於兵 曾繁林



摘? 要:以2-(芳基乙炔)苯胺、2-氨基芳基甲酸甲酯、原甲酸三乙酯為反應物,通過一鍋多組分反應,在無需外加溶劑的條件下,以中等到良好的產率(30%~71%)實現了系列3-(2-(芳基乙炔)苯基)喹唑啉酮類化合物的合成.該類化合物可以作為新型的受體應用在自由基串聯環化反應中,合成喹唑啉酮并喹啉化合物類含氮雜環.
關鍵詞:3-(2-(芳基乙炔)苯基)喹唑啉酮;多組分反應;雜環;喹唑啉酮并喹啉
中圖分類號:O612????? 文獻標志碼:A文章編號:1000-2367(2024)03-0010-07
雜環化合物尤其是含氮雜環化合物的重要性不言而喻,約60%美國FDA(食品藥品管理局)批準上市的藥物都含氮雜環骨架[1].其中,喹唑啉酮并喹啉作為喹啉融合的稠雜環骨架,因其具有良好的生物活性和藥用價值而受到合成化學家的極大關注[2-4].如圖1所示的含有喹唑啉酮并喹啉骨架的代表性化合物具有抗腫瘤、抗黃病毒、抗HIV、抗感染等重要的生物活性[5-7].因此,合成結構新穎的喹唑啉酮并喹啉衍生物可以為活性分子的發現提供物質基礎.
自由基串聯環化反應具有效率高、操作簡單、步驟經濟等優點,它能“一鍋”實現多個化學鍵、多個環系的構建,近年來已經成為一種合成雜環化合物的重要策略[8-11].自由基串聯環化反應的關鍵之一是設計合理的反應底物,底物在反應中接受自由基的加成,并經過分子內環化、脫質子等步驟實現官能團化雜環的合成[12-14].因此,開發新型的自由基串聯環化反應底物具有重要意義,可為新型雜環骨架的高效構筑提供全新的平臺.
最近,本課題組首次通過光催化的自由基串聯環化反應策略實現了喹唑啉酮并喹啉衍生物的構筑[15].該研究中,以3-(2-(芳基乙炔)苯基)喹唑啉酮類化合物(3a)作為自由基串聯環化反應底物,以二苯基氧化膦(4a)為自由基前體,在可見光誘導下實現了膦酰化喹唑啉酮并喹啉化合物(5a)的合成(圖2(a)).
由于3-(2-(芳基乙炔)苯基)喹唑啉酮類化合物作為一類新型的平臺化合物,在自由基串聯環化反應中表現出了廣闊的應用前景,因此,本文詳細報道了該類化合物的合成方法(圖2(b)),即:以2-氨基芳基甲酸甲酯(1),2-(芳基乙炔)苯胺(2)、原甲酸三乙酯為反應物,通過一鍋多組分反應,在無需外加溶劑的條件下,100 ℃油浴中反應2 h,以中等到良好的產率(30%~71%)實現了系列3-(2-(芳基乙炔)苯基)喹唑啉酮類化
收稿日期:2023-11-05;修回日期:2023-12-04.
基金項目:國家自然科學基金(21971224;22171249);河南省高校科技創新人才支持計劃(23HASTIT003);河南工業大學高層次人才基金(31401601).
作者簡介:於兵(1987-),男,湖北黃梅人,鄭州大學教授,博士,研究方向為有機化學,E-mail:bingyu@zzu.edu.cn.
通信作者:曾繁林(1992-),男,河南信陽人,河南工業大學講師,博士,研究方向為有機化學,E-mail:caist_zfl@haut.edu.cn.
引用本文:於兵,曾繁林.一鍋多組分反應合成3-(2-(芳基乙炔)苯基)喹唑啉酮[J].河南師范大學學報(自然科學版),2024,52(3):10-16.(Yu Bing,Zeng Fanlin.Synthesis of 3-(2-(arylethynyl)phenyl)quinazolinones via one-pot multi-component reaction[J].Journal of Henan Normal University(Natural Science Edition),2024,52(3):10-16.DOI:10.16366/j.cnki.1000-2367.2023.11.05.0002.)
