999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

雜草對(duì)9類常用不同作用機(jī)制除草劑的非靶標(biāo)抗性機(jī)制研究進(jìn)展

2024-02-06 14:39:08馬紅王月超孫瑩高紅陶波韓玉軍
植物保護(hù) 2024年1期
關(guān)鍵詞:除草劑雜草

馬紅 王月超 孫瑩 高紅 陶波 韓玉軍

摘要

除草劑的應(yīng)用為農(nóng)業(yè)生產(chǎn)帶來便利,但長(zhǎng)期、單一使用某一種或相同機(jī)制的除草劑也引發(fā)了雜草對(duì)除草劑的抗性問題。抗性雜草種類逐漸增加,抗性形成機(jī)制復(fù)雜,導(dǎo)致農(nóng)田雜草的治理難度增加。雜草對(duì)除草劑的抗性機(jī)制主要分為兩種,一種是除草劑靶標(biāo)位點(diǎn)基因的突變或過量表達(dá)導(dǎo)致的靶標(biāo)抗性,另一種是雜草對(duì)除草劑吸收、轉(zhuǎn)運(yùn)、固存和代謝等一個(gè)或多個(gè)生理過程發(fā)生變化導(dǎo)致的非靶標(biāo)抗性。本文綜述了雜草對(duì)9類不同作用方式除草劑的非靶標(biāo)抗性機(jī)制的生理、生化和分子基礎(chǔ)的研究進(jìn)展,以期為抗性雜草綜合治理提供參考。

關(guān)鍵詞

雜草;?除草劑;?作用方式;?非靶標(biāo)抗性;?抗性機(jī)制

中圖分類號(hào):

S?481.4;?S?451.1

文獻(xiàn)標(biāo)識(shí)碼:?A

DOI:?10.16688/j.zwbh.2022688

Advances?in?nontarget?resistance?mechanisms?of?weeds?to?nine?kinds?of?commonly?used?herbicides?with?different?mechanisms?of?action

MA?Hong1,?WANG?Yuechao1,2,?SUN?Ying1,?GAO?Hong1,?TAO?Bo1,?HAN?Yujun1*

(1.?College?of?Plant?Protection,?Northeast?Agricultural?University,?Harbin?150030,?China;?2.?Crop?Resources?

Institute,?Heilongjiang?Academy?of?Agricultural?Sciences,?Harbin?150086,?China)

Abstract

The?application?of?herbicides?has?brought?convenience?to?agricultural?production,?but?longterm?use?of?single?herbicide?or?herbicides?with?the?same?mode?of?action?has?caused?the?problem?of?weed?resistance?to?herbicides.?The?types?of?resistant?weeds?keep?increasing,?and?the?formation?mechanism?of?resistance?is?complex,?which?leads?to?the?difficulty?in?the?control?of?weeds?in?farmlands.?The?resistance?mechanisms?of?weeds?to?herbicides?are?mainly?divided?into?two?types.?One?is?target?resistance?caused?by?mutations?or?overexpression?of?herbicidetargeted?genes,?and?the?other?is?nontarget?resistance?caused?by?changes?in?one?or?more?physiological?processes?such?as?herbicide?uptake,?transport,?sequestration,?and?metabolism.?In?this?review,?the?physiological,?biochemical?and?molecular?bases?of?nontarget?resistance?mechanisms?of?weeds?to?nine?kinds?of?herbicides?with?different?action?modes?were?summarized?to?provide?a?reference?for?the?comprehensive?management?of?resistant?weeds.

Key?words

weeds;?herbicides;?mode?of?action;?nontarget?resistance;?resistance?mechanism

農(nóng)田雜草的發(fā)生使我國(guó)每年糧食產(chǎn)量下降1?750萬t,嚴(yán)重威脅我國(guó)糧食安全[1]。除草劑的引入有效控制了農(nóng)田雜草的發(fā)生和危害,提高了作物的產(chǎn)量和質(zhì)量[2]。然而,相同作用機(jī)理的除草劑連續(xù)重復(fù)施用,導(dǎo)致雜草對(duì)除草劑的抗性問題日益嚴(yán)重。目前,全球已有72個(gè)國(guó)家的96種作物田的267種雜草對(duì)除草劑產(chǎn)生抗性,其中涉及513個(gè)抗除草劑生物型[3]。雜草抗藥性的形成主要與雜草的生物學(xué)特性、除草劑的特性與選擇壓力、農(nóng)藝措施等有關(guān)[4]。了解除草劑的作用機(jī)制可以在很大程度上預(yù)測(cè)雜草抗性的發(fā)展方向,減緩雜草抗藥性形成的速度,制定合理的雜草綜合治理策略。以往的研究報(bào)道中除草劑抗性多數(shù)集中在靶標(biāo)抗性上,對(duì)非靶標(biāo)抗性方面的研究較少。但近年來,非靶標(biāo)抗性方面的研究逐漸得到了重視。本文就雜草對(duì)幾種常見不同作用機(jī)制除草劑的非靶標(biāo)抗性機(jī)制的研究進(jìn)展進(jìn)行總結(jié)。

1?雜草對(duì)除草劑抗性機(jī)制研究概況

雜草對(duì)除草劑抗性指雜草在接觸到對(duì)野生型雜草具有致死效果的除草劑劑量后,能夠生存和繁殖的遺傳能力[5]。雜草對(duì)除草劑的抗性大致可分為靶標(biāo)抗性和非靶標(biāo)抗性[5]。靶標(biāo)抗性主要是指除草劑靶標(biāo)位點(diǎn)基因的突變導(dǎo)致靶標(biāo)蛋白對(duì)除草劑敏感性下降或靶標(biāo)蛋白過量表達(dá)[6],靶標(biāo)抗性主要由單基因性狀決定[7]。雜草對(duì)除草劑的非靶標(biāo)抗性機(jī)制比靶標(biāo)抗性機(jī)制復(fù)雜得多[8]。非靶標(biāo)抗性機(jī)制是到達(dá)靶標(biāo)位點(diǎn)的除草劑有效成分減少,包括雜草對(duì)除草劑吸收/轉(zhuǎn)運(yùn)的減少、代謝解毒除草劑能力的增強(qiáng)以及對(duì)除草劑的屏蔽作用等,從而降低除草劑對(duì)雜草的傷害[56]。雜草對(duì)除草劑非靶標(biāo)抗性中最常見的機(jī)制就是代謝解毒能力增強(qiáng)[9],這種作用受到多種酶的調(diào)控。多數(shù)情況下植物完成對(duì)除草劑的解毒作用需要4個(gè)階段,首先由細(xì)胞色素P450單加氧酶(CYP450s)或其他氧化酶將除草劑氧化,隨后谷胱甘肽?S轉(zhuǎn)移酶(GSTs)或糖基轉(zhuǎn)移酶(GTs)等與第一步產(chǎn)物結(jié)合,通過ABC轉(zhuǎn)運(yùn)蛋白等將結(jié)合物轉(zhuǎn)運(yùn)至液泡或細(xì)胞外,最后將液泡中或細(xì)胞外的產(chǎn)物降解完成對(duì)除草劑的解毒作用[5]。雖然也有研究報(bào)道在一些雜草中發(fā)現(xiàn)了單基因遺傳的非靶標(biāo)抗性,但涉及解毒酶的非靶標(biāo)抗性通常是由多基因調(diào)控的,并且不同雜草對(duì)不同作用機(jī)制除草劑或同一作用機(jī)制的不同除草劑的解毒調(diào)控基因以及解毒方式也不盡相同,可能導(dǎo)致同種雜草對(duì)作用機(jī)制完全不同的其他種類除草劑產(chǎn)生抗性[7,10]。因此關(guān)于除草劑非靶標(biāo)抗性的研究有利于挖掘雜草對(duì)不同作用機(jī)制除草劑的抗性基因,從酶學(xué)、分子及代謝等不同方面研究雜草對(duì)不同除草劑抗藥性問題。

