999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

磚紅鐮刀菌菌株Pa2對草莓黑斑病菌的抑制活性分析

2024-04-10 07:51:03李曉倩史冰柯王卓妮覃艮紅王麗涂洪濤袁洪波侯琿
果樹學報 2024年2期

李曉倩 史冰柯 王卓妮 覃艮紅 王麗 涂洪濤 袁洪波 侯琿

DOI:10.13925/j.cnki.gsxb.20230358

摘? ? 要:【目的】探究內生真菌磚紅鐮刀菌(Fusarium lateritium)菌株Pa2對草莓黑斑病菌(Alternaria alternata)的抑制效果,為開發草莓黑斑病生防菌劑奠定理論基礎?!痉椒ā恳圆葺诎卟榉乐螌ο螅ㄟ^菌絲生長速率法、孢子萌發法以及SYTOX綠菁染色法分析菌株Pa2對草莓黑斑病菌的菌絲生長、孢子萌發、細胞膜通透性的影響,通過離體果實與葉片測定磚紅鐮刀菌菌株Pa2對草莓黑斑病菌的防治效果,初步探討磚紅鐮刀菌Pa2對草莓黑斑病的抑制活性與防效?!窘Y果】平板對峙試驗表明,菌株Pa2對草莓黑斑病菌生長抑制效果達80.96%。菌株Pa2上清液不僅可以破壞菌絲細胞膜,而且對病菌菌絲生長以及孢子萌發的抑制能力隨上清液濃度的升高而增強。同時,菌株Pa2能夠顯著抑制草莓黑斑病菌在果實與葉片上的侵染能力。【結論】磚紅鐮刀菌菌株Pa2對草莓黑斑病菌具有很好的抑制作用,在草莓黑斑病的生物防治方面具有潛在的應用價值。

關鍵詞:草莓黑斑病;磚紅鐮刀菌;抑制活性;防治效果

中圖分類號:S668.4;S436.68+4 文獻標志碼:A 文章編號:1009-9980(2024)02-0314-11

Analysis of antagonistic activity of Fusarium lateritium strain Pa2 against strawberry black spot

LI Xiaoqian1, SHI Bingke1#, WANG Zhuoni1, QIN Genhong1, WANG Li1, TU Hongtao1,2, YUAN Hongbo1*, HOU Hui1*

(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, Henan, China)

Abstract: 【Objective】 Strawberry is a perennial herb crop with short growth cycle and high economic value, and is cultivated all over the world. However, this fruit is prone to pests and diseases at each stage of production, resulting in significant losses in yield and quality. Strawberry black spot caused by Alternaria alternata is one of the common diseases. It mainly affects fruit, leaves, stems and other parts, and seriously harms the nutritional and economic values of strawberry. At present, the disease has been reported in many countries. Chemical agents are commonly used to control the disease, which generates pesticide residues, causing environmental pollution and endangering human health. Therefore, it is urgent to explore green and safe methods to control this disease. Compared with chemical control, biological control has the advantages of no pollution, no residue, less toxicity and reducing drug resistance. There has been no report on biological control of strawberry black spot with endophyte. Many plant species are infected by Fusarium lateritium, which causes plant diseases. However, it is reported that endophytic F. lateritium can also exert beneficial effects on disease resistance of the host plants and their growth. Therefore, the main purpose of this study was to explore the inhibition of F. lateritium strain Pa2 on strawberry black spot, and to provide reference for the development and utilization of plant endophytes for biocontrol of strawberry black spot. 【Methods】 In this experiment, the endophyte F. lateritium strain Pa2 was selected as the test material, and the strawberry black spot was used as the control target. The influences of strain Pa2 on A. alternata mycelial growth, spore germination, cell membrane permeability and control effect of strawberry black spot were analyzed. The inhibition effect of the F. lateritium strain Pa2 on A. alternata was determined by plate confrontation experiment culture method. Spore suspension of strain Pa2 was cultured in a shaker at 28 ℃ and 180 r·min-1for 7 days and centrifuged at 4000 r·min-1for 20 min. The supernatant was filtered through a 0.45 μm filter, and then through a 0.22 μm filter. Finally, sterile supernatant was obtained and PDA medium was prepared according to the volume ratio. The final concentration of the supernatant medium was set to 5% and 10%, and the colony growth status was determined. Meanwhile, 1 mL of spore suspension with a concentration of 1×106CUF·mL?1was placed in PDB, cultured at 28 ℃ and 180 r·min-1for 3 days, centrifuged at 3000 r·min-1for 5 min, and the supernatant was removed. After washing twice with sterile water, the spores were placed in 20 mL sterile water containing 5% and 10% Pa2 supernatant, respectively. The control did not contain the supernatant. The values of OD260and OD280were measured at 0, 12, 24 and 36 h after treatment, respectively. After culturing on PDA plate for 20 days, 5 mL of sterile water was added to the pathogen plate with a pipette, and the plate colonies were scraped and placed in a sterile centrifuge tube. The cap of centrifuge tube was closed and shook to mix. Then, the spore suspension was filtered through 4 layers of sterile lens paper and spores were counted with a haematocrit plate, and a spore suspension with a concentration of 1×106CUF·mL?1was prepared. The spore suspension and Pa2 supernatant were mixed at volume ratios to prepare mixtures with the final concentration of 5% and 10%. 20 μL of conidial suspension was dropped on hydrophobic glass slide and placed in petri dish (200 mm in diameter). Photographs of the spore germination were taken at 4, 8, 16, and 32 h after treatment. Through the combination of extraction and rotary evaporation, the supernatant of strain Pa2 was extracted with ethyl acetate, concentrated by rotary evaporation to extract, dissolved and diluted with methanol to 20 mg·mL-1to determine the inhibition of the extract on strawberry black spot. SYTOX green nucleic acid stain was used to detect the effect of strain Pa2 supernatant on the permeability of mycelium and spore cell membrane of strawberry black spot pathogen. The antagonistic activity of strain Pa2 against strawberry black spot was determined on detached fruit and leaves of strawberry. The fruit and leaves treated with the spore suspension of strain Pa2 were inoculated with the spore suspension of A. alternata on the fruit, and the mycelial plugs on the leaves. Water treatment was used as negative control and prochloraz was used as the positive control. On the fifth day after fruit inoculation, the lesion diameter and incidence were measured, and on the seventh day after leaf inoculation, the measurement was carried out on the leaves. 【Results】 The plate confrontation experiment showed that the inhibition rate of strain Pa2 on the growth of A. alternata was 80.96%. After the treatment of strain Pa2, it was found that the hyphae of A. alternata showed nodules, terminal enlargement and other malformations, and even developed rupture of the hyphal membrane in the inhibition zone and the leakage of protoplasts under the microscope. The supernatant of strain Pa2 inhibited the mycelial growth and spore germination of A. alternata in a dose-dependent fashion. The colony diameter of strawberry black spot cultured with 10% Pa2 supernatant was 2.30 cm, and the inhibition rate reached 74.15%. The spore germination rate was about 15% and the inhibition rate reached 81.11% at 32 h. Furthermore, the supernatant of strain Pa2 could also damage the cell membrane of hyphae and spores, and the GFP fluorescence was clearly displayed after SYTOX green staining. In addition, control test results suggested that the strain Pa2 could strongly inhibit strawberry black spot caused by A. alternata. Statistical results indicated that the incidence and lesion diameters on the fruit and the leaves of strawberry treated with strain Pa2 were reduced significantly, comparing to control. The inhibition of strawberry black spot by strain Pa2 was comparable to the positive control with prochloraz. 【Conclusion】F. lateritium strain Pa2 showed strong inhibitory effect on strawberry black spot, and has potential application value in the biocontrol of strawberry black spot.