合物的合成.
1? 實驗部分
1.1? 儀器與試劑
旋轉蒸發儀(上海愛朗儀器有限公司N-1300型),八位平行光化學反應系統(北京諾植科技有限公司RLH-18型),加熱磁力攪拌器(北京大龍興創實驗儀器股份公司),高分辨質譜儀(Waters Micromass Q-Tof Micro instrument),核磁共振儀(Bruker Avance III-400 MHz NMR,CDCl3(氘代氯仿)為溶劑,TMS(四甲基硅烷)為內標).
2-氨基芳基甲酸甲酯、2-(芳基乙炔)苯胺和原甲酸三乙酯(HC(OEt)3)等商品化試劑均購買于安徽澤升科技有限公司.石油醚、二氯甲烷等常見溶劑購買于成都市科隆化學品有限公司.薄層色譜板(TLC,GF254)和柱層析硅膠(200~300目)購買于山西諾泰生物科技有限公司.所有商品化試劑均未經純化直接使用.
1.2? 3-(2-(苯乙炔)苯基)喹唑啉酮類化合物的合成通法
在50 mL圓底燒瓶中,先加入磁子,再依次加入2-(芳基乙炔)苯胺(3.6 mmol)、2-氨基芳基甲酸甲酯(3 mmol)、原甲酸三乙酯(4.5 mmol)和NH4Cl(1.2 mmol),無需外加溶劑,在100 ℃的油浴中加熱攪拌反應2 h.反應結束后,取出反應瓶冷卻至室溫,加入15 mL水,然后用二氯甲烷(3×15 mL)萃取.萃取完后,合并有機相,然后用適量無水硫酸鈉干燥,再通過旋轉蒸發儀除去溶劑,殘留物利用柱層析分離純化,得到目標產物.利用上述方法合成以下產物(圖3).
3-(2-(苯乙炔基)苯基)喹唑啉-4(3H)-酮(3a):白色固體,580 mg,產率60%,Rf=0.3(石油醚/乙酸乙酯,V/V=5/1),m.p.130~132 ℃.1H NMR(400 MHz,CDCl3)δ:8.46~8.37(m,1H),8.17(s,1H),7.88~7.81(m,2H),7.79~7.73(m,1H),7.65~7.47(m,4H),7.28~7.17(m,5H).13C NMR(101 MHz,CDCl3)δ:160.7,148.0,146.6,138.5,134.6,133.1,131.6,129.5,129.3,128.8,128.5,128.3,127.6,127.5,127.3,122.6,122.3,122.1,95.7,84.4.HRMS(ESI-TOF)m/z:計算值C22H15N2O[M+H]+323.117 9,實測值323.118 6.
6-甲基-3-(2-(苯乙炔基)苯基)喹唑啉-4(3H)-酮(3b):白色固體,454 mg,產率45%,Rf=0.3(石油醚/乙酸乙酯,V/V=5/1),m.p.152~154 ℃.1H NMR(400 MHz,CDCl3)δ:8.23~8.17(m,1H),8.11(s,1H),7.82~7.68(m,2H),7.64(dd,J=8.3,2.1 Hz,1H),7.59~7.45(m,3H),7.33~7.15(m,5H),2.53(s,3H).13C NMR(101 MHz,CDCl3)δ:160.7,146.0,145.8,138.7,137.8,136.0,133.1,131.6,129.4,129.3,128.8,128.5,128.3,127.5,126.7,122.3(3),122.2(8),122.2,95.6,84.5,21.4.HRMS(ESI-TOF)m/z:計算值C23H17N2O 337.133 5,實測值337.134 0.
6-甲氧基-3-(2-(苯乙炔基)苯基)喹唑啉-4(3H)-酮(3c):黃色固體,528 mg,產率50%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.121~123 ℃.1H NMR(400 MHz,CDCl3)δ:8.06(s,1H),7.76(dd,J=8.2,2.7 Hz,3H),7.52~7.47(m,3H),7.43(dd,J=9.1,3.0 Hz,1H),7.32~7.12(m,5H),3.93(s,3H).13C NMR(101 MHz,CDCl3)δ:160.6,158.9,144.5,142.6,138.8,133.1,131.6,129.4,129.3,129.2,128.8,128.5,128.3,124.7,123.4,122.4,122.2,106.8,95.6,84.5,55.9.HRMS(ESI-TOF)m/z:計算值C23H16N2NaO2[M+Na]+375.110 4,實測值375.111 2.
