余龍 邱華 顧鵬









摘要:利用溫差發電的柔性熱電器件具有可持續、環保和可穿戴的優點,但是多數熱電器件需要利用金屬電極相互連接,這在一定程度上降低了熱電器件的整體性能。本文利用OA和FeCl對碳納米管纖維進行N型和P型摻雜,制備了無需金屬電極連接的具有連續PN結構的熱電纖維,并且利用熱電纖維制備了3D熱電器件。結果顯示,N型和P型碳納米管纖維基熱電纖維分別具有-69.7、62.2 μV/K的高塞貝克系數和552.9、431.4 μW/(m·K)的高功率因數,3D熱電器件能夠利用人體與環境之間垂直方向上的溫差產生開路電壓,并可用作簡單的溫度傳感器。這種3D熱電器件具有優異的熱電性能,在柔性自供電領域有廣泛的應用前景。
關鍵詞:碳納米管纖維;PN結構;熱電纖維;熱電器件;溫度傳感器
中圖分類號:TS101.921
文獻標志碼:A
文章編號:10017003(2024)02006007
DOI:10.3969/j.issn.1001-7003.2024.02.007
收稿日期:20230706;
修回日期:20231215
基金項目:國家中醫藥管理局創新團隊與人才培養計劃項目(ZYYCXTD-D-202206)
作者簡介:余龍(1997),男,碩士研究生,研究方向為碳納米管纖維的智能穿戴應用。通信作者:邱華,教授,qiuhua@jiangnan.edu.cn。
人體作為一座巨大的能源庫,收集并利用這些能量在發展智能可穿戴設備中顯得尤為重要。熱電材料(thermoelectricity, TE)是一種利用材料內部載流子的運動實現熱能和電能相互轉換的功能材料。熱電材料是基于塞貝克效應設計的,當熱電材料的兩端(熱端和冷端)存在溫度差時,材料中的電荷載流子會從熱端擴散到冷端,產生熱電電壓。人作為一種恒溫動物,其散發的熱量是一種源源不斷的能源,基于熱電轉換系統制備的能夠將人體熱量轉換為電能的可穿戴熱電發電器件,被視為解決可穿戴電子設備能源問題的有效方案之一。傳統的無機TE材料(Bi、Te、Sb和Se等)組成的PN結構熱電器件表現出較高的性能,但是它們具有一定的毒性,并且質量重和剛性不足等限制了它們在柔性熱電設備中的應用。
通常,為了提高熱電器件的轉換效率,典型的熱電器件結構由P型和N型支腿串聯構成。P型和N型可以通過塞貝克系數來判斷,P型表現為正塞貝克系數,而N型表現為負塞貝克系數。碳納米管(carbon nanotubes,CNTs)由于其優異的導電性和可控的塞貝克系數成為傳統無機TE材料的理想替代品[。大多數基于CNTs的柔性熱電器件是通過交替堆疊或印刷P型和N型CNTs膜,并將金屬沉積作為P型和N型單元之間的電極來制造的。但是通過金屬電極連接P型和N型支腿會增加接觸電阻,這在一定程度上會降低熱電器件的輸出功率。這種傳統的柔性熱電器件通常是在平面內排列或堆疊一系列薄膜來組裝的,這在本質上也是一種二維結構,僅能收集面內方向的熱能,但人體與環境之間主要是垂直方向上的溫度梯度,此時二維結構的PN支腿難以滿足垂直方向上熱電轉換。
碳納米管纖維由于其優異的導電性、柔韌性、質量輕和可擴展性而成為柔性可穿戴熱電器件基體的理想選擇,并且可以很輕松地將碳納米管纖維與立體結構相結合,快速地把2D結構轉換成3D結構,實現人體與環境之間垂直方向上的熱電轉換。碳納米管纖維在富氧環境中表現出P型半導體特性,需要將P型改變成N型性質,摻雜是實現N型碳納米管的最有效方法。目前,含胺基團試劑,如聚乙烯亞胺(polyethyleneimine, PEI)和油胺(oleylamine, OA)等,以及含膦基試劑,如1,3-雙(二苯基膦)丙烷(1,3-bis(diphenylphosphino) propane, DPPP)和三苯基膦(triphenylphosphine, TPP)等已被證明可以實現碳納米管從P型到N型的轉換。在熱電中,功率數與塞貝克系數和電導率有關,因此如何平衡兩者的關系對于提高TE性能至關重要。