2?雜草對(duì)不同作用機(jī)制除草劑的非靶標(biāo)抗性機(jī)制的研究進(jìn)展

2.1?雜草對(duì)乙酰乳酸合酶(ALS)抑制劑的非靶標(biāo)抗性機(jī)制

ALS抑制劑類除草劑自1982年投入使用后,雜草對(duì)該類除草劑抗性即開始逐漸發(fā)展,1998年以后對(duì)該類除草劑有抗性雜草的種類數(shù)量已超過其他類型除草劑[11],在所有作用方式除草劑中位列第一。目前,全球有170種雜草對(duì)ALS抑制劑產(chǎn)生抗性,其中我國(guó)報(bào)道的有17種[3]。ALS抑制劑類除草劑也被稱為乙酰羥基酸合成酶(AHAS)抑制劑,主要抑制支鏈氨基酸異亮氨酸、亮氨酸和纈氨酸的生物合成[12]。ALS抑制劑作為高效、廣譜的除草劑,可以應(yīng)用于玉米、大豆、水稻、小麥和油菜等多種作物田。目前已經(jīng)報(bào)道的抗ALS抑制劑的雜草中,多數(shù)是氨基酸突變引起的靶標(biāo)抗性起到主要作用,但也有文獻(xiàn)報(bào)道雜草對(duì)除草劑代謝的增強(qiáng)提高了雜草對(duì)ALS抑制劑的抗性,說明抗ALS抑制劑的雜草中存在非靶標(biāo)抗性機(jī)制[11]。

大量研究證明,代謝抗性是雜草對(duì)ALS抑制劑產(chǎn)生非靶標(biāo)抗性的主要途徑,在這個(gè)過程中CYP450s基因的過量表達(dá)起了重要作用。Zhao等[13]在對(duì)抗甲基二磺隆看麥娘Alopecurus?aequalis的抗性機(jī)制進(jìn)行研究時(shí)發(fā)現(xiàn)CYP94A1和CYP71A4在抗性植株中過量表達(dá)。顏伯俊[14]發(fā)現(xiàn)CYP71C2基因介導(dǎo)硬稃稗Echinochloa?glabrescens對(duì)五氟磺草胺的抗性,并能賦予擬南芥Arabidopsis?thaliana抗五氟磺草胺。Shen等[15]在研究抗苯磺隆播娘蒿Descurainia?sophia時(shí)發(fā)現(xiàn)CYP77B34基因可以賦予擬南芥抗多種類型的除草劑,包括ALS抑制劑、原卟啉原氧化酶(PPO)抑制劑、超長(zhǎng)鏈脂肪酸(VLCFA)合成抑制劑、光系統(tǒng)Ⅱ(PSⅡ)抑制劑等。劉健等[16]使用CYP450s抑制劑預(yù)處理抗五氟磺草胺稻稗Echinochloa?oryzoides后,其對(duì)五氟磺草胺抗性顯著降低,這說明CYP450s在其對(duì)ALS抑制劑的代謝抗性中起到很大作用。這種現(xiàn)象也存在于作物當(dāng)中,Saika等[17]發(fā)現(xiàn),秈稻中的CYP72A31使秈稻對(duì)雙草醚的耐受能力高于粳稻,過表達(dá)CYP72A31的擬南芥獲得了對(duì)芐嘧磺隆的耐藥性,CYP72A31可以提高雜草對(duì)雙草醚和芐嘧磺隆的代謝。除CYP450s外,ABC轉(zhuǎn)運(yùn)蛋白也參與對(duì)ALS抑制劑的非靶標(biāo)抗性[1821]。Liu等[18]在抗苯磺隆的鵝腸菜Stellaria?aquatica中發(fā)現(xiàn)了3個(gè)CYP450s基因和1個(gè)ABC轉(zhuǎn)運(yùn)蛋白基因在所有抗性植株中均過量表達(dá),這說明雜草對(duì)ALS抑制劑非靶標(biāo)抗性形成中存在著多種基因和酶系的復(fù)合調(diào)控作用。

2.2?雜草對(duì)光系統(tǒng)Ⅱ(PSⅡ)抑制劑的非靶標(biāo)抗性機(jī)制

光系統(tǒng)Ⅱ(PSⅡ)抑制劑通過競(jìng)爭(zhēng)結(jié)合葉綠體光系統(tǒng)Ⅱ復(fù)合體中D1蛋白上的質(zhì)體醌(QB)結(jié)合位點(diǎn),阻礙電子從PSⅡ傳遞到PSⅠ,從而抑制NADPH和ATP的產(chǎn)生,使植物不能正常進(jìn)行光合作用而死亡[22]。目前,全球共有87種,我國(guó)有3種雜草對(duì)PSⅡ抑制劑產(chǎn)生抗性[3]。

大多數(shù)情況下,PSⅡ抑制劑的抗性主要是通過CYP450s和/或GSTs對(duì)除草劑的代謝進(jìn)行單一或復(fù)合調(diào)控。Nakka等[23]的研究發(fā)現(xiàn),抗莠去津長(zhǎng)芒莧Amaranthus?palmeri體內(nèi)的GSTs與莠去津結(jié)合速度是敏感種群的24倍。Evans等[24]在糙果莧Amaranthus?tuberculatus中確認(rèn)了1個(gè)Phi類GST基因AtuGSTF2與莠去津抗性有關(guān),進(jìn)一步發(fā)現(xiàn),將莠去津施于抗莠去津糙果莧后6?h,約有92%的莠去津被GSTs結(jié)合,而在敏感植株中,92%的莠去津仍作為母體化合物保留在植株內(nèi)[25]。Gray等[26]在苘麻Abutilon?theophrasti中發(fā)現(xiàn)谷胱甘肽共軛作用和N脫烷基作用可以代謝莠去津。此外,用CYP450s抑制劑1氨基苯并三氮唑進(jìn)行預(yù)處理會(huì)導(dǎo)致抗性硬直黑麥草Lolium?rigidum對(duì)西瑪津的敏感性增加[27]。Svyantek等[28]發(fā)現(xiàn),在編碼D1蛋白的psbA基因未突變的情況下,抗PSⅡ抑制劑的早熟禾Poa?annua對(duì)莠去津的吸收、轉(zhuǎn)運(yùn)減少,CYP450s介導(dǎo)的早熟禾對(duì)除草劑的代謝增強(qiáng),說明除了增強(qiáng)代謝外,吸收和轉(zhuǎn)運(yùn)的減少也能促進(jìn)雜草對(duì)PSⅡ抑制劑產(chǎn)生抗性。

2.3?雜草對(duì)5烯醇式丙酮酰莽草酸3磷酸合酶(EPSPS)抑制劑的非靶標(biāo)抗性機(jī)制

草甘膦是一種非選擇性的廣譜除草劑,具有獨(dú)特的化學(xué)結(jié)構(gòu),其與磷酸烯醇式丙酮酸(PEP)競(jìng)爭(zhēng)性結(jié)合EPSPS[29],使莽草酸途徑無法正常進(jìn)行。EPSPS作為莽草酸途徑的關(guān)鍵酶,催化PEP和莽草酸3磷酸(S3P)合成氨基酸前體[3031]。莽草酸途徑受阻致使植物不能產(chǎn)生芳香族氨基酸色氨酸、酪氨酸和苯丙氨酸,導(dǎo)致植物的生長(zhǎng)和發(fā)育受到抑制,進(jìn)而死亡。目前全球有56種,我國(guó)有2種雜草對(duì)草甘膦產(chǎn)生了抗性[3]。

抗草甘膦雜草的非靶標(biāo)抗性機(jī)制主要與轉(zhuǎn)運(yùn)蛋白有關(guān)。Peng等[32]通過GSFLX?454焦磷酸測(cè)序發(fā)現(xiàn),施用草甘膦后抗草甘膦小蓬草Erigeron?canadensis的幾個(gè)ABC轉(zhuǎn)運(yùn)蛋白基因的表達(dá)量增加。Ge等[33]的研究發(fā)現(xiàn),抗草甘膦小蓬草植株內(nèi)超過85%的草甘膦被封存在液泡中,而敏感植株中只有15%。而且這種現(xiàn)象在施用草甘膦后的幾天之內(nèi)不可逆轉(zhuǎn)[3335]。Pan等[36]發(fā)現(xiàn),抗草甘膦稗草Echinochloa?crusgalli中定位于質(zhì)膜的EcABCC8可以將草甘膦排出細(xì)胞,并且在EcABCC8基因序列一致的情況下,抗性植株中EcABCC8表達(dá)量更高,細(xì)胞中草甘膦含量更低。這些研究表明,轉(zhuǎn)運(yùn)蛋白將草甘膦主動(dòng)轉(zhuǎn)運(yùn)至液泡內(nèi)封存或排出細(xì)胞都可以增加雜草對(duì)草甘膦的抗性。