6-氯-3-(2-(苯乙炔基)苯基)喹唑啉-4(3H)-酮(3d):白色固體,760 mg,產率71%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.156~158 ℃.1H NMR(400 MHz,CDCl3)δ:8.37(t,J=1.5 Hz,1H),8.15(s,1H),7.81~7.67(m,3H),7.63~7.44(m,3H),7.35~7.11(m,5H).13C NMR(101 MHz,CDCl3)δ:159.6,146.8,146.5,138.2,135.0,133.4,133.2,131.5,129.6,129.4,129.3,128.9,128.4,128.3,126.6,123.6,122.2,122.0,95.8,84.2.HRMS(ESI-TOF)m/z:計算值C22H14ClN2O[M+H]+357.078 9,實測值357.079 0.
6-溴-3-(2-(苯乙炔基)苯基)喹唑啉-4(3H)-酮(3e):白色固體,630 mg,產率53%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.162~164 ℃.1H NMR(400 MHz,CDCl3)δ:8.54(d,J=2.3 Hz,1H),8.16(s,1H),7.92(dd,J=8.6,2.4 Hz,1H),7.79~7.74(m,1H),7.70(d,J=8.6 Hz,1H),7.58~7.46(m,3H),7.35~7.16(m,5H).13C NMR(101 MHz,CDCl3)δ:159.5,146.9,146.8(6),138.1,137.8,133.2,131.5,129.8,129.6,129.5,129.4,128.9,128.4,128.3,123.9,122.2,122.0,121.2,95.8,84.2.HRMS(ESI-TOF)m/z:計算值C22H14BrN2O[M+H]+401.028 4,實測值401.029 3.
3-(2-(對甲苯乙炔基)苯基)喹唑啉-4(3H)-酮(3f):白色固體,534 mg,產率53%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.144~146 ℃.1H NMR(400 MHz,CDCl3)δ:8.42(d,J=7.9 Hz,1H),8.16(s,1H),7.83(dd,J=3.6,1.0 Hz,2H),7.77~7.69(m,1H),7.60~7.53(m,1H),7.54~7.46(m,3H),7.09(d,J=8.2 Hz,2H),7.01(d,J=7.8 Hz,2H),2.29(s,3H).13C NMR(101 MHz,CDCl3)δ:160.7,148.1,146.6,139.1,138.5,134.6,133.0,131.5,129.4,129.1,129.0(5),128.5,127.6,127.5,127.3,122.6,122.5,119.1,96.0,83.9,21.5.HRMS(ESI-TOF)m/z:計算值C23H17N2O[M+H]+337.133 5,實測值337.134 3.
3-(2-((4-甲氧基苯基)乙炔基)苯基)喹唑啉-4(3H)-酮(3g):白色固體,634 mg,產率60%,Rf=0.3(石油醚/乙酸乙酯,V/V=2/1),m.p.120~122 ℃.1H NMR(400 MHz,CDCl3)δ:8.43~8.38(m,1H),8.16(s,1H),7.83(dd,J=4.4,2.0 Hz,2H),7.77~7.67(m,1H),7.54~7.58(m,1H),7.50(d,J=2.7 Hz,3H),7.12(d,J=8.8 Hz,2H),6.72(d,J=8.8 Hz,2H),3.75(s,3H).13C NMR(101 MHz,CDCl3)δ:160.7,150.0,148.1,146.7,138.3,134.6,133.1,132.8,129.4,128.9,128.4,127.6,127.5,127.3,122.6(3),122.5(9),114.2,113.9,95.9,83.3,55.3.HRMS(ESI-TOF)m/z:計算值C23H17N2O2[M+H]+353.128 5,實測值353.129 8.