本文以OA作為碳納米管纖維的N型摻雜劑,氯化鐵(ferric chloride,FeCl)作為增強碳納米管纖維P型特性的P
型摻雜劑,制備無需金屬電極連接的具有連續PN結構的熱電纖維,N型和P型碳納米管纖維分別具有-69.7 μV/K和62.2 μV/K的高塞貝克系數,以及552.9 μW/(m·K)和431.4 μW/(m·K)的高功率因數,并且在108 h后N型碳納米管纖維的塞貝克系數未出現明顯的降低,表現出良好的穩定性。將熱電纖維纏繞在硅膠條上,成功地制作了能夠利用垂直方向上的溫差發電的3D熱電器件,這種熱電器件具有良好的熱電轉換能力,并且表現出良好的溫度響應。
1 實 驗
1.1 原 料
碳納米管纖維以乙醇為碳源,通過浮動催化劑化學氣相沉積法制備,直徑約為120 μm(自備)。FeCl、OA和乙醇均為分析純(國藥集團化學試劑有限公司),硅膠條(河北碩宗橡膠制品有限公司)。
1.2 儀 器
紅外熱成像儀(上海熱像科技股份有限公司),Keithley 6510萬用電表(泰克科技(中國)有限公司),TA612C熱電偶溫度計(蘇州特安斯電子有限公司),SU8100場發射電子顯微鏡(日本株式會社日立高新技術),inVia Reflex顯微共聚焦拉曼光譜儀(英國雷尼紹公司)。電化學工作站(CS150H, 武漢Corrtest儀器有限公司)。采用自制裝置測量纖維的塞貝克系數,裝置包括加熱片、萬用電表、紅外熱成像儀和散熱器,如圖1所示。
1.3 PN結構3D熱電器件的摻雜和制備
P型和N型摻雜劑的配置:根據文獻[13]和實驗探索,將一定量OA加入到乙醇溶液中,配置成摩爾質量濃度為0.05、0.1、0.2、0.5 g/mL的OA溶液,超聲10 min,作為N型摻雜劑;將FeCl加入到乙醇溶液中,配置成摩爾濃度為10、5、2.5、1.25 mmol/L的FeCl溶液,超聲10 min,作為P型摻雜劑。將碳納米管纖維用去離子水和乙醇洗滌3次,以除去纖維表面的灰塵和雜質,再小心地纏繞在尺寸為4 cm×4 cm×10 cm(寬×高×長)的硅膠條上,間隔距離為1 mm,制備成具有60對PN結構的3D熱電器件。將3D熱電器件的兩個對稱面分別在常溫下浸漬于OA溶液和FeCl溶液中10 min,隨后在60℃烘箱中烘干,形成N型和P型結構,未摻雜區域用作電極將N型和P型纖維串聯。
1.4 測試與表征
1.4.1 SEM和EDS測試
使用場發射電子顯微鏡觀察原始碳納米管纖維和PN摻雜后碳納米管纖維的表面形貌,并對纖維表面進行EDS元素掃描分析。首先剪取摻雜前后的纖維,用導電膠粘貼后放置于樣品臺上,然后對樣品進行1 min噴金處理,噴金完成后在場發射電子顯微鏡里用不同倍數觀察樣品形貌,并進行EDS元素掃描分析。
1.4.2 拉曼測試
使用顯微共聚焦拉曼光譜儀對摻雜前后的碳納米管纖維進行拉曼光譜測試分析。首先剪取一定長度摻雜前后的碳納米管纖維,固定于錫紙上,再將錫紙固定在載玻片上,然后放置于拉曼光譜儀上使用532 nm波長進行拉曼光譜分析。
1.4.3 電導率和塞貝克系數測試