Key words: Strawberry black spot; Fusarium lateritium; Antagonistic activity; Control effect

草莓(Fragaria×ananassa Duch.)是一種廣泛栽培的豐產水果,生長周期短,經濟效益高。然而,草莓在生產的每個階段都極易遭受病蟲害侵染,導致產量及品質下降,嚴重制約現代草莓產業的發展[1-3]。由病原菌鏈格孢菌(Alternaria alternata)引起的草莓黑斑病是一種嚴重影響草莓生產和經濟價值的重要病害,該病害主要危害草莓漿果、葉片、莖等部位,發病癥狀表現為在草莓果實表面產生黑色病斑,且上有黑灰色霉層,或葉片表面產生灰褐色不規則病斑,并常帶黃色暈圈[4-5]。目前在美國[6]、韓國[7]、意大利[8]、伊朗[9]和中國[10]等地均有報道。利用化學藥劑是防治該病害最常用的方法,但易產生農藥殘留,造成環境污染、危害人體健康等問題。與化學防治比較,生物防治具有無污染、無殘留、綠色持效以及降低抗藥風險等優勢[11]。然而現有研究表明,草莓黑斑病已被眾多學者高度重視,但目前可用于防治該病害的生物農藥僅有外源褪黑素一種[12],有關草莓黑斑病生物防治研究領域尚處起步階段。因此,利用并開發植物內生菌進行草莓黑斑病的生物防治是現代草莓生產亟待解決的問題。

鐮刀屬真菌可侵染多種不同類型的植物,導致植物病害[13],但近年來研究發現,有些內生鐮刀菌也能對宿主起到有益作用,達到抗病促生的效果,例如,內生磚紅鐮刀菌(Fusarium lateritium)能提高馬鈴薯對晚疫病的耐受性[14],且對煙草青枯病有抑制效果,起到增強煙草抗病性的作用[15]。但磚紅鐮刀菌對草莓黑斑病的防治研究目前尚未見報道。因此,為了明確內生磚紅鐮刀菌對草莓黑斑病的抑制作用,進而達到開發利用植物內生菌防治草莓黑斑病的目的,筆者在本研究中從內生磚紅鐮刀菌對草莓黑斑病的抑制活性進行分析,測定了該菌株對草莓黑斑病的防治效果以及菌株上清液對其細胞膜通透性的影響,為草莓黑斑病的生物防治奠定基礎。

1 材料和方法

1.1 材料

供試草莓品種為紅顏。供試菌株:草莓黑斑病菌(A. alternata)菌株XGB-1,從中國農業科學院鄭州果樹研究所新鄉試驗基地采集草莓病果,經組織分離、純化和鑒定后獲得菌株,4 ℃下保存備用。磚紅鐮刀菌(F. lateritium)菌株Pa2是從蘋果枝條上分離獲得,保存在中國微生物菌種保藏管理委員會普通微生物中心,保藏編號為CGMCC No. 40605。