3-(2-((4-(叔丁基)苯基)乙炔基)苯基)喹唑啉-4(3H)-酮(3h):白色固體,772 mg,產率68%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.129~131 ℃.1H NMR(400 MHz,CDCl3)δ:8.43(d,J=8.0 Hz,1H),8.17(s,1H),7.84(d,J=4.1 Hz,2H),7.75(dd,J=7.0,2.9 Hz,1H),7.63~7.45(m,4H),7.24(d,J=8.2 Hz,2H),7.15(d,J=8.1 Hz,2H),1.27(s,9H).13C NMR(101 MHz,CDCl3)δ:160.6,152.2,148.1,146.6,138.4,134.6,133.0,131.3,129.4,129.1,128.5,127.7,127.5,127.3,125.3,122.6,122.5,119.1,96.0,83.9,34.8,31.1.HRMS(ESI-TOF)m/z:計算值C26H23N2O[M+H]+379.180 5,實測值379.180 5.
3-(2-((4-(二甲基氨基)苯基)乙炔基)苯基)喹唑啉-4(3H)-酮(3i):黃色固體,657 mg,產率60%,Rf=0.3(石油醚/乙酸乙酯,V/V=4/1),m.p.161~163 ℃.1H NMR(400 MHz,CDCl3)δ:8.39(d,J=7.9 Hz,1H),8.14(s,1H),7.80(d,J=4.2 Hz,2H),7.73~7.62(m,1H),7.53(dd,J=8.2,4.1 Hz,1H),7.48~7.39(m,3H),7.03(d,J=8.4 Hz,2H),6.45(d,J=8.4 Hz,2H),2.89(s,6H).13C NMR(101 MHz,CDCl3)δ:160.7,150.3,148.1,146.8,138.0,134.5,132.7,132.6,129.3,128.3,128.2,127.6,127.4,127.3,123.2,122.7,111.6,108.7,97.5,82.7,40.1.HRMS(ESI-TOF)m/z:計算值C24H20N3O[M+H]+366.160 1,實測值366.160 9.
3-(2-((4-氯苯基)乙炔基)苯基)喹唑啉-4(3H)-酮(3j):黃色固體,531 mg,產率50%,Rf=0.3(石油醚/乙酸乙酯,V/V=3/1),m.p.163~165 ℃.1H NMR(400 MHz,CDCl3)δ:8.47~8.36(m,1H),8.14(s,1H),7.91~7.80(m,2H),7.78~7.71(m,1H),7.61~7.48(m,4H),7.23~7.15(m,2H),7.15~7.05(m,2H).13C NMR(101 MHz,CDCl3)δ:160.6,148.0,146.5,138.6,134.9,134.7,133.0,132.7,129.6,129.5,128.7,128.5,127.7,127.6,127.3,122.5,122.0,120.6,94.5,85.4.HRMS(ESI-TOF)m/z:計算值C22H14ClN2O[M+H]+357.078 9,實測值357.079 3.
3-(2-((4-溴苯基)乙炔基)苯基)喹唑啉-4(3H)-酮(3k):黃色固體,360 mg,產率30%,Rf=0.3(石油醚/乙酸乙酯,V/V=3/1),m.p.170~172 ℃.1H NMR(400 MHz,CDCl3)δ:8.41(d,J=7.9 Hz,1H),8.14(s,1H),7.84(d,J=7.4 Hz,2H),7.74(d,J=6.9 Hz,1H),7.59~7.54(m,4H),7.33(d,J=8.1 Hz,2H),7.03(d,J=8.0 Hz,2H).13C NMR(101 MHz,CDCl3)δ:160.6,148.0,146.5,138.6,134.7,133.0,132.9,131.6,129.6,129.5,128.5,127.7,127.6,127.3,123.2,122.5,122.0,121.1,94.5,85.6.HRMS(ESI-TOF)m/z:計算值C22H14BrN2O[M+H]+401.028 4,實測值401.028 4.