使用加熱片給碳納米管纖維一端加熱,紅外熱成像儀監測碳納米管纖維兩端溫度,使用萬用電表讀取碳納米管纖維的電阻和開路電壓。首先,剪取一定長度摻雜前后的碳納米管纖維,使用萬用電表測量纖維的電阻,結合電鏡圖像測量纖維的直徑。再根據下式計算纖維的電導率:
式中:σ為電導率,l為樣品長度,R為樣品電阻,S為樣品橫截面面積。
使用導電銀漿將纖維一端固定在加熱片上,另一端固定在常溫固體上,熱端連接萬用電表正極,冷端連接萬用電表負極,通電使加熱片加熱,測量纖維兩端的溫差和開路電壓。根據下式計算塞貝克系數:
式中:s為塞貝克系數,ΔV為樣品兩端開路電壓,ΔT為樣品兩端溫差。
1.4.4 N型碳納米管纖維空氣穩定性測試
使用紅外熱成像儀監測碳納米管纖維兩端溫度,再使用萬用電表讀取碳納米管纖維的開路電壓,隨后計算塞貝克系數。根據1.4.3所述方法,樣品置于空氣環境中,每隔12 h計算一次塞貝克系數,計算并統計9次測量后的數據。
1.4.5 3D熱電器件熱電性能測試
使用萬用電表測量熱電器件的開路電壓,熱電偶溫度計測量熱端和冷端的溫度。首先,將熱電器件兩端與萬用電表正負極連接,在未摻雜區域給與熱源形成熱端和冷端,并用熱電偶測量兩端溫度,經過多次測量記錄3D熱電器件的開路電壓。通過電化學工作站測量輸出電壓和電流的關系,并計算輸出功率。
2 結果與分析
2.1 PN摻雜碳納米管纖維的形貌結構分析
圖2為摻雜前后碳納米管纖維的表面形貌及元素分析。其中,圖2(a~c)分別為原始碳納米管纖維、N型摻雜后的碳納米管纖維和P型摻雜后的碳納米管纖維的表面形貌??梢悦黠@看出,原始碳納米管纖維表面有許多分散的碳納米管束網絡,N型摻雜過后這種碳納米管束網絡變得模糊,碳納米管束變厚,這是由于部分OA分子滲透到碳納米管纖維內部,其余的包覆在碳納米管表面。對于P型碳納米管纖維,表面碳納米管束的消失可能是由于纖維致密化導致的。OA分子和FeCl滲透到碳納米管纖維內部與碳納米管摻雜在一起,用以將纖維改變為N型和提高P型性能。與此同時,圖2(d~f)分別為C元素、N元素和Fe元素的EDS圖像,其中C元素來自原始碳納米管,N元素來自N型摻雜的OA分子,Fe元素來自P型摻雜的FeCl。由于FeCl溶液摩爾濃度較低,在纖維表面含量較少,所以Fe元素的EDS顯示含量較少,但這并不影響纖維的P型性能。EDS圖像清楚地表明OA和FeCl成功摻雜到碳納米管纖維上。
圖3為原始碳納米管纖維和N型摻雜后碳納米管纖維的拉曼光譜圖。拉曼光譜圖清晰地顯示了碳納米管的典型波段,分別為1 573 cm處的G峰和1 324 cm的D峰。 D峰表示納米管連續石墨化的結構缺陷,而G峰與沿碳納米管平面的碳原子振動有關。當分子共價鍵合到碳納米管的側壁上時,sp的雜化(G峰)轉換為sp雜化(D峰)。D峰與G峰比值(I/I)通常用來分析處理后的碳納米管的紊亂程度,也可以定性地表示共價連接的OA的量。由圖3可以看出,I/I從0.21增加到0.36,這說明OA分子和碳納米管之間存在共價和非共價相互作用,導致部分sp雜化碳向sp雜化碳轉變,I/I值增加。另外,P型碳納米管纖維的I/I為0.20,這表明FeCl的引入并不會破壞碳納米管原有的結構。
2.2 PN摻雜碳納米管纖維的熱電性能分析
