān)引理

2主要結(jié)論

3數(shù)值仿真

4結(jié)語(yǔ)

本文討論了DoS攻擊下受擾的四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步問題.借助推廣的固定時(shí)間穩(wěn)定性理論和四元數(shù)意義下的符號(hào)函數(shù),設(shè)計(jì)了全新的同步控制方案.在綜合考慮DoS攻擊、外部干擾以及時(shí)變時(shí)滯的影響下,實(shí)現(xiàn)了四元數(shù)神經(jīng)網(wǎng)絡(luò)實(shí)際固定時(shí)間聚類同步.最后,通過數(shù)值仿真驗(yàn)證了理論結(jié)果的有效性.

參考文獻(xiàn):

[1]Kwok T,Smith K A.A unified framework for chaotic neural-network approaches to combinatorial optimization\[J\].IEEE Trans Neural Netw,1999,10(4):978.

[2]Urbaniak I,Wolter M.Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network\[J\].Commun Nonlinear Sci Numer Simul,2021,95:105582.

[3]Huang R J,Liu X Y,Cao J D.Further results on fixed-time cluster synchronization of coupled neural networks\[J\].Neural Process Lett,2023,55(4):5069.

[4]He H B,Liu X Y,Cao J D,et al.Finite/fixed-time synchronization of delayed inertial memristive neural networks with discontinuous activations and disturbances\[J\].Neural Process Lett,2021,53(5):3525.

[5]Long C Q,Zhang G D,Zeng Z G,et al.Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms:a non-separation approach\[J\].Neural Netw,2022,148:86.

[6]Zhang Y L,Yang L Q,Kou K I,et al.Fixed-time synchronization for quaternion-valued memristor-based neural networks with mixed delays\[J\].Neural Netw,2023,165:274.

[7]毛坤,劉小洋,胡元發(fā),等.時(shí)滯耦合憶阻神經(jīng)網(wǎng)絡(luò)固定時(shí)間抗干擾二分同步[J].江蘇師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,40(3):39.

[8]黃汝佳,江南,劉小洋,等.切換拓?fù)湎埋詈蠌?fù)值神經(jīng)網(wǎng)絡(luò)的二分同步[J].江蘇師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,41(2):51.

[9]Aouiti C,Bessifi M.Periodically intermittent control for finite-time synchronization of delayed quaternion-valued neural networks[J].Neural Comput Appl,2021,33(12):6527.

[10]Xiao J Y,Cao J D,Cheng J,et al.Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks[J].Inf Sci,2020,526:221.

[11]Deng H,Bao H B.Fixed-time synchronization of quaternion-valued neural networks[J].Phys A Stat Mech Appl,2019,527:121351.

[12]Wei R Y,Cao J D.Fixed-time synchronization of quaternion-valued memristive neural networks with time delays[J].Neural Netw,2019,113:1.

[13]Cao J D,Li L L.Cluster synchronization in an array of hybrid coupled neural networks with delay[J].Neural Netw,2009,22(4):335.

[14]Li L L,Ho D W C,Cao J D,et al.Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism[J].Neural Netw,2016,76:1.

[15]Jayanthi N,Santhakumari R,Rajchakit G,et al.Cluster synchronization of coupled complex-valued neural networks with leakage and time-varying delays in finite-time[J].AIMS Math,2023,8(1):2018.

[16]Zhou C,Wang C H,Yao W,et al.Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption[J].Appl Math Comput,2022,425:127080.

[17]Xing M P,Lu J Q,Lou J G,et al.Event-based fixed-time synchronization of neural networks under DoS attack and its applications[J].Neural Netw,2023,166:622.

[18]Bao Y G,Zhang Y J,Zhang B Y,et al.Resilient fixed-time synchronization of neural networks under DoS attacks[J].J Frankl Inst,2023,360(1):555.

[19]Liu J,Wu Y B,Xue L,et al.A new intermittent control approach to practical fixed-time consensus with input delay[J].IEEE Trans Circuits Syst Ⅱ Express Briefs,2023,70(6):2186.

[20]Hu A H,Cao J F,Hu M F,et al.Cluster synchronization in directed networks of non-identical systems with noises via random pinning control[J].Phys A Stat Mech Appl,2014,395:537.

[21]De Persis C,Tesi P.Input-to-state stabilizing control under denial-of-service[J].IEEE Trans Autom Contr,2015,60(11):2930.

[22]Wu Y B,Sun Z Y,Ran G T,et al.Intermittent control for fixed-time synchronization of coupled networks[J].IEEE/CAA J Autom Sin,2023,10(6):1488.

[23]Chen C,Li L X,Peng H P,et al.A new fixed-time stability theorem and its application to the synchronization control of memristive neural networks[J].Neurocomputing,2019,349:290.

[責(zé)任編輯: 鐘傳欣]

主站蜘蛛池模板: 国产精品制服| 国产精品免费p区| 99精品热视频这里只有精品7| 国产成人精品免费视频大全五级| 久久国产精品娇妻素人| 日韩国产一区二区三区无码| 亚洲高清国产拍精品26u| 高清码无在线看| 2018日日摸夜夜添狠狠躁| 欧美性久久久久| 青青草原国产| 亚洲经典在线中文字幕| 久久福利网| 日韩欧美亚洲国产成人综合| 日韩中文精品亚洲第三区| 亚洲日本一本dvd高清| 欧美一区二区三区不卡免费| 亚洲欧美精品在线| 特级欧美视频aaaaaa| 五月婷婷伊人网| 亚洲欧美不卡视频| AV网站中文| 99尹人香蕉国产免费天天拍| 久久婷婷六月| 国产成+人+综合+亚洲欧美| 亚洲欧美日韩成人高清在线一区| 无码中文字幕加勒比高清| 韩日无码在线不卡| 毛片免费试看| 91视频日本| 在线观看亚洲人成网站| 视频一区视频二区中文精品| 日韩免费无码人妻系列| 69视频国产| 亚洲精品午夜无码电影网| 亚洲嫩模喷白浆| 18禁黄无遮挡网站| 精品伊人久久久香线蕉| 天堂成人在线视频| 五月丁香伊人啪啪手机免费观看| 亚洲国产成人无码AV在线影院L| 啪啪永久免费av| 91成人在线免费观看| 99青青青精品视频在线| 人妻一本久道久久综合久久鬼色| 国产又粗又猛又爽视频| 欧美在线一二区| 欧美成人免费| 精品伊人久久久大香线蕉欧美 | 国产在线一二三区| 伊人欧美在线| 日韩欧美国产中文| 国产av一码二码三码无码| 中文字幕在线欧美| 乱人伦视频中文字幕在线| 国产乱人伦AV在线A| 日韩国产无码一区| 97在线国产视频| 丰满人妻被猛烈进入无码| 国产欧美在线| 日韩av资源在线| 亚洲成人在线免费| 国内精品自在自线视频香蕉| 国产精品欧美在线观看| 黑色丝袜高跟国产在线91| 免费国产高清精品一区在线| 国产哺乳奶水91在线播放| 亚洲女同欧美在线| 99激情网| 国产一级二级三级毛片| 老色鬼久久亚洲AV综合| 欧美在线天堂| 干中文字幕| 亚洲人成影院午夜网站| 亚洲无卡视频| 干中文字幕| 54pao国产成人免费视频| 99性视频| 男人的天堂久久精品激情| 54pao国产成人免费视频| 青青青草国产| 蝴蝶伊人久久中文娱乐网|