4-((2-(4-氧代喹唑啉-3(4H)-基)苯基)乙炔基)苯甲酸甲酯(3l):黃色固體,456 mg,產率40%,Rf=0.3(石油醚/乙酸乙酯,V/V=3/1),m.p.140~142 ℃.1H NMR(400 MHz,CDCl3)δ:8.44~8.33(m,1H),8.13(s,1H),7.91~7.79(m,4H),7.77~7.69(m,1H),7.62~7.46(m,4H),7.25~7.08(m,2H),3.87(s,3H).13C NMR(101 MHz,CDCl3)δ:166.3,160.6,148.0,146.4,138.8,134.7,133.1,131.4,129.9(3),129.8(6),129.5,129.4,128.5,127.7,127.6,127.2,126.7,122.5,121.8,94.7,87.2,52.2.HRMS(ESI-TOF)m/z:計算值C24H16N2NaO3[M+Na]+403.105 3,實測值403.105 7.
4-((2-(4-氧代喹唑啉-3(4H)-基)苯基)乙炔基)苯腈(3m):黃色固體,396 mg,產率38%,Rf=0.3(石油醚/乙酸乙酯,V/V=3/1),m.p.99~101 ℃.1H NMR(400 MHz,CDCl3)δ:8.39(dd,J=8.0,1.4 Hz,1H),8.12(s,1H),7.91~7.79(m,2H),7.76(dd,J=7.4,1.8 Hz,1H),7.63~7.50(m,4H),7.51~7.42(m,2H),7.30~7.19(m,2H).13C NMR(101 MHz,CDCl3)δ:160.6,147.9,146.3,138.9,134.9,133.2,132.0,130.3,129.6,128.6,127.8,127.7,127.2,126.9,122.4,121.4,118.3,112.0,93.6,88.6.HRMS(ESI-TOF)m/z:計算值C23H14N3O[M+H]+348.113 1,實測值348.113 1.
2? 結果與討論
2.1? 合成分析
在合成3-(2-(苯乙炔)苯基)喹唑啉酮類化合物(3)的過程中,考察了底物芳環上不同取代基對反應產率的影響,發現不同芳環上取代基的電子效應對產率的影響不同.
(1)當底物1芳環上取代基R1為給電子基團(例如甲基、甲氧基)時,所得對應產物3b、3c的產率分別為45%和50%.而當R1為吸電子基團(例如氯、溴)時,產率分別為71%(3d)和53%(3e).該結果表明底物1芳環上取代基的電子效應沒有明顯的規律.
(2)當底物2芳環上取代基R2為給電子基團(例如甲基、甲氧基等)時,產率高于為吸電子基團(例如氯、溴、氰基等)的產率.該結果表明電子效應對該反應有一定的影響,R2為給電子基團時產率下降.
2.2? 反應機理研究
結合相關研究報道[16-17],以模型反應為例,提出了該反應的可行性機理(圖4).首先,NH4Cl對原甲酸三乙酯進行質子化生成中間體6a,進一步失去一分子乙醇后生成中間體6b.隨后,反應物1a的氨基對6b親核進攻生成中間體6c;6c互變異構為中間體6d,隨后失去一分子乙醇產生亞胺正離子中間體6e.6e與反應物2a發生親核加成生成中間體6f.類似地,6f通過先后經歷互變異構、失去乙醇分子、去質子化生成6i.6i的胺基對分子內羰基的親核進攻,產生關環中間體6j;中間體6j失去一分子甲醇,生成目標產物3-(2-(苯乙炔)苯基)喹唑啉酮3a.