雜草對(duì)草甘膦產(chǎn)生抗性的另一個(gè)重要原因是代謝增強(qiáng)。研究發(fā)現(xiàn),在施用草甘膦168?h后,耐性兩耳草Digitaria?insularis體內(nèi)超過56%的草甘膦被代謝為氨甲基膦酸(AMPA)、乙醛酸、肌氨酸,而在敏感植株中只有10%草甘膦被代謝[37]。在抗性小蓬草中草甘膦也被快速代謝,在施用草甘膦后96?h,幾乎100%的草甘膦被代謝為AMPA、乙醛酸和肌氨酸[38]。植物和微生物中醛酮還原酶(AKR)基因的沉默或突變都會(huì)增加它們對(duì)草甘膦的敏感性。Vemanna等[39]的研究表明,在煙草Nicotiana?tabacum中過量表達(dá)假單胞菌Pseudomonas的PsAKR基因或水稻的OsAKR基因可獲得對(duì)草甘膦的抗性,Pan等[40]采用RNAseq分析澳大利亞的光頭稗Echinochloa?colona種群,發(fā)現(xiàn)了一種高活性的醛酮還原酶重疊群對(duì)草甘膦表現(xiàn)出代謝抗性;并且在表達(dá)EcAKR41的大腸桿菌Escherichia?coli中也發(fā)現(xiàn)了AMPA和乙醛酸等草甘膦代謝物,這與抗性稗草對(duì)草甘膦的代謝極為相似。

雜草對(duì)草甘膦吸收的減少也可以促使雜草對(duì)草甘膦產(chǎn)生低水平抗性。植株氣孔密度與大小,表皮毛密度等表觀性狀的差異都會(huì)影響雜草對(duì)草甘膦的吸收[41]。轉(zhuǎn)錄組測(cè)序(RNAseq)發(fā)現(xiàn)草甘膦處理后抗性多花黑麥草Lolium?multiflorum與敏感多花黑麥草中差異基因大部分與質(zhì)膜有關(guān),表明抗性雜草中可能存在阻止草甘膦進(jìn)入細(xì)胞的屏障[42]。DominguezValenzuela等[43]在抗草甘膦紫菀Aster?squamatus種群中發(fā)現(xiàn)吸收減少、轉(zhuǎn)運(yùn)減少以及代謝增加3種機(jī)制同時(shí)存在。Yanniccari等[44]在抗草甘膦扁穗雀麥Bromus?catharticus中也發(fā)現(xiàn),相比于敏感型植株,草甘膦在抗性植株葉片上存留、吸收和轉(zhuǎn)運(yùn)更少。

此外,研究者發(fā)現(xiàn),草甘膦處理三裂葉豚草Ambrosia?trifida后其葉片會(huì)迅速枯萎,從植物上脫落[4546]。這種死亡脫落的快速響應(yīng)機(jī)制一定程度上限制了草甘膦在植物體內(nèi)的移動(dòng),即減少了除草劑的轉(zhuǎn)運(yùn),含有草甘膦的組織脫落后,植株可以繼續(xù)生長(zhǎng)。應(yīng)用外源苯丙氨酸和酪氨酸可以很大程度上逆轉(zhuǎn)這種快速響應(yīng),并且抗性植株中葉片脫落部位活性氧增加,說明這種逆轉(zhuǎn)機(jī)制可能與莽草酸途徑失調(diào)和活性氧的積累有關(guān)。

2.4?雜草對(duì)乙酰輔酶A羧化酶(ACCase)抑制劑的非靶標(biāo)抗性機(jī)制

乙酰輔酶A羧化酶(ACCase)是合成脂肪酸的關(guān)鍵酶,對(duì)植物的生存至關(guān)重要[47]。ACCase抑制劑使雜草不能正常進(jìn)行脂肪酸合成最終死亡[48]。作為重要的選擇性除草劑,ACCase抑制劑被大量應(yīng)用后,雜草抗性發(fā)展迅速,迄今為止全球已有50種,我國(guó)有10種雜草對(duì)該類除草劑產(chǎn)生了抗性[3]。

雜草對(duì)ACCase抑制劑的抗性多數(shù)是CYP450s參與的代謝抗性。研究發(fā)現(xiàn)硬直黑麥草抗性種群可以快速降解禾草靈[4950],其代謝物與小麥中通過環(huán)羥基化和糖結(jié)合形成的代謝物很相似[51],表明雜草對(duì)ACCase抑制劑的抗性與小麥抗除草劑類似,存在CYP450s參與的代謝增強(qiáng)作用[5152]。胡椒基丁醚(PBO)或馬拉硫磷等預(yù)處理可以降低日本看麥娘Alopecurus?japonicus和棒頭草Polypogon?fugax對(duì)ACCase抑制劑的抗性[5354]。而CYP450誘導(dǎo)劑2,4滴預(yù)處理可提高禾草靈敏感型硬直黑麥草種群對(duì)禾草靈的代謝速率從而提高其抗性[55],證實(shí)了CYP450s在增強(qiáng)雜草代謝抗性中發(fā)揮作用。

除CYP450s的調(diào)控作用外,GSTs和GTs也參與對(duì)ACCase抑制劑代謝的調(diào)控。Gaines等[50]對(duì)抗禾草靈的硬直黑麥草進(jìn)行RNAseq,發(fā)現(xiàn)2個(gè)CYP450s、1個(gè)GT和1個(gè)氮酸酯單加氧酶(NMO)基因在禾草靈代謝抗性中發(fā)揮作用。彭謙[56]通過RNAseq也明確了稗草對(duì)噁唑酰草胺的抗性與EcGSTF1基因有關(guān)。Pan等[57]在菵草Beckmannia?syzigachne對(duì)精噁唑禾草靈的非靶標(biāo)抗性中發(fā)現(xiàn)CYP450s、GSTs、UDP以及酯酶在內(nèi)的15個(gè)基因上調(diào)表達(dá)或突變,證實(shí)了多種酶在雜草對(duì)ACCase抑制劑非靶標(biāo)抗性中起到調(diào)控作用。

2.5?雜草對(duì)合成生長(zhǎng)素類除草劑的非靶標(biāo)抗性機(jī)制

合成生長(zhǎng)素類除草劑(SAH)是模擬天然植物激素吲哚3乙酸(IAA)的一類除草劑[58]。此類除草劑主要用于防除單子葉作物田中的闊葉雜草[59]。自1945年2,4滴引入并商用以來,SAH的應(yīng)用已有70余年,雜草對(duì)SAH的抗性進(jìn)化較為緩慢,到目前為止全球有41種,我國(guó)有5種雜草對(duì)合成生長(zhǎng)素類除草劑產(chǎn)生抗性[3]。

雜草對(duì)SAH除草劑非靶標(biāo)抗性機(jī)制之一是對(duì)SAH吸收減少,通常是由于葉片角質(zhì)層或其他結(jié)構(gòu)屏障阻礙除草劑吸收到植物體內(nèi)[60]。對(duì)代謝水平一致的,抗、感2,4滴的野萵苣Lactuca?serriola植株同時(shí)施用2,4滴?96?h后,抗性植株葉片比敏感植株中2,4滴含量更少[6061]。證明了植株表型差異會(huì)影響除草劑吸收從而賦予雜草抗性。

SAH向作用部位傳導(dǎo)減少也是主要的非靶標(biāo)抗性機(jī)制之一。東方大蒜芥Sisymbrium?orientale經(jīng)2,4滴處理后72?h,抗性植物的葉片中大約殘留有77%的2,4滴,而在敏感植物中只有32%的2,4滴還保留在葉片中[62]。抗麥草畏地膚Bassia?scoparia的RNAseq分析表明,與麥草畏敏感地膚相比,抗性地膚體內(nèi)影響生長(zhǎng)素運(yùn)輸?shù)幕蛳抡{(diào)表達(dá),這可能是導(dǎo)致地膚對(duì)麥草畏產(chǎn)生抗性的原因[63]。