供試培養基及試劑:馬鈴薯葡萄糖瓊脂培養基(potato dextrose agar,PDA),馬鈴薯葡萄糖培養基(potato dextrose broth,PDB);咪鮮胺(有效成分450 g·L-1,深圳諾普信農化股份有限公司),乙酸乙酯分析純(上海吉至生化科技有限公司),甲醇分析純(西隴科學股份有限公司)。

儀器:JJ-CJ-1FD超凈工作臺(蘇州市金凈凈化設備科技有限公司)、MJX-260 HS智能霉菌培養箱(寧波揚輝儀器有限公司)、VHX-1000E超景深三維立體顯微鏡(基恩士)、TCS SP5激光共聚焦顯微鏡(德國LEICA公司)。

1.2 菌株Pa2拮抗活性的測定

采用平板對峙法[16]測定內生真菌磚紅鐮刀菌菌株Pa2對草莓黑斑病菌的抑制效果。將培養好的草莓黑斑病菌用滅菌打孔器(直徑0.5 cm)打成菌餅,由菌落邊緣挑起菌餅接于PDA平板中央,四周各放一塊同樣大小的Pa2菌餅,每處理3皿,3次重復。以僅接種草莓黑斑病菌的處理為對照,28 ℃黑暗培養9 d,用十字交叉法測量菌落生長直徑,計算抑制率。抑制率/%=[(對照組菌落直徑-處理組菌落直徑)/(對照組菌落直徑-0.5)] × 100。同時,在超景深三維立體顯微鏡下觀察不同處理草莓黑斑病菌絲的形態特征,并拍照。

1.3 菌株Pa2上清液抑菌活性的測定

將菌株Pa2培養3 d后,用0.5 cm打孔器在其邊緣打孔,取5個菌餅置于100 mL的PDB培養基中,于28 ℃、180 r·min-1搖床中培養7 d,得到孢子懸浮液,經4000 r·min-1離心20 min后,依次用孔徑為0.45 μm和0.22 μm的濾膜過濾,得到無菌上清液。將上清液與PDA培養基按體積比配制成終濃度為5%、10%的上清液培養基,對照為不含上清液的PDA平板,在平板中央接種直徑為0.5 cm的草莓黑斑病菌菌餅,28 ℃黑暗培養9 d,用十字交叉法測量菌落直徑,計算不同濃度處理的抑制率,每處理3皿,3次重復。

1.4 菌株Pa2上清液對草莓黑斑病菌孢子萌發的影響

參照Li等[17]、程海洋等[18]的方法,將草莓黑斑病菌于PDA平板培養20 d后,用移液槍吸取5 mL無菌水至平板上,刮取平板菌落置于無菌離心管中,搖晃混勻,然后用4層無菌擦鏡紙過濾,并用血球計數板計數,制成濃度為1×106CFU·mL?1的孢子懸浮液。將孢子懸浮液與Pa2上清液按體積比配制成終濃度為5%、10%的混合液,在疏水玻璃載玻片上分別滴入20 μL的分生孢子懸浮液,置于培養皿中(直徑200 mm),28 ℃保濕培養,分別在4、8、16、32 h時在顯微鏡下觀察孢子萌發情況,以無菌水為對照,每處理設置3個載玻片,3次重復,使用TCS SP5激光共聚焦顯微鏡拍照,并計算不同濃度處理的孢子萌發率。萌發率/%=(萌發孢子數/檢查孢子總數)×100。

1.5 菌株Pa2萃取物對草莓黑斑病菌的抑制作用

利用1.3中的方法制備菌株Pa2上清液,將旋轉蒸發濃縮至原體積的1/10,使用上述濃縮液體積2倍的乙酸乙酯萃取,2次重復,合并萃取液,旋轉蒸發濃縮至浸膏,使用甲醇將其溶解,使粗提物質量濃度為20 mg·mL-1。在PDA平板中央接種草莓黑斑病菌菌餅(直徑0.5 cm),四周放置直徑0.6 cm的牛津杯,向牛津杯中滴加50 μL萃取物溶液,每處理3個皿,3次重復,以加入50 μL等濃度甲醇處理為對照。

1.6 菌株Pa2上清液對草莓黑斑病菌細胞內容物的影響

參照Li等[19]的方法并進行調整,通過測定細胞OD260、OD280檢測草莓黑斑病菌孢子細胞膜通透性的變化,利用1.4中的方法制備濃度為1×106CFU·mL-1的孢子懸浮液,吸取1 mL孢子懸浮液置于PDB中,28 ℃、180 r·min-1培養3 d后,3000 r·min-1離心5 min,吸除上清液,使用無菌水清洗2遍后,分別置于20 mL含5%與10% Pa2上清液的無菌水中,對照組不含上清液,在0、12、24、36 h取樣,測定各處理的OD260、OD280值。

1.7 菌株Pa2上清液對草莓黑斑病菌細胞質膜的影響

挑取草莓黑斑病菌菌絲置于PDB培養基中,28 ℃、180 r·min-1搖床中培養1 d,挑取少量菌絲置于菌株Pa2上清液中,對照組置于PDB培養基中,在28 ℃培養箱放置12 h,取少量菌絲,經體積分數為0.5 μL·mL-1的SYTOX綠菁死細胞核酸染料染色5 min后,用無菌水重復清洗2~3次,洗去表面染料,挑取菌絲制成玻片,在激光共聚焦顯微鏡下觀察并拍照。