2.3? 3-(2-(苯乙炔)苯基)喹唑啉酮作為受體的可見光誘導自由基串聯環化反應
上述合成的3-(2-(苯乙炔)苯基)喹唑啉酮類化合物,可以作為新型底物骨架應用于自由基串聯環化反應中.例如,3-(2-(苯乙炔)苯基)喹唑啉酮骨架與二苯基氧化膦的反應(圖2(a)),經歷可見光驅動的自由基串聯環化反應,高效合成了新型膦酰化喹唑啉酮并喹啉化合物.具體操作方法如下:依次將3-(2-(苯乙炔)苯基)喹唑啉酮(3a,0.1 mmol)、二苯基氧化膦(4a,0.2 mmol)、2,4,5,6-四(9-咔唑基)-間苯二腈(4CzIPN,5%(摩爾分數))、過氧化十二酰(LPO,0.2 mmol)以及乙腈(MeCN 1 mL)加入到裝有磁子的25 mL Schlenk反應管中,隨后冷凍脫氣并置換氮氣3次,保持氮氣氛圍,將反應管置于藍色LED(10 W,460 nm)照射、室溫下攪拌反應9 h.反應結束后,將反應液轉移到圓底燒瓶中,再通過旋轉蒸發儀除去溶劑,殘留物通過制備薄層色譜法分離純化,得到目標產物5a.
5-(二苯基膦酰)-6-苯基-12H-喹啉并[2,1-b]喹唑啉-12-酮(5a):黃色固體,45.4 mg,產率87%,Rf=0.3(石油醚/乙酸乙酯,V/V=2/1),m.p.278~280 ℃.1H NMR(400 MHz,CDCl3)δ:8.97(d,J=8.7 Hz,1H),8.47(d,J=7.9 Hz,1H),8.05(d,J=8.1 Hz,1H),7.73(t,J=7.7 Hz,1H),7.59~7.51(m,2H),7.43(dd,J=12.3,7.4 Hz,5H),7.29~7.23(m,2H),7.21~7.11(m,8H),7.02(t,J=7.6 Hz,2H).13C NMR(101 MHz,CDCl3)δ:162.5,147.0(d,J=15.3 Hz),146.6(d,J=8.3 Hz),146.1(d,J=1.7 Hz),136.1(d,J=98.3 Hz),135.2(d,J=6.1 Hz),134.5(d,J=106.2 Hz),133.5(d,J=8.5 Hz),132.8,130.9(d,J=9.5 Hz),130.7(d,J=2.9 Hz),128.9(d,J=6.0 Hz),128.8,128.3,128.2,128.1(5),128.1,127.3,127.2(3),127.1(9),125.7,124.8(d,J=9.2 Hz),120.6,120.3.31P NMR(162 MHz,CDCl3)δ:24.29.HRMS(ESI-TOF)m/z:計算值C34H24N2O2P[M+H]+523.157 0,實測值523.156 9.
3? 結? 論
通過一鍋多組分反應,在無需外加溶劑的條件下,以中等到良好的產率(30%~71%)合成了13個新型3-(2-(芳基乙炔)苯基)喹唑啉酮類化合物,并通過1H NMR,13C NMR和HRMS相關表征手段確證了其結構.同時,研究了不同取代基對產率的影響.所合成的3-(2-(苯乙炔)苯基)喹唑啉酮類化合物可以作為新型的底物骨架,應用在自由基串聯環化反應中,構建喹唑啉酮并喹啉類化合物.這類新型的自由基串聯環化反應新骨架可以為新型雜環骨架的高效構筑提供全新的平臺.
參? 考? 文? 獻
[1] ??VITAKU E,SMITH D T,NJARDARSON J T.Analysis of the structural diversity,substitution patterns,and frequency of nitrogen heterocycles among U.S.FDA approved pharmaceuticals[J].Journal of Medicinal Chemistry,2014,57(24):10257-10274.
[2]SUN J,TAN Q,YANG W,et al.Copper-catalyzed aerobic oxidative annulation and carbon-carbon bond cleavage of arylacetamides:domino synthesis of fused quinazolinones[J].Advanced Synthesis & Catalysis,2014,356(2/3):388-394.
[3]GUPTA P K,YADAV N,JAISWAL S,et al.Palladium-catalyzed synthesis of phenanthridine/benzoxazine-fused quinazolinones by intramolecular C-H bond activation[J].Chemistry A European Journal,2015,21(38):13210-13215.
[4]BIN LEE J,KANG M E,KIM J,et al.Direct diversification of unmasked quinazolin-4(3H)-ones through orthogonal reactivity modulation[J].Chemical Communications,2017,53(75):10394-10397.