另一個(gè)主要的抗性機(jī)制是SAH的快速代謝,在這個(gè)過程中CYP450s參與的環(huán)羥基化作用促進(jìn)了除草劑的解毒代謝。在抗性糙果莧中,2,4滴的代謝速度比敏感植株快得多[64]。Torra等[65]發(fā)現(xiàn)抗2,4滴虞美人Papaver?rhoeas的根和地上部可以檢測(cè)到在敏感植株中檢測(cè)不到的兩種羥基代謝物,證實(shí)了抗性植株中存在CYP450s參與的羥基化作用,使植株對(duì)除草劑的代謝增強(qiáng)。此外,當(dāng)用CYP450s抑制劑馬拉硫磷預(yù)處理后,抗SAH的糙果莧、虞美人、長(zhǎng)芒莧對(duì)SAH的敏感性增加也說明了CYP450s參與雜草抗性的產(chǎn)生[6467]。

2.6 雜草對(duì)光系統(tǒng)Ⅰ(PSⅠ)抑制劑的非靶標(biāo)抗性機(jī)制

百草枯是一種非選擇性的快速除草劑,它通過轉(zhuǎn)移PSⅠ的電子使光合作用受到抑制。百草枯接受單個(gè)電子生成還原性的陽離子自由基,其與氧進(jìn)一步反應(yīng)時(shí)生成超氧離子[68]。在有光的條件下,百草枯催化產(chǎn)生超氧離子,最終形成羥基自由基并導(dǎo)致脂質(zhì)過氧化[6869]。目前全球共有32種,我國(guó)有5種雜草對(duì)光系統(tǒng)Ⅰ抑制劑產(chǎn)生抗性[3]。

已報(bào)道的對(duì)光系統(tǒng)Ⅰ抑制劑的非靶標(biāo)抗性機(jī)制主要是通過液泡隔離減少除草劑轉(zhuǎn)運(yùn)。研究發(fā)現(xiàn),施用百草枯后抗性硬直黑麥草原生質(zhì)體中百草枯含量比敏感植株高出2~3倍,表明除草劑可能被封存在液泡中[70]。在意大利黑麥草Lolium?perenne中也有類似抗百草枯機(jī)制的報(bào)道[71]。但這種抗性機(jī)制的分子基礎(chǔ)還有待證實(shí)。

2.7?雜草對(duì)原卟啉原氧化酶(PPO)抑制劑的非靶標(biāo)抗性機(jī)制

在亞鐵血紅素和葉綠素合成過程中,原卟啉原氧化酶(PPO)的作用是將原卟啉原Ⅸ轉(zhuǎn)化為原卟啉Ⅸ[72]。PPO被抑制導(dǎo)致中間產(chǎn)物在細(xì)胞膜上積累,這些中間產(chǎn)物被光氧化,最終導(dǎo)致活性氧(ROS)的產(chǎn)生。ROS破壞細(xì)胞膜中的脂肪和蛋白質(zhì),使其發(fā)生脂質(zhì)過氧化,破壞細(xì)胞膜結(jié)構(gòu),使細(xì)胞質(zhì)外泄,最后造成植物死亡[7374]。目前全球已發(fā)現(xiàn)14種,我國(guó)發(fā)現(xiàn)3種雜草對(duì)PPO抑制劑產(chǎn)生抗性[3]。

關(guān)于PPO抑制劑抗性的報(bào)道多為靶標(biāo)抗性[7577]。非靶標(biāo)抗性的報(bào)道主要集中在長(zhǎng)芒莧和糙果莧中,主要由CYP450s和GSTs調(diào)控。用馬拉硫磷預(yù)處理未發(fā)生基因突變的抗唑草酮糙果莧后發(fā)現(xiàn)其對(duì)唑草酮的敏感性增加,證明CYP450s參與了糙果莧對(duì)唑草酮的抗性[78]。同樣,對(duì)未發(fā)生基因突變的抗氟磺胺草醚的長(zhǎng)芒莧進(jìn)行馬拉硫磷或NBDcl預(yù)處理后其對(duì)氟磺胺草醚也更加敏感,也說明CYP450s和GSTs介導(dǎo)了其對(duì)氟磺胺草醚的抗性[7980]。

2.8?雜草對(duì)超長(zhǎng)鏈脂肪酸(VLCFA)合成抑制劑的非靶標(biāo)抗性機(jī)制

超長(zhǎng)鏈脂肪酸(VLCFA)合成抑制劑影響超長(zhǎng)鏈脂肪酸碳鏈延長(zhǎng)[81]。超長(zhǎng)鏈脂肪酸是合成甘油三酯、蠟質(zhì)、磷脂和復(fù)雜的鞘脂的必要條件,對(duì)植物各種功能的發(fā)揮至關(guān)重要[82]。細(xì)胞分裂過程以及維持膜運(yùn)輸途徑都需要磷脂和鞘脂[8284]。目前全球已經(jīng)發(fā)現(xiàn)13種,我國(guó)發(fā)現(xiàn)2種雜草對(duì)超長(zhǎng)鏈脂肪酸合成抑制劑產(chǎn)生抗性[3]。

雜草對(duì)超長(zhǎng)鏈脂肪酸合成抑制劑的非靶標(biāo)抗性機(jī)制主要為GSTs和CYP450s介導(dǎo)的代謝抗性。Busi等[85]在硬直黑麥草種群中發(fā)現(xiàn)了對(duì)砜吡草唑的代謝抗性,在施藥后24?h內(nèi)大約88%的砜吡草唑被代謝,代謝產(chǎn)物可以與谷胱甘肽結(jié)合,并發(fā)現(xiàn)2個(gè)GST基因在抗性植株內(nèi)2~6倍過表達(dá)。此外,Brabham等[86]在長(zhǎng)芒莧中發(fā)現(xiàn)了對(duì)精異丙甲草胺的抗性,將GSTs抑制劑NBDcl加到瓊脂溶液中進(jìn)行長(zhǎng)芒莧的萌發(fā)試驗(yàn),觀察到了抗性長(zhǎng)芒莧根系生長(zhǎng)減少,表明GSTs參與了長(zhǎng)芒莧的非靶標(biāo)抗性。Strom等[87]發(fā)現(xiàn)GSTs抑制劑4氯7硝基苯呋喃唑和CYP450s抑制劑馬拉硫磷可降低抗性長(zhǎng)芒莧代謝精異丙甲草胺的量。進(jìn)一步試驗(yàn)發(fā)現(xiàn),長(zhǎng)芒莧對(duì)精異丙甲草胺的代謝由第一階段O脫甲基化和第二階段與谷胱甘肽結(jié)合協(xié)同發(fā)揮作用,其中CYP450s介導(dǎo)的O脫甲基化反應(yīng)賦予長(zhǎng)芒莧對(duì)精異丙甲草胺的抗性[88]。Rangani等[89]發(fā)現(xiàn)ApGSTU19、ApGSTF8、ApGSTF2以及ApGSTF2like基因的過量表達(dá)使長(zhǎng)芒莧根系中GSTs活性升高,與長(zhǎng)芒莧對(duì)精異丙甲草胺的抗性密切相關(guān)。

2.9?雜草對(duì)對(duì)羥基苯丙酮酸雙加氧酶(HPPD)抑制劑的非靶標(biāo)抗性機(jī)制

HPPD抑制劑能抑制對(duì)羥基苯丙酮酸雙加氧酶的活性,阻礙對(duì)羥基苯基丙酮酸(HPPA)向尿黑酸(HGA)的轉(zhuǎn)化,使質(zhì)體醌和生育酚不能正常合成[90]。質(zhì)體醌對(duì)電子從PSⅡ向PSⅠ轉(zhuǎn)移至關(guān)重要,也是類胡蘿卜素形成所需的八氫番茄紅素去飽和酶(PDS)的輔助因子[91]。HPPD抑制劑類除草劑大多抑制類胡蘿卜素的形成,導(dǎo)致葉綠素分子的光氧化和細(xì)胞膜的脂質(zhì)過氧化,最終導(dǎo)致植物死亡[92]。