利用1.4中的方法,使用菌株Pa2上清液,制備濃度為1×106CFU·mL-1的孢子懸浮液,對照組使用PDB培養基制備相同濃度孢子懸浮液,在28 ℃培養箱放置12 h,3000 r·min-1離心5 min,吸除上清液,加入1 mL體積分數為1 μL·mL-1的SYTOX綠菁死細胞核酸染料,顛倒混勻,染色5 min后,3000 r·min-1離心5 min,吸除上清液,重復清洗2~3次,洗去表面染料,最后加入1 mL無菌水顛倒混勻,吸取20 μL制成玻片,在激光共聚焦顯微鏡下觀察并拍照。

1.8 菌株Pa2對草莓黑斑病的防治作用

參照楊麗萍等[20]和袁洪波等[21]的方法,測定菌株Pa2對草莓黑斑病的防治效果。選用新鮮、健康草莓果實和葉片,用無菌水清洗、晾干。噴施菌株Pa2孢子懸浮液至整體濕潤,放入通風柜晾干后,進行接種試驗。無菌水處理作為陰性對照、咪鮮胺處理作為陽性對照。果實接種:用針刺法造成微傷口,用微量加樣器接入草莓黑斑病孢子懸浮液(1×106CFU·mL-1)10 μL,將其置于培養盒中保濕培養,每個處理包括5個草莓,3次重復,于25 ℃光照培養箱中培養5 d,測量病斑長度。葉片接種:取草莓黑斑病菌菌餅(直徑為0.5 cm),正面朝下貼于葉片上,每處理接種10個病斑,3次重復,于25 ℃光照培養箱中保濕培養,7 d后測量病斑直徑,計算發病率并統計防治效果。發病率/%=發病接種點數/總接種點數×100。防治效果/%=無病癥的接種點數/總接種點數×100。

1.9 數據統計與分析

試驗數據采用Microsoft Excel軟件進行整理,用SPSS 24.0軟件進行統計分析,采用Duncan法以及Tukey檢驗進行數據分析。

2 結果與分析

2.1 菌株Pa2對草莓黑斑病菌生長的影響

平板對峙試驗結果顯示,菌株Pa2能顯著抑制草莓黑斑病菌的生長,并導致其菌絲出現結節、末端膨大等畸形現象,甚至導致其菌絲膜破裂,原生質體泄露(圖1-A、B)。統計結果顯示,當對照組的草莓黑斑病菌菌落直徑達到7.58 cm時,經Pa2處理后的菌落直徑僅有1.85 cm,進一步統計的結果顯示菌株Pa2對草莓黑斑病菌生長的抑制率達80.96%(圖1-C)。以上結果表明,菌株Pa2能顯著影響草莓黑斑病菌菌落生長及菌絲形態。

2.2 菌株Pa2上清液對草莓黑斑病菌的抑制作用

如圖2所示,磚紅鐮刀菌菌株Pa2上清液對草莓黑斑病菌具有強烈的抑菌活性,且隨著濃度的增大抑制效果增強。當對照組菌落直徑為7.47 cm時,經5%、10% Pa2上清液處理的菌落直徑顯著小于對照,分別為2.91 cm和2.30 cm(圖2-B)。統計結果顯示,5%、10% Pa2上清液對草莓黑斑病菌的抑制率分別為65.39%和74.15%(圖2-C)。

2.3 菌株Pa2上清液對草莓黑斑病菌孢子萌發率的影響

由圖3可知,菌株Pa2上清液可顯著抑制草莓黑斑病菌孢子的萌發,并且隨著菌株Pa2上清液濃度的增大,草莓黑斑病菌孢子的萌發率呈下降趨勢。對照組草莓黑斑病菌的孢子隨培養時間的延長,其萌發率急劇增長,在32 h時萌發率為79.46%。然而,經5%、10%的Pa2上清液處理的草莓黑斑病菌孢子在32 h時的萌發率均低于50%,分別為46.99%和15.01%(圖3-B)。

2.4 菌株Pa2萃取物對草莓黑斑病菌的抑菌活性

為進一步驗證菌株Pa2的活性代謝產物對草莓黑斑病菌是否有抑制作用,利用乙酸乙酯對菌株Pa2上清液進行萃取并測定其抑菌活性。結果表明,乙酸乙酯萃取物對草莓黑斑病菌具有強烈的抑菌作用(圖4-A),當對照菌落直徑為8.03 cm時,處理菌落直徑為3.20 cm(圖4-B),其抑制率達到64.14%,說明菌株Pa2的乙酸乙酯萃取物中含有草莓黑斑病菌抑菌活性物質。

2.5 菌株Pa2上清液對草莓黑斑病菌細胞內容物的影響

為明確胞外核酸與蛋白質含量的變化情況,測定胞外溶液在260 nm與280 nm處的吸光度。從圖5可以看出,經菌株Pa2上清液處理后,草莓黑斑病菌的孢子懸浮液在260 nm、280 nm處的吸光度值均呈上升趨勢,表明菌株Pa2上清液對病原菌細胞膜具有破壞作用,能夠引起草莓黑斑病菌細胞內核酸與蛋白質的泄露。在36 h時5%、10%上清液處理后的OD260值分別達到2.31和2.68,OD280值分別為2.20和2.54。而對照組的OD260值和OD280值在整個試驗過程中無顯著變化。以上結果表明,菌株Pa2上清液能改變細胞膜的通透性,并且隨著上清液濃度的增大,對細胞膜通透性的損傷程度也隨之加大。