[5]SHARMA K,KHANDELWAL S,SAMARTH R M,et al.Natural product-mimetic scaffolds with privileged heterocyclic systems:design,synthesis,and evaluation of antioxidant activity of quinazoquinobenzothiazinones[J].Journal of Heterocyclic Chemistry,2016,53(1):220-228.
[6]BHALEKAR S M,PARAB H M.Synthesis of new heterocyclic compounds derived from 2-(2,4-dichloroquinolin-6-yl)-4H-1-benzopyran-4-one and their biological evaluation[J].Indian Journal of Heterocyclic Chemistry,2011,20(4):301-304.
[7]COVELL D G,HUANG R L,WALLQVIST A.Anticancer medicines in development:assessment of bioactivity profiles within the National Cancer Institute anticancer screening data[J].Molecular Cancer Therapeutics,2007,6(8):2261-2270.
[8]LU L Q,CHEN J R,XIAO W J.Development of cascade reactions for the concise construction of diverse heterocyclic architectures[J].Accounts of Chemical Research,2012,45(8):1278-1293.
[9]高凡,呂琪妍,於兵.2-甲硫基芳炔化合物的自由基串聯環化反應[J].聊城大學學報(自然科學版),2020,33(6):66-75.
GAO F,LYU Q Y,YU B.Radical cascade cyclization reaction of methyl(2-alkynylaryl)sulfanes[J].Journal of Liaocheng University(Natural Science Edition),2020,33(6):66-75.
[10]LIU H,WANG L,YU J T.Radical cascade cyclization of alkene-tethered compounds:versatile approach towards ring-fused polycyclic structures[J].Asian Journal of Organic Chemistry,2023,12(5):e202300101.
[11]LIAO J H,YANG X,OUYANG L,et al.Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo-and heterocycles[J].Organic Chemistry Frontiers,2021,8(6):1345-1363.
[12]HUANG M H,HAO W J,LI G G,et al.Recent advances in radical transformations of internal alkynes[J].Chemical Communications,2018,54(77):10791-10811.
[13]WEI W,CUI H H,YANG D S,et al.Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones[J].Green Chemistry,2017,19(23):5608-5613.
[14]ZENG F L,CHEN X L,SUN K,et al.Visible-light-induced metal-free cascade cyclization of N-arylpropiolamides to 3-phosphorylated,trifluoromethylated and thiocyanated azaspiro[4.5]trienones[J].Organic Chemistry Frontiers,2021,8(4):760-766.
[15]ZENG F L,ZHANG Z Y,YIN P C,et al.Visible-light-induced cascade cyclization of 3-(2-(ethynyl)phenyl)quinazolinones to phosphorylated quinolino[2,1-b]quinazolinones[J].Organic Letters,2022,24(43):7912-7917.
[16]JALANI H B,PANDYA A N,PANDYA D H,et al.An efficient,greener,and solvent-free one-pot multicomponent synthesis of 3-substituted quinazolin-4(3H)ones and thienopyrimidin-4(3H)ones[J].Tetrahedron Letters,2012,53(32):4062-4064.
[17]HUANG G L,LIU B,TENG M Y,et al.Ammonium chloride-catalyzed one-pot synthesis of 4(3H)-quinazolinones under solvent-free conditions[J].Synthetic Communications,2014,44(12):1786-1794.
Synthesis of 3-(2-(arylethynyl)phenyl)quinazolinones via one-pot multi-component reaction
Yu Bing1, Zeng Fanlin2
(1. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; 2. College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China)
Abstract: Using 2-(arylethynyl)aniline, 2-aminobenzyl formate, and ethyl trifluoromethylthioacetate as reactants, a one-pot multicomponent reaction was carried out to achieve a series of 3-(2-(arylethynyl)phenyl)quinazolinones in moderate to good yields(30%-71%) without the need for additional solvents. These compounds can be utilized as novel receptors in radical cascade cyclization reactions, leading to the synthesis of quinolino[2,1-b]quinazolinones.
Keywords: 3-(2-(arylethynyl)phenyl)quinazolinones; multi-component reaction; heterocycle; quinolino[2,1-b]quinazolinone
[責任編校? 趙曉華? 陳留院]