關(guān)于HPPD抑制劑的雜草抗性報(bào)道相對(duì)較少。截至目前,已經(jīng)發(fā)現(xiàn)的抗HPPD抑制劑的雜草非靶標(biāo)抗性主要是由CYT450s調(diào)控的除草劑代謝。抗硝磺草酮長(zhǎng)芒莧體內(nèi)的硝磺草酮在施用硝磺草酮24?h后被代謝90%以上[91]。并且抗硝磺草酮糙果莧可以通過二酮環(huán)的4羥基化促進(jìn)對(duì)硝磺草酮的代謝[93]。此外,研究發(fā)現(xiàn)與環(huán)磺酮敏感型長(zhǎng)芒莧相比,抗環(huán)磺酮植株中環(huán)磺酮被快速地4羥基化,糖基化,并伴隨著CYP450s的表達(dá)量增加[94]。Guo等[95]研究發(fā)現(xiàn),CYP81A亞家族可以提高稻稗E.oryzoides對(duì)異噁草酮的代謝抗性,進(jìn)而發(fā)現(xiàn)轉(zhuǎn)CYP81A12、CYP81A21、CYP81A15和CYP81A24基因的擬南芥對(duì)異噁草酮的抗性增加,表明CYP450s參與了異噁草酮的代謝[95]。此外,Hideo[96]在水稻中發(fā)現(xiàn)HIS?1基因編碼的Fe(Ⅱ)/2氧戊二酸依賴性加氧酶對(duì)β三酮類除草劑具有解毒作用,可以賦予水稻、擬南芥對(duì)β三酮類除草劑的抗性。但在雜草中是否存在與水稻相似的對(duì)HPPD類除草劑的代謝機(jī)制尚未得到證實(shí),值得進(jìn)一步深入研究。

3?展望

自除草劑普及后,抗性雜草的種類和數(shù)量逐年增多,抗性水平不斷提高,抗性雜草的治理難度也隨之增大。截至目前,我國(guó)已經(jīng)有74個(gè)抗性個(gè)體共44個(gè)生物型抗性雜草在玉米、大豆、水稻、小麥等主要作物田及果園中發(fā)生較為嚴(yán)重[3,97],如不加以研究和治理,將會(huì)嚴(yán)重影響產(chǎn)量,對(duì)我國(guó)糧食安全造成嚴(yán)重威脅。了解雜草抗性生物型對(duì)除草劑的抗性水平和抗性機(jī)制有助于定制有效的雜草管理策略。相比于靶標(biāo)抗性,非靶標(biāo)抗性對(duì)雜草綜合治理帶來的威脅更大。非靶標(biāo)抗性可能使雜草對(duì)不同作用機(jī)制的除草劑產(chǎn)生抗性,甚至對(duì)尚未上市的除草劑也會(huì)產(chǎn)生抗性。因此,了解非靶標(biāo)抗性的進(jìn)化機(jī)制,特別是CYP450s、GSTs、ABC轉(zhuǎn)運(yùn)蛋白等多種酶調(diào)控的作用機(jī)制尤為重要。隨著轉(zhuǎn)錄組學(xué)、代謝組學(xué)、基因編輯等技術(shù)被應(yīng)用到除草劑抗性機(jī)制的研究中,人們將更直觀地了解到雜草的非靶標(biāo)抗性機(jī)理,將對(duì)雜草抗藥性基因的挖掘、抗除草劑作物的培育、全新生物除草劑的開發(fā)以及雜草抗藥性的治理提供更多的參考依據(jù)。

參考文獻(xiàn)

[1]?張超宇.?我國(guó)除草劑的發(fā)展趨勢(shì)分析[J].?農(nóng)民致富之友,?2017(19):?119.

[2]?HAMILL?A?S,?HOLT?J?S,?MALLORYSMITH?C?A.?Contributions?of?weed?science?to?weed?control?and?management?[J].?Weed?Technology,?2004,?18:?15631565.

[3]?HEAP?I.?The?international?herbicideresistant?weed?database?[DB/OL].?[20221013].?http:∥www.weedscience.org.

[4]?韓慶莉,?沈嘉祥.?雜草抗藥性的形成、作用機(jī)理研究進(jìn)展[J].?云南農(nóng)業(yè)大學(xué)學(xué)報(bào),?2004(5):?556561.

[5]?畢亞玲,?李君君,?戴玲玲,?等.?雜草對(duì)除草劑非靶標(biāo)抗性機(jī)理研究進(jìn)展[J].?植物保護(hù),?2020,?46(5):?15.

[6]?李健,?李美,?高興祥,?等.?雜草抗藥性及其機(jī)理研究進(jìn)展[J].?山東農(nóng)業(yè)科學(xué),?2016,?48(12):?165170.

[7]?DLYE?C,?JASIENIUK?M,?CORRE?V?L.?Deciphering?the?evolution?of?herbicide?resistance?in?weeds?[J].?Trends?in?Genetics,?2013,?29(11):?649658.

[8]?白霜.?牛繁縷對(duì)苯磺隆代謝抗性基因的挖掘及功能驗(yàn)證[D].?泰安:?山東農(nóng)業(yè)大學(xué),?2019.

[9]?SANDERMANN?H.?Molecular?ecotoxicology?of?plants?[J].?Trends?in?Plant?Science,?2004,?9(8):?406413.

[10]PRESTON?C.?Inheritance?and?linkage?of?metabolismbased?herbicide?crossresistance?in?rigid?ryegrass?(Lolium?rigidum)?[J].?Weed?Science,?2003,?51(1):?412.

[11]HEAP?I.?Global?perspective?of?herbicideresistant?weeds?[J].?Pest?Management?Science,?2014,?70(9):?13061315.

[12]UMBARGER?H?E.?Amino?acid?biosynthesis?and?its?regulation?[J].?Annual?Review?of?Biochemistry,?1978,?47:?532606.

[13]ZHAO?Ning,?YAN Yanyan,?GE?Lu’an,?et?al.?Target?site?mutations?and?cytochrome?P450s?confer?resistance?to?fenoxapropPethyl?and?mesosulfuronmethyl?in?Alopecurus?aequalis?[J].?Pest?Management?Science,?2019,?75(1):?204214.

[14]顏伯俊.?細(xì)胞色素P450氧化酶介導(dǎo)的硬稃稗(Echinochloa?glabrescens)對(duì)五氟磺草胺的抗藥性機(jī)理研究[D].?南京:?南京農(nóng)業(yè)大學(xué),?2020.

[15]SHEN?Jing,?YANG?Qian,?HAO?Lubo,?et?al.?The?metabolism?of?a?novel?cytochrome?P450?(CYP77B34)?in?tribenuronmethylresistant?Descurainia?sophia?L.?to?herbicides?with?different?mode?of?actions?[J/OL].?International?Journal?of?Molecular?Sciences,?2022,?23(10):?5812.?DOI:?10.3390/ijms23105812.

[16]劉健,?房加鵬,?董立堯.?稻稗HJHL715種群對(duì)五氟磺草胺的抗藥性水平及抗性機(jī)理分析[J].?植物保護(hù)學(xué)報(bào),?2020,?47(1):?197204.

[17]SAIKA?H,?HORITA?J,?TAGUCHISHIOBARA?F,?et?al.?A?novel?rice?cytochrome?P450?gene,?CYP72A31,?confers?tolerance?to?acetolactate?synthaseinhibiting?herbicides?in?rice?and?Arabidopsis?[J].?Plant?Physiology,?2014,?166(3):?12321240.

[18]LIU?Weitang,?BAI?Shuang,?ZHAO?Ning,?et?al.?Nontarget?sitebased?resistance?to?tribenuronmethyl?and?essential?involved?genes?in?Myosoton?aquaticum?(L.)?[J/OL].?BMC?Plant?Biology,?2018,?18(1):?225.?DOI:?10.1186/s128700181451x.

[19]ZHAO?Ning,?LI?Wei,?BAI?Shuang,?et?al.?Transcriptome?profiling?to?identify?genes?involved?in?mesosulfuronmethyl?resistance?in?Alopecurus?aequalis?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1391.?DOI:?10.3389/fpls.2017.01391.

[20]DUHOUX?A,?CARRERE?S,?GOUZY?J,?et?al.?RNASeq?analysis?of?ryegrass?transcriptomic?response?to?an?herbicide?inhibiting?acetolactatesynthase?identifies?transcripts?linked?to?nontargetsitebased?resistance?[J].?Plant?Molecular?Biology,?2015,?87(4/5):?473487.

[21]YANG?Qian,?DENG?Wei,LI?Xuefeng,?et?al.?Targetsite?and?nontargetsite?based?resistance?to?the?herbicide?tribenuronmethyl?in?flixweed?(Descurainia?sophia?L.)?[J/OL].?BMC?Genomics,?2016,?17:?551.?DOI:?10.1186/s1286401629158.

[22]劉玉曉,?許曉明.?PSⅡ抑制劑作用位點(diǎn)的研究進(jìn)展和方法[J].?農(nóng)藥,?2007(3):?154158.