2.6 菌株Pa2上清液對草莓黑斑病菌菌絲細胞質膜的影響

SYTOX是一種綠色核酸染料,能夠穿過受損細胞質膜而不能透過活細胞質膜。如圖6所示,經SYTOX染色后,對照草莓黑斑病菌菌絲均未被染色,而經菌株Pa2上清液處理后的菌絲不僅在形態上發生變化,而且呈現出可見熒光,表明菌株Pa2上清液能夠破壞草莓黑斑病菌菌絲的細胞膜,使染料透過其損傷的細胞膜。

2.7 菌株Pa2上清液對草莓黑斑病菌孢子細胞質膜的影響

經菌株Pa2上清液處理后,草莓黑斑病菌孢子均產生圓球狀突起(圖7),在形態上與對照有明顯差異,且經SYTOX染色后呈現清晰可見的熒光,表明菌株Pa2上清液能夠破壞草莓黑斑病菌孢子的細胞質。

2.8 菌株Pa2孢子懸浮液對草莓黑斑病的防治效果

為了明確菌株Pa2對草莓黑斑病的防治效果,利用離體草莓果實和葉片進行防治試驗。結果顯示,與對照組相比,菌株Pa2孢子懸浮液處理對草莓黑斑病具有良好的防治效果,可顯著降低草莓黑斑病的病斑長度和發病率(圖8,表1)。據統計分析,經Pa2孢子懸浮液處理后的草莓葉片病斑長度僅為0.66 cm,且發病率顯著低于對照,對照果實平均病斑長度為1.24 cm,而經Pa2孢子懸浮液處理后的草莓果實病斑長度僅為0.16 cm,且發病率為26.67%,使用咪鮮胺處理后,葉片與果實均未出現病癥(圖8,表1)。上述結果表明,菌株Pa2能夠顯著抑制草莓黑斑病菌在果實與葉片上的侵染能力,對草莓黑斑病具有較好的防治效果。

3 討 論

由鏈格孢菌(A. alternata)或極細鏈格孢(A. tenuissima)引起的草莓黑斑病是草莓種植園中的一種常見病害,在世界范圍內均有分布,嚴重影響草莓品質以及產量[22]。近年來,生物防治成為世界研究的前沿和熱點,然而,有關草莓黑斑病生物防治的研究尚缺乏,僅有報道稱外源褪黑素能有效抑制鏈格孢菌的菌絲生長,延緩草莓黑斑病的發病進程[12],但目前仍無可利用的草莓黑斑病生防菌。鐮刀菌(Fusarium)作為植物病原菌,具有寄主種類多、侵染范圍廣的特點,能引起小麥赤霉病[23]、黃桃果實腐爛病[24]、金線蘭莖腐病[25]以及番茄頸腐根腐病[26]等多種病害。但近年來的研究報道表明,內生磚紅鐮刀菌(F. lateritium)對馬鈴薯晚疫病[14]、煙草青枯病[15]、番茄枯萎病[27]等多種植物病原菌均具有較強抑制作用,郝芳敏等[28]研究也表明,一些菌株能對不同的病原菌表現出廣譜拮抗活性。在本研究中,磚紅鐮刀菌菌株Pa2對草莓黑斑病病原菌抑制效果顯著,引起菌絲畸形、破裂,原生質體泄露,具有開發成為生防菌的潛力。

抑制病原菌菌絲生長和孢子萌發是生防菌的潛在能力之一。本研究結果表明,磚紅鐮刀菌菌株Pa2的無菌上清液對草莓黑斑病菌具有抑制作用,且10%的Pa2上清液對草莓黑斑病菌菌絲生長與孢子萌發的抑制率均高于70%,這可能與抑菌活性物質的分泌有關,未來將利用蛋白組學進一步分析篩選,確定抑菌物質。Wang等[29]研究也發現解淀粉芽孢桿菌(Bacillus amyloliquefaciens)的無菌上清液抑制鏈格孢、灰葡萄孢的菌絲生長和孢子萌發,并鑒定其抑菌物質為β-1, 3-1, 4-葡聚糖酶。

生防菌萃取物通常包含生防微生物產生的抑菌化合物,具有一定的抗菌活性。孫冰等[30]研究發現,抑菌物質的萃取物會破壞病原菌的菌絲形態、細胞膜結構及通透性,導致胞物質外泄,從而起到抑菌的效果。筆者在本試驗中得出了相似的結果,即菌株Pa2的萃取物中含有能夠抑制草莓黑斑病病菌生長的活性代謝產物,后續將利用色譜分離技術,對其代謝產物進行分離純化。

許多抗菌物質通過作用于細胞膜來發揮其抑菌功能,當細胞膜受損時,細胞內部的核酸與蛋白質等物質會發生滲透現象,外部物質也可能進入胞內[31-32]。筆者在本研究中測定胞外溶液在260 nm與280 nm處的吸光度值以反映胞外核酸與蛋白質含量的變化,并通過SYTOX綠菁染色法進一步分析草莓黑斑病菌絲及孢子的細胞膜受損情況。結果表明,經菌株Pa2上清液處理后草莓黑斑病病原菌細胞膜受到損壞,細胞內容物外泄,且鏈格孢菌(A. alternata)的孢子和菌絲細胞在Pa2處理后顯示出強熒光,與Xu等[33]對紫檀芪抑制荔枝霜霉病的研究結果一致,說明菌株Pa2能夠破壞生物膜從而對草莓黑斑病病菌起到抑制作用,這也可能是菌株Pa2顯著抑制草莓黑斑病在果實與葉片上侵染能力的主要原因之一。

4 結 論

菌株Pa2對草莓黑斑病致病真菌鏈格孢菌具有顯著的抑制活性,在10%的濃度下能有效抑制鏈格孢菌孢子萌發和菌絲生長,其孢子懸浮液能夠顯著抑制草莓黑斑病菌在果實與葉片上的侵染能力。

參考文獻 References:

[1] DELBEKE S,CEUPPENS S,HESSEL C T,CASTRO I,JACXSENS L,DE ZUTTER L,UYTTENDAELE M. Microbial safety and sanitary quality of strawberry primary production in Belgium:Risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination[J]. Applied and Environmental Microbiology,2015,81(7):2562-2570.