原始碳納米管纖維具有正塞貝克系數,表現出P型特性,這是由于碳納米管纖維吸附空氣中的正離子,這些正離子可以捕獲電子,從而引入空穴,通過摻雜工藝可以將P型碳納米管纖維轉變為N型。一般來說,表面電荷轉移摻雜更加簡單。通過在CNTs表面吸附具有供電子基團的分子可以誘導N型摻雜,相反,吸附具有吸電子基團的分子將導致P型摻雜。為了將P型碳納米管纖維改變為N型,聚乙烯亞胺、三苯基膦和1,3-雙(二苯膦)丙烷等已經被用于N型摻雜劑。另外,FeCl和4-羥基咔唑也被用于P型摻雜劑。本文利用OA和FeCl作為N型和P型摻雜劑,采用簡單的浸漬法一步摻雜,得到具有PN結構的碳納米管纖維。如圖4(a)所示,碳納米管纖維浸漬在0.01 g/mL的OA溶液中后,塞貝克系數變為-23 μV/K,由正變負,這是由于OA分子中的給電子基團將大量電子注入碳納米管中,導致碳納米管中的空穴被占據,這也是碳納米管纖維從P型變為N型的標志。隨著OA質量濃度的提高,負塞貝克系數迅速增加,在0.2 g/mL時到達最大值-69.7 μV/K。在此之后,如圖4(b)所示,電導率隨著OA質量濃度的提高先增加后下降,這可能是由于過量的OA導致絕緣涂層,阻礙了碳納米管中的電荷轉移。為了更加直觀地看出OA摻雜對碳納米管纖維的影響,計算出各個質量濃度下N型摻雜的功率因數。如圖4(b)所示,可以看出,當質量濃度為0.2 g/mL時,N型碳納米管纖維的功率因數達到最大值552.9 μW/(m·K),隨后由于電導率下降,功率因數隨之減小。
圖5是不同摩爾濃度FeCl溶液對碳納米管纖維的P型摻雜結果。FeCl之所以能夠作為P型摻雜劑,是因為電荷能夠從CNTs價帶轉移到FeCl,從而產生更多的空穴。由圖5(a)可以看出,原始碳納米管纖維的塞貝克系數為52.8 μV/K,并且低摩爾濃度的FeCl溶液摻雜可以提高碳納米管纖維的塞貝克系數,當FeCl摩爾濃度為1.25 mmol/L時塞貝克系數達到63.3 μV/K,但隨著摩爾濃度的提高,塞貝克系數逐漸下降。這是由于過量的Fe可能導致熱導率增加,引起塞貝克系數下降。圖5(b)為不同摩爾濃度FeCl摻雜碳納米管纖維后的電導率和功率因數。隨著FeCl摩爾濃度的提高,電導率也隨之增大,但是由于塞貝克系數的下降,功率因數并沒有逐步提高。當FeCl摩爾濃度為2.5 mmol/L時,塞貝克系數達為62.2 μV/K,最大的功率因數為431.4 μW/(m·K)。
為了評估N型碳納米管纖維的空氣穩定性,本文測量了處理后的碳納米管纖維在室溫環境下的塞貝克系數。如圖6所示,每隔12 h測量N型碳納米管纖維的塞貝克系數,連續測量了108 h。數據表明在108 h后,N型碳納米管纖維的塞貝克系數未出現明顯的下降,保持了很好的穩定性。
2.3 熱電器件的熱電性能研究
利用溫差發電的熱電器件需要在兩端形成溫差,載流子會從熱端流向冷端,從而在器件兩端形成電勢差,具有多對的 PN結構可以提高熱電器件的性能。多數柔性熱電器件是由P型和N型薄膜交替堆疊而成,再通過金屬連接P型和N型單元,這種設計會增加整體的接觸電阻,從而降低熱電器
件的性能。利用碳納米管纖維制備的PN相互交替的熱電纖維無需金屬電極,未摻雜區域的纖維代替金屬電極從而降低了接觸電阻。如圖7(a)所示,將碳納米管纖維纏繞在硅膠條上,再對兩側進行P型和N型摻雜,形成具有多對PN結構的3D熱電器件,當在P型和N型上下兩端形成溫差時,可以在器件兩端形成電勢差,這種結構能夠將人體與環境垂直方向上的溫差轉化為電能。從前文的測試可以看到,具有PN結構的碳納米管纖維具有良好的熱電性能,硅膠條具有一定的韌性,兩者結合制備的3D熱電器件具有一定的柔韌性和靈活性。圖7(b)為人體手掌和前臂接觸熱電器件的電壓變化??梢钥闯觯斒终疲é=7 ℃)和前臂(ΔT=5.5 ℃)接觸時,3D熱電器件可以產生13 mV和12 mV的開路電壓。隨著熱量傳導,熱端和冷端的溫度到達平衡,兩端溫差逐漸減小,電壓也隨著時間的增加而逐漸降低。圖7(c)為手掌接觸時,熱電器件所產生的輸出電壓、功率和電流的關系。將熱電器件放置于桌面上,環境溫度25℃,溫差約7 ℃,具有60個PN對的熱電器件在手掌接觸時測量輸出功率,能夠實現最大約17.9 nW的輸出功率和2.6 μA的短路電流。