[23]NAKKA?S,?GODAR?A?S,?THOMPSON?C?R,?et?al.?Rapid?detoxification?via?glutathione?Stransferase?(GST)?conjugation?confers?a?high?level?of?atrazine?resistance?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Pest?Management?Science,?2017,?73(11):?22362243.

[24]EVANS?A?F,?O’BRIEN?S?R,?MA?R,?et?al.?Biochemical?characterization?of?metabolismbased?atrazine?resistance?in?Amaranthus?tuberculatus?and?identification?of?an?expressed?GST?associated?with?resistance?[J].?Plant?Biotechnology?Journal,?2017,?15(10):?12381249.

[25]VENNAPUSA?A?R,?FALECO?F,?VIEIRA?B,?et?al.?Prevalence?and?mechanism?of?atrazine?resistance?in?waterhemp?(Amaranthus?tuberculatus)?from?Nebraska?[J].?Weed?Science,?2018,?66(5):?595602.

[26]GRAY?J,?BALKE?N,?STOLTENBERG?D.?Increased?glutathione?conjugation?of?atrazine?confers?resistance?in?a?Wisconsin?velvetleaf?(Abutilon?theophrasti)?biotype?[J].?Pesticide?Biochemistry?and?Physiology,?1996,?55(3):?157171.

[27]BURNET?M?W?M,?LOVEYS?B?R,?HOLTUM?J?A?M,?et?al.?Increased?detoxification?is?a?mechanism?of?simazine?resistance?in?Lolium?rigidum?[J].?Pesticide?Biochemistry?and?Physiology,?1993,?46(3):?207218.

[28]SVYANTEK?A?W,?ALDAHIR?P,?CHEN?S,?et?al.?Target?and?nontarget?resistance?mechanisms?induce?annual?bluegrass?(Poa?annua)?resistance?to?atrazine,?amicarbazone,?and?diuron?[J].?Weed?Technology,?2016,?30(3):?773782.

[29]DUKE?S?O,?POWLES?S?B.?Glyphosate:?a?onceinacentury?herbicide?[J].?Pest?Management?Science,?2008,?64(4):?319325.

[30]ROBERTS?F.?Evidence?for?the?shikimate?pathway?in?apicomplexan?parasites?[J].?Nature,?1998,?393(6687):?801805.

[31]蘇少泉.?草甘膦述評(píng)[J].?農(nóng)藥,?2005(4):?145149.

[32]PENG?Yanhui,?ABERCROMBIE?L?L?G,?YUAN?J?S,?et?al.?Characterization?of?the?horseweed?(Conyza?canadensis)?transcriptome?using?GSFLX?454?pyrosequencing?and?its?application?for expression?analysis?of?candidate?nontarget?herbicide?resistance?genes?[J].?Pest?Management?Science,?2010,?66(10):?10531062.

[33]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?Rapid?vacuolar?sequestration:?the?horseweed?glyphosate?resistance?mechanism?[J].?Pest?Management?Science,?2010,?66(4):?345348.

[34]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?Vacuolar?glyphosatesequestration?correlates?with?glyphosate?resistance?in?ryegrass?(Lolium?spp.)?from?Australia,?south?America,?and?Europe:?a?P31?NMR?investigation?[J].?Journal?of?Agricultural?and?Food?Chemistry,?2012,?60(5):?12431250.

[35]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?In?vivo?31P-nuclear?magnetic?resonance?studies?of?glyphosate?uptake,?vacuolar?sequestration,?and?tonoplast?pump?activity?in?glyphosateresistant?horseweed?[J].?Plant?Physiology,?2014,?166(3):?12551268.

[36]PAN?Lang,?YU?Qin,?WANG?Junzhi,?et?al.?An?ABCCtype?transporter?endowing?glyphosate?resistance?in?plants [J/OL].?Proceedings?of?the?National?Academy?of?Sciences?of?the?United?States?of?America,?2021,?118(16):?e2100136118.?DOI:?10.1073/pnas.2100136118.

[37]CARVALHO?L,?ROJANODELGADO?A,?ALVES?P?L,?et?al.?Differential?content?of?glyphosate?and?its?metabolites?in?Digitaria?insularis?biotypes?[J].?Communications?in?Plant?Sciences,?2013,?3(3/4):?1720.

[38]GONZALEZTORRALVA?F,?ROJANODELGADO?A?M,?DE?CASTRO?M?D?L,?et?al.?Two?nontarget?mechanisms?are?involved?in?glyphosateresistant?horseweed?(Conyza?canadensis?L.?Cronq.)?biotypes?[J].?Journal?of?Plant?Physiology,?2012,?169(17):?16731679.

[39]VEMANNA?R?S,?VENNAPUSA?A?R,?EASWARAN?M,?et?al.?Aldoketo?reductase?enzymes?detoxify?glyphosate?and?improve?herbicide?resistance?in?plants?[J].?Plant?Biotechnology?Journal,?2017,?15(7):?794804.

[40]PAN?Lang,?YU?Qin,?HAN?Heping,?et?al.?Aldoketo?reductase?metabolizes?glyphosate?and?confers?glyphosate?resistance?in?Echinochloa?colona?[J].?Plant?Physiology,?2019,?181(4):?15191534.

[41]PLACIDO?H?F,?SANTOS?R?F,?OLIVEIRA?R?S,?et?al.?Morphological?characterization?of?the?foliar?surface?in?glyphosateresistant?tall?windmill?grass?[J].?Agronomy?Journal,?2022,?114(1):?641650.

[42]CECHIN?J,?PIASECKI?C,?BENEMANN?D?P,?et?al.?Transcriptome?analysis?identifies?candidate?target?genes?involved?in?glyphosateresistance?mechanism?in?Lolium?multiflorum?[J/OL].?Plants,?2020,?9(6):?685.?DOI:?10.3390/plants9060685.

[43]DOMINGUEZVALENZUELA?J?A,?DE?LA?CRUZ?R?A,?PALMABAUTISTA?C,?et?al.?Nontarget?site?mechanisms?endow?resistance?to?glyphosate?in?saltmarsh?aster?(Aster?squamatus)?[J/OL].?Plants,?2021,?10(9):?1970.?DOI:?10.3390/plants10091970.

[44]YANNICCARI?M,?VAZQUEZGARCIA?J?G,?GOMEZLOBATO?M?E,?et?al.?First?case?of?glyphosate?resistance?in?Bromus?catharticus?Vahl.:?examination?of?endowing?resistance?mechanisms?[J/OL].?Frontiers?in?Plant?Science,?2021,?12:?617945.?DOI:?10.3389/fpls.2021.617945.

[45]VAN?HORN?C?R,?MORETTI?M?L,?ROBERTSON?R?R,?et?al.?Glyphosate?resistance?in?Ambrosia?trifida:?Part?1.?Novel?rapid?cell?death?response?to?glyphosate?[J].?Pest?Management?Science,?2018,?74(5):?10711078.

[46]MORETTI?M?L,?VAN?HORN?C?R,?ROBERTSON?R,?et?al.?Glyphosate?resistance?in?Ambrosia?trifida:?Part?2.?Rapid?response?physiology?and?nontargetsite?resistance?[J].?Pest?Management?Science,?2018,?74(5):?10791088.

[47]NIKOLSKAYA?T,?ZAGNITKO?O,?TEVZADZE?G,?et?al.?Herbicide?sensitivity?determinant?of?wheat?plastid?acetylCoA?carboxylase?is?located?in?a?400amino?acid?fragment?of?the?carboxyltransferase?domain?[J].?Proceedings?of?the?National?Academy?of?Sciences?of?the?United?States?of?America,?1999,?96(25):?1464714651.

[48]李永豐,?張自常,?楊霞,?等.?稻田稗屬雜草對(duì)芳氧苯氧丙酸酯類除草劑的差異敏感性及其機(jī)理[J].?江蘇農(nóng)業(yè)學(xué)報(bào),?2015,?31(3):?543551.

[49]BUSI?R,?VILAAIUB?M?M,?POWLES?S?B.?Genetic?control?of?a?cytochrome?P450?metabolismbased?herbicide?resistance?mechanism?in?Lolium?rigidum?[J].?Heredity,?2011,?106(5):?817824.