[2] HOU S F,LIU J J,XU T F,LI X F,LI X F,LI S,WANG H Q. Simultaneous detection of three crown rot pathogens in field-grown strawberry plants using a multiplex PCR assay[J]. Crop Protection,2022,156:105957.

[3] 雷恒樹,華戰迎,范靈姣,王紅清. 北京地區草莓枯萎病病原的鑒定與防治[J]. 中國農業大學學報,2019,24(6):66-72.

LEI Hengshu,HUA Zhanying,FAN Lingjiao,WANG Hongqing. Identification and prevention of strawberry wilt disease pathogen in Beijing[J]. Journal of China Agricultural University,2019,24(6):66-72.

[4] 姜秋同,張爽,朱洪坤,趙麗娜. 草莓病害的發生與防治措施[J]. 現代農村科技,2023(7):49-50.

JIANG Qiutong,ZHANG Shuang,ZHU Hongkun,ZHAO Lina. Occurrence and control measures of strawberry disease[J]. Xiandai Nongcun Keji,2023(7):49-50.

[5] NISHIKAWA J,NAKASHIMA C. Morphological and molecular characterization of the strawberry black leaf spot pathogen referred to as the strawberry pathotype of Alternaria alternata[J]. Mycoscience,2019,60(1):1-9.

[6] HOWARD C M,ALBREGTS E E. A strawberry fruit rot caused by Alternaria tenuissima[J]. Phytopathology,1973,63(7):938-939.

[7] CHO J T,MOON B J. The occurrence of strawberry black leaf spot caused by Alternaria alternata (Fr.) Keissler in Korea[J]. Journal of Plant Protection,1980,19(4):221-227.

[8] WADA H,CAVANNI P,BUGIANI R,KODAMA M,OTANI H,KOHMOTOET K. Occurrence of the strawberry pathotype of Alternaria alternata in Italy[J]. Plant Disease,1996,80(4):372-374.

[9] BAGHERABADI S,ZAFARI D,SOLEIMANI M J. First report of leaf spot of strawberry caused by Alternaria tenuissima in Iran[J]. Journal of Plant Pathology & Microbiology,2015,6(3):258.

[10] KO Y,CHEN C Y,YAO K S,LIU C W,MARUTHASALAM S,LIN C H. First report of fruit rot of strawberry caused by an Alternaria sp. in Taiwan[J]. Plant Disease,2008,92(8):1248.

[11] 尤佳琪,吳明德,李國慶. 木霉在植物病害生物防治中的應用及作用機制[J]. 中國生物防治學報,2019,35(6):966-976.

YOU Jiaqi,WU Mingde,LI Guoqing. Application and mechanism of Trichoderma in biological control of plant disease[J]. Chinese Journal of Biological Control,2019,35(6):966-976.

[12] 孫子荀,倪照君,高志紅,喬玉山,萬春雁,古咸彬. 外源褪黑素提高草莓黑斑病抗性的效果和作用機制初探[J]. 西北植物學報,2020,40(10):1679-1687.

SUN Zixun,NI Zhaojun,GAO Zhihong,QIAO Yushan,WAN Chunyan,GU Xianbin. Effect and mechanism of exogenous melatonin on improvement of black rot disease resistance in strawberry[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40(10):1679-1687.

[13] DEAN R,VAN KAN J A L,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.

[14] 汪健康,肖青,查興平,何張江,康冀川. 對馬鈴薯具促生抗病作用的磚紅鐮刀菌及其遺傳轉化體系構建[J]. 菌物學報,2021,40(8):2008-2023.

WANG Jiankang,XIAO Qing,ZHA Xingping,HE Zhangjiang,KANG Jichuan. Endophyte Fusarium lateritium showing potato growth promotion and disease resistance and the construction of its genetic transformation system[J]. Mycosystema,2021,40(8):2008-2023.

[15] 查興平,李永杰,汪健康,肖青,黃建明,何張江,康冀川. 一株內生磚紅鐮刀菌促進煙草生長和增強青枯病抗性[J]. 菌物學報,2022,41(10):1658-1671.

ZHA Xingping,LI Yongjie,WANG Jiankang,XIAO Qing,HUANG Jianming,HE Zhangjiang,KANG Jichuan. A strain of endophytic Fusarium lateritium promotes growth and resistance to bacterial wilt of tobacco[J]. Mycosystema,2022,41(10):1658-1671.

[16] 梁艷瓊,吳偉懷,習金根,李銳,鄭金龍,譚施北,賀春萍,易克賢. 生防菌JNC2對柱花草炭疽病的生防效果及其機理作用[J]. 基因組學與應用生物學,2020,39(12):5567-5573.