圖7(d)為多次手掌觸碰3D熱電器件產生的開路電壓??梢钥闯?,當手掌觸碰時輸出電壓可以迅速響應,產生約12 mV的電壓。此外,在多次循環中可以持續穩定地獲得約11 mV的電壓響應,表明3D熱電器件具有優異的響應穩定性。根據溫差發電原理,探索了3D熱電器件的溫度傳感能力,如圖7(e)所示。將不同溫度的熱源與熱電器件接觸時,測量開路電壓的變化。所處環境溫度為27 ℃,當目標溫度低于環境溫度時,輸出的開路電壓為負,當使用更高的目標溫度接觸時,產生的開路電壓也相應增加。這表明3D熱電器件具有快速高效的溫度傳感性能。
3 結 論
本文通過OA摻雜成功地使碳納米管纖維具有N型半導體特性,并使用FeCl摻雜增強了碳納米管纖維的P型特性,制備了無需金屬電極連接的具有PN結構的連續熱電纖維,緊接著制備了可以利用人體與環境之間的溫差發電的3D熱電器件。研究發現,OA摻雜能夠將碳納米管纖維的塞貝克系數由正變負,當OA溶液質量濃度為0.2 g/mL時,到達的最高塞貝克系數為-69.7 μV/K,此時最高功率因數約為552.9 μW/(m·K)。同時,P型的最高功率因數約為431.4 μW/(m·K),在FeCl溶液摩爾濃度為2.5 mmol/L時實現。利用熱電纖維制備的3D熱電器件在ΔT=7 ℃時可以產生13 mV的開路電壓和約17.9 nW的輸出功率,并且表現出良好的循環穩定性。在此基礎上,利用溫差發電原理可以將熱電器件作為溫度傳感器,當接觸不同目標溫度時,3D熱電器件可以迅速產生不同的電壓響應。此研究可為開發面向可穿戴應用的熱電纖維和熱電器件提供很好的參考。
參考文獻:
[1]MASOUMI S, SHAUGHNESSY S O, PAKDEL A. Organic-based flexible thermoelectric generators: From materials to devices[J]. Nano Energy, 2022, 92: 106774.
[2]SHEN Y N, WANG C Y, YANG X, et al. New progress on fiber-based thermoelectric materials: Performance, device structures and applications[J]. Materials, 2021, 14(21):6306.
[3]WU B, GUO Y, HOU C Y, et al. From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators[J]. Nano Energy, 2021, 89: 106487.
[4]LIU Y F, LIU P P, JIANG Q L, et al. Organic/inorganic hybrid for flexible thermoelectric fibers[J]. Chemical Engineering Journal, 2021, 405: 126510.