[50]GAINES?T?A,?LORENTZ?L,?FIGGE?A,?et?al.?RNASeq?transcriptome?analysis?to?identify?genes?involved?in?metabolismbased?diclofop?resistance?in?Lolium?rigidum?[J].?Plant?Journal,?2014,?78(5):?865876.

[51]YU?Qin,?HAN?Hepin,?CAWTHRAY?G?R,?et?al.?Enhanced?rates?of?herbicide?metabolism?in?low?herbicidedose?selected?resistant?Lolium?rigidum?[J].?Plant?Cell?and?Environment,?2013,?36(4):?818827.

[52]AHMADHAMDANI?M?S,?YU?Qin,?HAN?Heping,?et?al.?Herbicide?resistance?endowed?by?enhanced?rates?of?herbicide?metabolism?in?wild?oat?(Avena?spp.)?[J].?Weed?Science,?2013,?61(1):?5562.

[53]FENG?Yujuan,?GAO?Yuan,?ZHANG?Yong,?et?al.?Mechanisms?of?resistance?to?pyroxsulam?and?ACCase?inhibitors?in?Japanese?foxtail?(Alopecurus?japonicus)?[J].?Weed?Science,?2016,?64(4):?695704.

[54]ZHAO?Ning,?GE?Lu’an,?YAN?Yanyan,?et?al.?Trp1999Ser?mutation?of?acetylCoA?carboxylase?and?cytochrome?P450sinvolved?metabolism?confer?resistance?to?fenoxapropPethyl?in?Polypogon?fugax?[J].?Pest?Management?Science,?2019,?75(12):?31753183.

[55]HAN?Heping,?YU?Qin,?CAWTHRAY?G?R,?et?al.?Enhanced?herbicide?metabolism?induced?by?2,4D?in?herbicide?susceptible?Lolium?rigidum?provides?protection?against?diclofopmethyl?[J].?Pest?Management?Science,?2013,?69(9):?9961000.

[56]彭謙.?稗草谷胱甘肽S轉(zhuǎn)移酶在抗噁唑酰草胺代謝抗性中的作用[D].?武漢:?華中農(nóng)業(yè)大學(xué),?2020.

[57]PAN?Lang,?LI?Jun,?ZHANG?Teng,?et?al.?Crossresistance?patterns?to?acetyl?coenzyme?A?carboxylase?(ACCase)?inhibitors?associated?with?different?ACCase?mutations?in?Beckmannia?syzigachne?[J].?Weed?Research,?2015,?55(6):?609620.

[58]BUSI?R,?GOGGIN?D?E,?HEAP?I?M,?et?al.?Weed?resistance?to?synthetic?auxin?herbicides?[J].?Pest?Management?Science,?2018,?74(10):?22652276.

[59]GROSSMANN?K.?Auxin?herbicides:?current?status?of?mechanism?and?mode?of?action?[J].?Pest?Management?Science,?2010,?66(2):?113120.

[60]KOHLER?E?A,?THROSSELL?C?S,?REICHER?Z?J.?2,4D?rate?response,?absorption,?and?translocation?of?two?ground?ivy?(Glechoma?hederacea)?populations?[J].?Weed?Technology,?2004,?18(4):?917923.

[61]RIAR?D?S,?BURKE?I?C,?YENISH?J?P,?et?al.?Inheritance?and?physiological?basis?for?2,4D?resistance?in?prickly?lettuce (Lactuca?serriola?L.)?[J].?Journal?of?Agricultural?and?Food?Chemistry,?2011,?59(17):?94179423.

[62]DANG?H,?MALONE?J?M,?BOUTSALIS?P,?et?al.?Reduced?translocation?in?2,4Dresistant?oriental?mustard?populations?(Sisymbrium?orientale?L.)?from?Australia?[J].?Pest?Management?Science,?2018,?74(6):?15241532.

[63]葉萱.?雜草對(duì)合成生長(zhǎng)素類除草劑的抗性[J].?世界農(nóng)藥,?2018,?40(6):?18.

[64]FIGUEIREDO?M?R?A,?LEIBHART?L?J,?REICHER?Z?J,?et?al.?Metabolism?of?2,4dichlorophenoxyacetic?acid?contributes?to?resistance?in?a?common?waterhemp?(Amaranthus?tuberculatus)?population?[J].?Pest?Management?Science,?2018,?74(10):?23562362.

[65]TORRA?J,?ROJANODELGADO?A?M,?REYCABALLERO?J,?et?al.?Enhanced?2,4D?metabolism?in?two?resistant?Papaver?rhoeas?populations?from?Spain?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1584.?DOI:?10.3389/fpls.2017.01584.

[66]SHERGILL?L?S,?BISH?M?D,?JUGULAM?M,?et?al.?Molecular?and?physiological?characterization?of?sixway?resistance?in?an?Amaranthus?tuberculatus?var.?rudis?biotype?from?Missouri?[J].?Pest?Management?Science,?2018,?74(12):?26882698.

[67]SHYAM?C,?PETERSON?D?E,?JUGULAM?M.?Resistance?to?2,4D?in?Palmer?amaranth?(Amaranthus?palmeri)?from?Kansas?is?mediated?by?enhanced?metabolism?[J].?Weed?Science,?2022,?70(4):?390400.

[68]HAWKES?T?R.?Mechanisms?of?resistance?to?paraquat?in?plants?[J].?Pest?Management?Science,?2014,?70(9):?13161323.

[69]GUTTERIDGE?J?M.?Lipid?peroxidation?initiated?by?superoxidedependent?hydroxyl?radicals?using?complexed?iron?and?hydrogen?peroxide?[J].?FEBS?letters,?1984,?172(2):?245249.

[70]YU?Qin,?HUANG?Shaobai,?POWLES?S.?Direct?measurement?of?paraquat?in?leaf?protoplasts?indicates?vacuolar?paraquat?sequestration?as?a?resistance?mechanism?in?Lolium?rigidum?[J].?Pesticide?Biochemistry?and?Physiology,?2010,?98(1):?104109.

[71]BRUNHARO?C,?HANSON?B?D.?Vacuolar?sequestration?of?paraquat?is?involved?in?the?resistance?mechanism?in?Lolium?perenne?L.?spp.?multiflorum?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1485.?DOI:?10.3389/fpls.2017.01485.

[72]張玉池,?王曉蕾,?徐文蓉,?等.?國(guó)內(nèi)外抗除草劑基因?qū)@姆治觯跩].?雜草學(xué)報(bào),?2017,?35(2):?122.

[73]SHERMAN?T?D,?BECERRIL?J?M,?MATSUMOTO?H,?et?al.?Physiological?basis?for?differential?sensitivities?of?plant?species?to?protoporphyrinogen?oxidaseinhibiting?herbicides?[J].?Plant?Physiology,?1991,?97(1):?280287.

[74]石小清,?沈曉霞,?王阿國(guó),?等.?原卟啉原氧化酶抑制劑研究與開發(fā)進(jìn)展[J].?浙江化工,?2000(3):?3537.

[75]HUANG?Zhaofeng,?CUI?Hailan,?WANG?Chunyu,?et?al.?Investigation?of?resistance?mechanism?to?fomesafen?in?Amaranthus?retroflexus?L?[J/OL].?Pesticide?Biochemistry?and?Physiology,?2020,?165:?104560.?DOI:?10.1016/j.pestbp.2020.104560.

[76]滕春紅,?王星茗,?崔書芳,?等.?黑龍江省大豆田反枝莧對(duì)氟磺胺草醚的抗藥性機(jī)制研究[J].?植物保護(hù),?2019,?45(5):?197201.

[77]DU?Long,?LI?Xiao,?JIANG?Xiaojing,?et?al.?Targetsite?basis?for?fomesafen?resistance?in?redroot?pigweed?(Amaranthus?retroflexus)?from China?[J].?Weed?Science,?2021,?69(3):?290299.

[78]OBENLAND?O,?MA?R,?O’BRIEN?S,?et?al.?Carfentrazoneethyl?resistance?in?an?Amaranthus?tuberculatus?population?is?not?mediated?by?amino?acid?alterations?in?the?PPO2?protein?[J/OL].?PLoS?ONE,?2019,?14:?e0215431.?DOI:?10.1371/journal.pone.0215431.

[79]VARANASI?V?K,?BRABHAM?C,?NORSWORTHY?J?K.?Confirmation?and?characterization?of?nontarget?site?resistance?to?fomesafen?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Weed?Science,?2018,?66(6):?702709.

