999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關于度量空間中改變距離的函數和的不動點定理

2024-05-20 01:35:42李斌肖海強常大磊

李斌 肖海強 常大磊

摘要:不動點理論在研究方程解的存在性、唯一性及具體計算都有重要的理論與實用價值。本文基于巴拿赫度量空間中壓縮映射原理通過兩點之間距離的改變,借助于單調函數自映射原理在已有的結論基礎上推廣了度量空間上自映射的Pathak、Rekha Sharam、Khan、和Sastry and Babu 函數和的一些不動點定理,并得出函數和唯一不動點定理 。

關鍵詞:不動點;距離變化;函數和

中圖分類號:O177.2文獻標志碼:A文獻標識碼

Some fixed point theorems about the sum of functions in metric spaces by altering distances

LI? Bin,XIAO? Haiqiang,CHANG? Dalei*

(College of Sciences,Shihezi University,Shihezi,Xinjiang 832000,China)

Abstract:? Fixed point theory has important theoretical and practical value in studying the existence, uniqueness, and specific calculations of equation solutions. Based on the principle of contractive mapping in Banach metric space, this paper extends some fixed point theorems of Pathak and Rekha Sharam, Khan, and Sastry and Babu function sums of self-mapping in metric space by changing the distance between two points and by virtue of the principle of monotone function self-mapping on the basis of the existing conclusions, and obtains function and unique fixed point theorems。

Key words: fixed point;alteration of distances;the sum of functions

著名的度量空間上的巴拿赫壓縮原理已被一些作者推廣。Rhoades[1] 和 TaskoviAc'1][2]已經建立了度量空間上的自映射的推廣。此外,Khan等[3]通過Banach壓縮原理改變點之間的距離,得到了度量空間上的自映射的概念。隨后一些學者又繼續朝這個方向研究[4-7],推廣了改變距離的函數的不動點定理,本文在結合已有結論的基礎上[8-9],得出了關于度量空間中改變距離的函數和的不動點定理。

4 結論

本文在已有結論的基礎上,首先在度量空間中建立自映射,通過改變點之間的距離,并結合Nashine等、Fang和Masmali等的定理得到了改變距離的函數和的不動點的存在性,其次,結合Amini-harandi等和Venkata等的定理得到了不動點的唯一性,最后,我們利用已有的結論和Kumar等的定理推廣了函數和的不動點的一些性質。

參考文獻(References)

[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 1977, 226: 257-290.

[2] TASKOVIC' R M.Some new principles in fixed point theory[J].Math.Japon.1990,35:645-666.

[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.

[4] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.

[5] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2000, 31(3): 243-250.

[6] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in Hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.

[7] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.

[8] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.

[9] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.

[10] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.

[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.

[12] AMINI-HARANDI A, PETRUEL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11.

[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 736367.

[14] FANG J X. A note on fixed point theorems of Hadzˇíc[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.

[15] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67.

[16] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.

[17] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.

[18] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in S-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.

[19] DONG Q L,LIU L L,GIBALI A.A dynamic simultaneous algorithm for solving split equality fixed point problems[J].Optimization,2024,73(3):833-849.

[20] KARLSSON A.A metric fixed point theorem and some of its applications[J].Geometric and Functional Analysis,2024,34(2):486-511.

[21] BRAVO M,COMINETTI R.Stochastic fixed-point iterations for nonexpansive maps: Convergence and error bounds[J].SIAM Journal on Control and Optimization,2024,62(1):191-219.

[22] SALUJA S G.Some common fixed point theorems for contractive type conditions in complex valued S-metric spaces[J].International Journal of Mathematical Combinatorics,2023,2(1):1-17.

[23] HAMAIZIA T.Coincidence and common fixed point theorems for hybrid mappings[J].General Mathematics,2023,31(1):51-57.

[24] OREGAN D.Continuous selecting families and collectively fixed point theory[J].Aequationes mathematicae,2023,97(4):871-881.

[25] SOLAN E,SOLAN O N.Browders theorem through brouwers fixed point theorem[J].The American Mathematical Monthly,2023,130(4):370-374.

[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 2010, 226(0): 257-290.

[2] M.R.TaskoviAc'1]:Some new principles in fixed point theory.Math.Japon.1990,35:645-666.

[2] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.

[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.

[3] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.

[5] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.

[6] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.

[7] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2020, 31(3): 243-250.

[8] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-Quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.

[10] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.

[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.

[12] AMINI-HARANDI A, PETRUASXU]EL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11-11.

[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 1-23.

[14] FANG J X. A note on fixed point theorems of Hadzci′c[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.

[15] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.

[16] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.

[17] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in s-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.

[18] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67-78.

(責任編輯:編輯郭蕓婕)

主站蜘蛛池模板: 亚洲成人精品久久| 97se亚洲综合| 无码视频国产精品一区二区| 国产精品毛片在线直播完整版 | 91高清在线视频| 亚洲精品日产精品乱码不卡| 丁香五月亚洲综合在线| 午夜限制老子影院888| 88av在线| 99久久精品视香蕉蕉| 国产成人精品亚洲日本对白优播| 丝袜高跟美脚国产1区| 国产精品刺激对白在线| 欧美精品亚洲日韩a| 色婷婷亚洲综合五月| 中文字幕欧美日韩| 中国黄色一级视频| 亚洲综合狠狠| 亚洲第一区欧美国产综合 | 亚洲V日韩V无码一区二区| 97se亚洲综合在线| 国产jizzjizz视频| 国产精品久久久久婷婷五月| 国产精品手机视频一区二区| 人妻中文字幕无码久久一区| 久久综合九色综合97网| 一级成人欧美一区在线观看| 免费A∨中文乱码专区| 国产视频一二三区| 国产精品视频久| 国产在线高清一级毛片| 激情综合婷婷丁香五月尤物| 久久这里只有精品66| 无码精品国产VA在线观看DVD| 爆乳熟妇一区二区三区| 亚洲人成色在线观看| 国产成人高清在线精品| 久久久久久国产精品mv| 国产高清自拍视频| 夜夜爽免费视频| 国产精品lululu在线观看 | 国产黄色免费看| 欧美成人第一页| 2021最新国产精品网站| 国产偷国产偷在线高清| 国产成人福利在线| 毛片国产精品完整版| 日韩无码视频播放| 免费人成视网站在线不卡| 亚洲三级电影在线播放 | 黄色网址手机国内免费在线观看| 久久免费成人| 国产成人精品高清在线| 人妻无码AⅤ中文字| 丁香五月亚洲综合在线| 日本91视频| 一级毛片在线播放免费| 日韩AV手机在线观看蜜芽| 日韩不卡高清视频| 国产免费观看av大片的网站| 久99久热只有精品国产15| 伊人成色综合网| 日韩不卡高清视频| 中文国产成人精品久久| 亚洲a级在线观看| 亚洲妓女综合网995久久| 婷婷色狠狠干| 亚洲国产精品日韩专区AV| 97国产在线观看| 亚洲国产成人精品无码区性色| 毛片久久网站小视频| 18禁黄无遮挡网站| 成人看片欧美一区二区| 国产一级无码不卡视频| 一本久道久综合久久鬼色| 日本人真淫视频一区二区三区| a在线亚洲男人的天堂试看| 五月天香蕉视频国产亚| 国产第一页亚洲| 国产网站免费| 97se亚洲| 91九色国产在线|