[5]YUN J S, CHOI S, IM S H, et al. Advances in carbon-based thermoelectric materials for high-performance, flexible thermoelectric devices[J]. Carbon Energy, 2021, 3(5): 667-708.
[6]YU C, MURALI A, CHOI K, et al. Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes[J]. Energy & Environmental Science, 2012, 5(11): 9481-9486.
[7]XIA Z X, TIAN G S, XIAN YU W X, et al. Enhancement effect of the Cderivative on the thermoelectric properties of n-type single-walled carbon nanotube-based films[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 54969-54980.
[8]SUN T T, CHEN S B, SUN H F, et al. Wavy-structured thermoelectric device integrated with high-performance n-type carbon nanotube fiber prepared by multistep treatment for energy harvesting[J]. Composites Communications, 2021, 27: 100871.
[9]SONG H J, QIU Y, WANG Y, et al. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator[J]. Composites Science and Technology, 2017, 153: 71-83.
[10]LAN X, WANG T, LIU C, et al. A high performance all-organic thermoelectric fiber generator towards promising wearable electron[J]. Composites Science and Technology, 2019, 182: 107767.
[11]陳思瑩, 張慧, 張橋, 等. 植酸摻雜聚苯胺/碳納米管復合熱電薄膜的制備與表征[J]. 武漢工程大學學報, 2023, 45(2): 175-180.
CHEN S Y, ZHANG H, ZHANG Q, et al. Preparation and characterization of phytic acid-doped polyaniline/carbon nanotubes composite thermoelectric thin films[J]. Journal of Wuhan Institute of Technology, 2023, 45(2): 175-180.
[12]KIM J Y, LEE W, KANG Y H, et al. Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators[J]. Carbon, 2018, 133: 293-299.
[13]MUN T J, KIM S H, PARK J W, et al. Wearable energy generating and storing textile based on carbon nanotube yarns[J]. Advanced Functional Materials, 2020, 30: 1-8.
[14]TABOROWSKA P, JANAS D. Seamless design of thermoelectric modules from single-walled carbon nanotubes[J]. Journal of Materials Chemistry C, 2022, 10: 6818-6826.
[15]XU C, YANG S W, LI P C, et al. Wet-spun PEDOT: PSS/CNT composite fibers for wearable thermoelectric energy harvesting[J]. Composites Communications, 2022, 32: 101179.
[16]PARK K T, CHO Y S, JEONG I, et al. Highly integrated, wearable carbon-nanotube-yarn-based thermoelectric generators achieved by selective inkjet-printed chemical doping[J]. Advanced Energy Materials, 2022, 12: 2200256.
[17]JIN L L, SUN T T, ZHAO W, et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application[J]. Journal of Power Sources, 2021, 496: 229838.
[18]PARK K T, LEE T, KO Y, et al. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6257-6264.
[19]ZHENG Y Y, ZHANG Q H, JIN W L, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8(6): 2984-2994.
[20]耿雨, 羅印清, 吳奇嫻, 等. 基于碳納米管的熱電織物的制備及其性能[J]. 印染, 2023, 49(3): 5-8.
GENG Y, LUO Y Q, WU Q X, et al. Preparation and properties of thermoelectric fabric based on carbon nanotubes[J]. China Dying & Finishing. 2023, 49 (3): 5-8.
[21]晉潞潞, 孫婷婷, 王連軍, 等. n型摻雜不同管徑碳納米管薄膜的熱電性能研究及其器件的制備[J]. 材料導報, 2022, 36(6): 56-60.
JIN L L, SUN T T, WANG L J, et al. Study on the thermoelectric properties of n-type doped carbon nanotube with different diameters and the fabrication of their devices[J]. Materials Reports, 2022,36(6): 56-60.
[22]SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11(1): 572-582.
[23]CHEN R S, TANG J H, YAN Y J, et al. Solvent-mediated n-type doping of SWCNTs to achieve superior thermoelectric power factor[J]. Advanced Materials Technologies, 2020, 5(9): 2000288.
[24]CHOI J, JUNG Y, YANG S J, et al. Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes[J]. ACS Nano, 2017, 11(8): 7608-7614.