LIANG Yanqiong,WU Weihuai,XI Jingen,LI Rui,ZHENG Jinlong,TAN Shibei,HE Chunping,YI Kexian. Biocontrol effects and mechanism of antagonistic bacterial strain JNC2 against Colletotrichum gloeosporioides on Stylosanthes[J]. Genomics and Applied Biology,2020,39(12):5567-5573.

[17] LI G J,CHEN Y,ZHANG Z Q,LI B Q,CHEN T,TIAN S P. 2,3-Butanedione suppresses gray mold of postharvest fruit by activating the autophagy of Botrytis cinerea[J]. Postharvest Biology and Technology,2022,193:112057.

[18] 程海洋,程亮,朱海霞,李娟,魏有海,郭青云. 鏈格孢菌DT-DYLC菌株的除草活性及對作物的安全性[J]. 中國生物防治學報,2023,39(2):418-428.

CHENG Haiyang,CHENG Liang,ZHU Haixia,LI Juan,WEI Youhai,GUO Qingyun. Herbicidal activity and safety to crops of Alternaria alternata DT-DYLC[J]. Chinese Journal of Biological Control,2023,39(2):418-428.

[19] LI Y N,ZHANG S B,LV Y Y,ZHAI H C,CAI J P,HU Y S. Linalool,the main volatile constituent from Zanthoxylum schinifolium pericarp,prevents growth of Aspergillus flavus in post-harvest grains[J]. Food Control,2022,137:108967.

[20] 楊麗萍,金夢軍,崔凌霄,李統華,安杰,魏立娟,暢濤,楊成德. 甘肅省櫻桃黑斑病病原菌的分離及鑒定[J]. 果樹學報,2020,37(6):891-899.

YANG Liping,JIN Mengjun,CUI Lingxiao,LI Tonghua,AN Jie,WEI Lijuan,CHANG Tao,YANG Chengde. Isolation and identification of the pathogen causing cherry black spot in Gansu Province[J]. Journal of Fruit Science,2020,37(6):891-899.

[21] 袁洪波,王卓妮,袁夢佳,覃艮紅,史冰柯,周厚成,侯琿,王麗,涂洪濤. 貝萊斯芽胞桿菌菌株P2-1對草莓褐色葉斑病菌的抑制活性及其促生作用[J]. 果樹學報,2023,40(1):126-132.

YUAN Hongbo,WANG Zhuoni,YUAN Mengjia,QIN Genhong,SHI Bingke,ZHOU Houcheng,HOU Hui,WANG Li,TU Hongtao. Antagonistic activity of Bacillus velezensis strain P2-1 against tan-brown leaf spot of strawberry and its growth-promoting effect[J]. Journal of Fruit Science,2023,40(1):126-132.

[22] FU Y,ZHANG X F,LIU S J H,HU K L,WU X H. Characterization of Alternaria species associated with black spot of strawberry in Beijing municipality of China[J]. Canadian Journal of Plant Pathology,2020,42(2):235-242.

[23] SCHERM B,BALMAS V,SPANU F,PANI G,DELOGU G,PASQUALI M,MIGHELI Q. Fusarium culmorum:Causal agent of foot and root rot and head blight on wheat[J]. Molecular Plant Pathology,2013,14(4):323-341.

[24] ZHAO Z Y,LIU Y Y,YANG J H,YANG X L,WANG J H. First report of Fusarium lateritium causing fruit rot of yellow peach (Amygdalus persica) in China[J]. New Disease Reports,2019,39(1):6.

[25] 葉煒,顏沛沛,王培育,羅維鴻,林敏水,沈紹榕,江金蘭. 金線蘭莖腐病的病原菌鑒定與防治藥劑的篩選[J]. 亞熱帶農業研究,2023,19(1):1-9.

YE Wei,YAN Peipei,WANG Peiyu,LUO Weihong,LIN Minshui,SHEN Shaorong,JIANG Jinlan. Pathogen identification of Anoectochium roxborghil stem rot and screening of fungicides[J]. Subtropical Agriculture Research,2023,19(1):1-9.

[26] 程琳,李珊珊,武玉芬,李艷青,張海娟,魏美甜. 壽光設施番茄死棵病原真菌的分離及鑒定[J]. 中國瓜菜,2023,36(9):7-15.

CHENG Lin,LI Shanshan,WU Yufen,LI Yanqing,ZHANG Haijuan,WEI Meitian. Isolation and identification of pathogenic fungi from dead tomato plants in Shouguang facilities[J]. China Cucurbits and Vegetables,2023,36(9):7-15.

[27] 肖青,李永杰,汪健康,查興平,黃建明,何張江,康冀川. 內生磚紅鐮刀菌對番茄生長和抗病的影響[J]. 華中農業大學學報(自然科學版),2022,41(3):173-180.

XIAO Qing,LI Yongjie,WANG Jiankang,ZHA Xingping,HUANG Jianming,HE Zhangjiang,KANG Jichuan. Effects of an endophytic Fusarium lateritium on growth and disease resistance of tomato[J]. Journal of Huazhong Agricultural University (Natural Science Edition),2022,41(3):173-180.

[28] 郝芳敏,臧全宇,馬二磊,丁偉紅,王毓洪,黃蕓萍. 甜瓜多種真菌病害拮抗細菌NBmelon-1的鑒定及其促生和生防效果[J]. 中國瓜菜,2021,34(7):14-19.

HAO Fangmin,ZANG Quanyu,MA Erlei,DING Weihong,WANG Yuhong,HUANG Yunping. Identification,biocontrol and growth promoting effects of antagonistic bacteria NBmelon-1 of various fungal diseases in melon[J]. China Cucurbits and Vegetables,2021,34(7):14-19.