[80]VARANASI?V?K,?BRABHAM?C,?KORRES?N?E,?et?al.?Nontarget?site?resistance?in?Palmer?amaranth?Amaranthus?palmeri?(S.)?Wats.?confers?crossresistance?to?protoporphyrinogen?oxidaseinhibiting?herbicides?[J].?Weed?Technology,?2019,?33(2):?349354.

[81]TANETANI?Y,?KAKU?K,?KAWAI?K,?et?al.?Action?mechanism?of?a?novel?herbicide,?pyroxasulfone?[J].?Pesticide?Biochemistry?and?Physiology,?2009,?95(1):?4755.

[82]BUSI?R.?Resistance?to?herbicides?inhibiting?the?biosynthesis?of?verylongchain?fatty?acids?[J].?Pest?Management?Science,?2014,?70(9):?13781384.

[83]LECHELTKUNZE?C,?MEISSNER?R?C,?DREWES?M,?et?al.?Flufenacet?herbicide?treatment?phenocopies?the?fiddlehead?mutant?in?Arabidopsis?thaliana?[J].?Pest?Management?Science,?2003,?59(8):?847856.

[84]MARKHAM?J?E,?MOLINO?D,?GISSOT?L,?et?al.?Sphingolipids?containing?verylongchain?fatty?acids?define?a?secretory?pathway?for?specific?polar?plasma?membrane?protein?targeting?in?Arabidopsis?[J].?Plant?Cell,?2011,?23(6):?23622378.

[85]BUSI?R,?PORRI?A,?GAINES?T?A,?et?al.?Pyroxasulfone?resistance?in?Lolium?rigidum?is?metabolismbased?[J].?Pesticide?Biochemistry?and?Physiology,?2018,?148:?7480.

[86]BRABHAM?C,?NORSWORTHY?J?K,?HOUSTON?M?M,?et?al.?Confirmation?of?Smetolachlor?resistance?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Weed?Technology,?2019,?33(5):?720726.

[87]STROM?S?A,?HAGER?A?G,?SEITER?N?J,?et?al.?Metabolic?resistance?to?Smetolachlor?in?two?waterhemp?(Amaranthus?tuberculatus)?populations?from?Illinois,?USA?[J].?Pest?Management?Science,?2020,?76(9):?31393148.

[88]STROM?S?A,?HAGER?A?G,?CONCEPCION?J?C?T,?et?al.?Metabolic?pathways?for?Smetolachlor?detoxification?differ?between?tolerant?corn?and?multipleresistant?waterhemp?[J].?Plant?and?Cell?Physiology,?2021,?62(11):?17701785.

[89]RANGANI?G,?NOGUERA?M,?SALASPEREZ?R,?et?al.?Mechanism?of?resistance?to?Smetolachlor?in?Palmer?amaranth?[J/OL].?Frontiers?in?Plant?Science,?2021,?12:?652581.?DOI:?10.3389/fpls.2021.652581.

[90]柏亞羅.?HPPD抑制劑類除草劑的產(chǎn)品研發(fā)及市場(chǎng)概況[J].?世界農(nóng)藥,?2021,?43(5):?113.

[91]NAKKA?S,?GODAR?A?S,?WANI?P?S,?et?al.?Physiological?and?molecular?characterization?of?hydroxyphenylpyruvate?dioxygenase?(HPPD)inhibitor?resistance?in?Palmer?amaranth?(Amaranthus?palmeri?S.?Wats.)?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?555.?DOI:?10.3389/fpls.2017.00555.

[92]姜麗麗.?新型二酮腈類HPPD抑制劑的設(shè)計(jì)、合成及除草活性[D].?武漢:?華中師范大學(xué),?2015.

[93]KAUNDUN?S?S,?HUTCHINGS?S?J,?DALE?R?P,?et?al.?Mechanism?of?resistance?to?mesotrione?in?an?Amaranthus?tuberculatus?population?from?Nebraska,?USA?[J/OL].?PLoS?ONE,?2017,?12(6):?e0180095.?DOI:?10.1371/journal.pone.0180095.

[94]KUPPER?A,?PETER?F,?ZOLLNER?P,?et?al.?Tembotrione?detoxification?in?4hydroxyphenylpyruvate?dioxygenase?(HPPD)?inhibitorresistant?Palmer?amaranth?(Amaranthus?palmeri?S.?Wats.)?[J].?Pest?Management?Science,?2018,?74(10):?23252334.

[95]GUO?Feng,?IWAKAMI?S,?YAMAGUCHI?T,?et?al.?Role?of?CYP81A?cytochrome?P450s?in?clomazone?metabolism?in?Echinochloa?phyllopogon?[J].?Plant?Science,?2019,?283:?321328.

[96]HIDEO?M.?A?rice?gene?that?confers?broadspectrum?resistance?to?βtriketone?herbicides?[J].?Science,?2019,?365(6451):?393396.

[97]張翔鶴,?滿芮,?王曉麗,?等.?2013-2018年中國(guó)主要作物田雜草發(fā)生危害數(shù)據(jù)集[J].?中國(guó)科學(xué)數(shù)據(jù)(中英文網(wǎng)絡(luò)版),?2021,?6(4):?196205.

(責(zé)任編輯:楊明麗)

猜你喜歡
除草劑雜草
拔雜草
洪洞:立即防除麥田雜草
拔掉心中的雜草
封閉式除草劑什么時(shí)間噴最合適
如何正確選擇使用農(nóng)藥及除草劑
除草劑引起作物的受害癥狀及預(yù)防
玉米田除草劑的那些事
水稻田幾種難防雜草的防治
兩種除草劑對(duì)棉田三棱草的防除效果
加拿大:擬修訂除草劑Pyroxasulfone的最大殘留限量
主站蜘蛛池模板: P尤物久久99国产综合精品| 无码精品国产VA在线观看DVD| 四虎成人在线视频| 91色在线观看| 亚洲三级色| 国产精品欧美日本韩免费一区二区三区不卡| 2020国产精品视频| 老熟妇喷水一区二区三区| 日韩国产亚洲一区二区在线观看| 亚洲国产清纯| 亚洲第一国产综合| 欧美精品亚洲日韩a| 欧美成人综合在线| 夜精品a一区二区三区| 欧美精品在线观看视频| 国产精品3p视频| 97在线公开视频| 日本国产精品一区久久久| 欧美一级夜夜爽| 91探花在线观看国产最新| 婷婷色丁香综合激情| 国产在线欧美| 在线毛片网站| a级毛片在线免费| 国产成人区在线观看视频| av在线5g无码天天| 日韩精品资源| a毛片在线免费观看| 国产精品男人的天堂| 亚洲福利视频一区二区| 91区国产福利在线观看午夜| 亚洲人成网站日本片| 人人妻人人澡人人爽欧美一区 | 成人午夜福利视频| 片在线无码观看| 婷婷色一二三区波多野衣| 精品一区二区三区自慰喷水| 亚洲天堂在线免费| 爆乳熟妇一区二区三区| 国产成人精品第一区二区| 天堂va亚洲va欧美va国产| 99久久性生片| 成年人国产网站| 欧美丝袜高跟鞋一区二区| 四虎永久免费地址| 一级香蕉人体视频| 91青青草视频在线观看的| 青青国产在线| 欧美一级一级做性视频| 国产18在线播放| 亚洲视频在线网| 91久久偷偷做嫩草影院| 欧美啪啪一区| 欧美成人午夜影院| 国产在线97| www欧美在线观看| 天天做天天爱天天爽综合区| 午夜精品一区二区蜜桃| 国产sm重味一区二区三区| 久久特级毛片| 国产丝袜91| 久久无码高潮喷水| 美女无遮挡拍拍拍免费视频| 国产精品99久久久久久董美香| 成人在线第一页| 一本色道久久88| 亚洲欧美国产视频| 久久天天躁狠狠躁夜夜2020一| 久久国产高潮流白浆免费观看| 91久久青青草原精品国产| 国产h视频免费观看| 色婷婷狠狠干| 亚洲无限乱码一二三四区| 国内自拍久第一页| 99er精品视频| 久久婷婷色综合老司机| 国产全黄a一级毛片| 真人高潮娇喘嗯啊在线观看 | 欧美日本视频在线观看| 久久99蜜桃精品久久久久小说| 欧日韩在线不卡视频| 国产精品人莉莉成在线播放|