[25]LEE T, PARK K T, KU B C, et al. Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators[J]. Nanoscale, 2019, 11(36): 16919-16927.
[26]YANG X N, ZHANG K. Direct wet-spun single-walled carbon nanotubes-based PN segmented filaments toward wearable thermoelectric textiles[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44704-44712.
Preparation and performance research of carbon nanotube fiber-based thermoelectric devices
YU Long, QIU Hua, GU Peng
(College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China)
Abstract:With the continuous development of flexible wearable electronic devices, thermoelectric (TE) devices, which can harvest energy from human body heat, are highly demanded as a potential wearable energy device. Wearable TE devices based on Seebeck effect, which can convert human body heat into electrical energy, are considered as one of the effective solutions to solve the energy problem of wearable electronic devices. TE devices can directly convert waste heat into electrical energy, which greatly improves energy utilization. And wearable TE devices have significant advantages in human body applications, such as flexibility, environmental protection, and sustainability. In the past few decades, people have been working on developing flexible TE devices. However, traditional inorganic thermoelectric materials have limitations such as heavy weight, high rigidity, and toxicity, which limit their application in flexible devices. In addition, conventional two-dimensional (2D) architecture thermoelectric devices can only harvest thermal energy on a flat surface, making it difficult to utilize the temperature difference in the vertical gradient formed between the human body and the environment.
In order to improve the flexibility and TE performance of TE devices, and to better utilize the vertical temperature difference between the human body and the environment, carbon nanotube fibers with high conductivity, flexibility, and light texture are used as the matrix. Oleylamine (OA) and FeCl were selected as N-type and P-type dopants, and a simple impregnation method was used to perform N-type and P-type doping on the carbon nanotubes. By reasonably regulating the concentrations of OA solution and FeCl solution, the optimal concentration was selected for doping carbon nanotube fibers, resulting in the preparation of PN structured carbon nanotube fibers. Due to the lack of metal electrode connections, carbon nanotube fibers exhibit excellent TE performance. Then, the carbon nanotube fibers with PN structure were combined with a three-dimensional (3D) mold to prepare flexible TE devices with 3D structure. The successful doping of OA and FeCl was confirmed by SEM, EDS, and Raman characterization, and the impact of OA and FeCl on the structure of carbon nanotube fibers was analyzed. In addition, the study tested the effects of different concentrations of OA and FeCl solutions on the electrical conductivity, Seebeck coefficient, and power factor of carbon nanotube fibers, as well as the TE performance of TE devices on the human body. The study also investigated the potential of thermoelectric devices as flexible temperature sensors. The results indicate that when a 0.2 g/mL OA solution was used as the N-type dopant, the Seebeck coefficient of N-type carbon nanotube fibers was -69.7 μV/K, and the power factor was approximately 552.9 μW/(m·K). On the other hand, when a 2.5 mmol/L FeCl solution was used for P-type doping of the carbon nanotube fibers, the Seebeck coefficient was 62.2 μV/K, and the power factor was around 431.4 μW/(m·K). Furthermore, the N-row carbon nanotube fibers exhibited excellent air stability for over 108 hours. Additionally, the flexible TE device was capable of generating an open-circuit voltage of 13 mV and an output power of approximately 17.9 nW at ΔT=7 ℃, while also demonstrating favorable cycle stability.
By utilizing OA and FeCl as dopants for N-type and P-type, respectively, a one-step doping process was employed to successfully fabricate carbon nanotube fibers with a PN structure. These fibers were then integrated with a three-dimensional mold to create 3D TE devices. This approach enhanced the electrical conductivity and Seebeck coefficient of the carbon nanotube fibers, consequently improving the TE performance. Moreover, the TE devices based on carbon nanotube fibers exhibited superior flexibility and the ability to conform well to human skin, thereby offering valuable insights for the development of TE fibers and TE devices suitable for wearable applications.
Key words:carbon nanotube fibers; PN structure; thermoelectric fibers; thermoelectric devices; temperature sensor