[29] WANG R,LONG Z Y,LIANG X Y,GUO S L,NING N,YANG L N,WANG X,LU B H,GAO J. The role of a β-1,3-1,4-glucanase derived from Bacillus amyloliquefaciens FS6 in the protection of ginseng against Botrytis cinerea and Alternaria panax[J]. Biological Control,2021,164:104765.

[30] 孫冰,楊昌發,唐彩艷,張勝花,楊胡艷,葛永怡. 橘綠木霉GF-11的哌珀霉素鑒定及活性研究[J]. 農藥,2023,62(6):411-415.

SUN Bing,YANG Changfa,TANG Caiyan,ZHANG Shenghua,YANG Huyan,GE Yongyi. Identification and bioactivity detection of peptaibols from Trichoderma citrinoviride GF-11[J]. Agrochemicals,2023,62(6):411-415.

[31] 夏飛,張處處,武子寧,曹時玲,鄔培鴻. 檸檬酸對食用菌腐敗菌的抑制作用及其作用機制[J]. 陜西科技大學學報,2023,41(2):40-45.

XIA Fei,ZHANG Chuchu,WU Zining,CAO Shiling,WU Peihong. Antibacterial effect and mechanism of citric acid on spoilage bacteria of edible mushroom[J]. Journal of Shaanxi University of Science & Technology,2023,41(2):40-45.

[32] TAVEIRA G B,CARVALHO A O,RODRIGUES R,TRINDADE F G,DA CUNHA M,GOMES V M. Thionin-like peptide from Capsicum annuum fruits:Mechanism of action and synergism with fluconazole against Candida species[J]. BMC Microbiology,2016,16:12.

[33] XU D D,DENG Y Z,XI P G,ZHU Z Q,KONG X Y,WAN L,SITU J J,LI M H,GAO L W,JIANG Z D. Biological activity of pterostilbene against Peronophythora litchii,the litchi downy blight pathogen[J]. Postharvest Biology and Technology,2018,144:29-35.

收稿日期:2023-09-05 接受日期:2023-12-02

基金項目:國家重點研發計劃(2022YFD1600702);中國農業科學院科技創新工程(CAAS-ASTIP-2016-RIP);中國農業科學院鄭州果樹研究所基本科研業務費專項(ZGS202205、1610192023311)

作者簡介:李曉倩,女,在讀碩士研究生,研究方向為果樹病害。E-mail:xiaoqian160@163.com;#為共同第一作者。

*通信作者 Author for correspondence. E-mail:yuanhongbo@caas.cn;E-mail:houhui@caas.cn

主站蜘蛛池模板: 亚瑟天堂久久一区二区影院| 97se亚洲综合在线天天| 999精品在线视频| 免费一级全黄少妇性色生活片| 高清视频一区| 97国产一区二区精品久久呦| 最新亚洲人成无码网站欣赏网| 国产亚洲精品自在线| 久久超级碰| 亚洲 成人国产| 久久精品国产一区二区小说| 麻豆精品在线播放| 久久情精品国产品免费| 亚洲AV无码一区二区三区牲色| 国产午夜福利片在线观看| 精品综合久久久久久97超人该| 九九久久精品免费观看| 国产欧美视频综合二区| 亚洲欧美激情另类| 中文字幕欧美日韩高清| 无码日韩视频| 中文字幕不卡免费高清视频| 亚洲av片在线免费观看| 欧美亚洲日韩不卡在线在线观看| 国产亚洲欧美另类一区二区| 美女毛片在线| 在线观看无码av五月花| 被公侵犯人妻少妇一区二区三区| 日本伊人色综合网| 国产亚洲高清在线精品99| 久久久精品国产亚洲AV日韩| 91精品国产自产在线老师啪l| 欧美综合区自拍亚洲综合天堂| 国产精品免费电影| 欧美在线观看不卡| 欧美天天干| 欧美h在线观看| 国产麻豆aⅴ精品无码| 亚洲午夜片| 99精品免费欧美成人小视频| 国产一级二级三级毛片| 伊人久久大香线蕉影院| 91偷拍一区| 青青青草国产| 色综合网址| 黄片在线永久| 欧美伊人色综合久久天天| 99re免费视频| 欧美午夜小视频| 中文字幕人妻av一区二区| 操国产美女| 国产欧美自拍视频| 亚洲无码精彩视频在线观看| 国产成人亚洲毛片| 久久精品嫩草研究院| 中文字幕波多野不卡一区| 国产乱视频网站| 久久亚洲日本不卡一区二区| 蜜芽一区二区国产精品| 国内丰满少妇猛烈精品播| 一级高清毛片免费a级高清毛片| 日韩小视频网站hq| 婷婷色中文| 国产SUV精品一区二区| 欧美日本激情| 狠狠色香婷婷久久亚洲精品| 国产麻豆精品在线观看| 精品国产网站| 欧美亚洲另类在线观看| 国产一国产一有一级毛片视频| 亚洲69视频| 久久精品这里只有精99品| 国产成人精品在线| 亚亚洲乱码一二三四区| 乱系列中文字幕在线视频 | 啪啪免费视频一区二区| 无码福利日韩神码福利片| 日韩欧美视频第一区在线观看| 亚洲男人在线| 欧美一级专区免费大片| 日本欧美在线观看| 国产又粗又猛又爽|