










符安宗,李成祿,石國明,等.黑龍江多寶山地區晚泥盆世A型花崗斑巖年代學、地球化學特征
及其地質意義.吉林大學學報(地球科學版),2024,54(3):811827.doi:10.13278/j.cnki.jjuese.20220262.
Fu Anzong,Li Chenglu,Shi Guoming,et al. Geochronology, Geochemistry and Geological Significance of the Late Devonian AType Granite Porphyry in the Duobaoshan Area, Heilongjiang Province. Journal of Jilin University (Earth Science Edition),2024,54(3):811827.doi:10.13278/j.cnki.jjuese.20220262.
摘要:
黑龍江多寶山地區位于興蒙造山帶東段,為興安地塊與松嫩地塊的拼合部位,是研究嫩江—黑河洋(古亞洲洋分支)構造演化的關鍵地段。對嫩江市多寶山地區西側出露的花崗斑巖開展巖石學、年代學和元素地球化學等方面的研究,以期限定其形成時代,探討巖石成因及構造背景,為嫩江—黑河洋構造巖漿演化提供依據。花崗斑巖呈肉紅色,具多斑狀結構,塊狀構造,斑晶由鉀長石、石英和少量的斜長石組成,基質主要由微晶結構的長英質礦物和少量黑云母組成。LAICPMS鋯石UPb加權平均年齡為(365.1±2.6)Ma,形成于晚泥盆世晚期。巖石地球化學具有高質量分數的SiO2、K2O,低質量分數的CaO、MgO和Al2O3,高TFeO/MgO和Rb/Sr值,富集Rb、Th、Zr和Hf元素,貧Sr、Ba、Eu、Ti和P元素,REE配分曲線呈燕式分布,負銪異常明顯,表現出A型花崗巖的特征。以高的Zr/Hf值,Na2O、TFeO質量分數和相對低的P2O5、Rb質量分數區別于高分異I型、S型花崗巖。特征微量元素比值與大陸地殼相應值相近,且巖石具有較低的MgO、Cr質量分數和Mg#值,指示其源區主要來自地殼。綜合分析表明,該期花崗斑巖為非典型A1亞類花崗巖,兼具火山弧和板內花崗巖的元素地球化學特征,形成于嫩江—黑河洋北向俯沖擠壓體系下派生的局部拉張環境。
關鍵詞:
晚泥盆世;鋯石UPb年齡;地球化學;A型花崗巖;花崗斑巖;黑龍江多寶山地區
doi:10.13278/j.cnki.jjuese.20220262
中圖分類號:P59;P588.12
文獻標志碼:A
收稿日期:20220917
作者簡介:符安宗(1986—),男,工程師,碩士,主要從事區域地質礦產調查方面的研究,E-mail:116861157@qq.com
基金項目:黑龍江省重點研發計劃項目(GA21A204);黑龍江省地質礦產局科研項目(HKY202302);中國地質調查局項目(DD2016004707)
Supported by the Key Ramp;D Project in Heilongjiang Province (GA21A204), the Research Projects of Bureau of Geology amp; Mineral Resource of Heilongjiang Province (HKY202302) and the Project of China Geological Survey (DD2016004707)
Geochronology, Geochemistry and Geological Significance of the Late Devonian AType Granite Porphyry in the Duobaoshan Area, Heilongjiang Province
Fu Anzong,Li Chenglu,Shi Guoming,Yang Wenpeng,Yang Yuanjiang,Zheng Bo,Li Jinming
Heilongjiang Institute of Natural Resources Survey,Harbin 150036, China
Abstract:
The Duobaoshan area, situated within the contact zone between the Xing’an and Songnen blocks in the eastern part of Xing’an-Mongolia orogenic belt, holds significant importance in the study the tectonic evolution of Nenjiang-Heihe Ocean, which is the north branch of Paleo-Asian Ocean. In this paper, we present a detailed investigation of petrology, geochronology and geochemistry of the granite porphyries exposed in the western Duobaoshan area with the aims to identify their geochronology and petrogenesis, and further to reveal the tectonic-magmatic evolution associated with the Nenjiang-Heihe Ocean. The investigated granite porphyries are flesh red, with multi porphyry structure and massive structure. Their phenocrysts predominantly comprise potassium feldspar, quartz and a small amount of plagioclase. The matrix is mainly composed of felsic minerals with microcrystalline structure and minor biotites. The LAICPMS UPb zircon age suggest the granite porphyry formed at Late Devonian (365.1 ± 2.6 Ma). Moreover, the granite porphyries are geochemically characterized by high SiO2 and K2O contents, along with low CaO, MgO and Al2O3 compositions, and high TFeO/MgO and Rb/Sr ratios. They are enriched in Rb, Th, Zr and Hf, and depleted in Sr, Ba, Eu, Ti, P, with swallow-like REE patterns and negative Eu anomalies, showing the characteristics of Atype granite. Distinguished from highly differentiated Itype and Stype granites, they display a high Zr/Hf ratio, Na2O, TFeO content and relatively low P2O5, Rb content. The low MgO, and Cr contents and Mg# values, together with their characteristic trace element ratios, indicated the predominant crustal source contribution. Based on the regional geology and the geochemical characteristics of the studied rocks, we concluded that the granite porphyry is an A1 subtype granite, which has the geochemical characteristics of both volcanic arc and intraplate granite. Furthermore, we infer that the granite porphyry should be formed in the local extensional environment during the northward subduction of Nenjiang-Heihe Ocean.
Key words:
Late Devonian; zircon UPb age; geochemistry; Atype granite; granite porphyry; the Duobaoshan area, Heilongjiang Province
0" 引言
黑龍江多寶山地區位于大興安嶺與小興安嶺結合部,屬興蒙造山帶東段,為興安地塊和松嫩地塊的拼合部位,
自古生代以來經歷了古亞洲洋、環太平洋、蒙古—鄂霍茨克洋三大構造域的地質構造演化[13],構造巖漿活動頻繁,成礦地質作用復雜。該地區目前已發現多寶山斑巖型銅鉬礦床、銅山斑巖型銅礦床、三礦溝矽卡巖型鐵礦床、爭光低溫熱液型金礦床和二道坎低溫熱液型銀礦床等,成礦潛力巨大。特別是黑龍江省首個大型獨立銀礦二道坎銀礦床的發現,為多寶山地區增加了新的找礦方向。因此,查清多寶山地區成礦地質背景尤為重要。近年來,眾多學者圍繞上述礦床及其外圍開展了較為詳盡的研究,報道了多期構造巖漿事件,基本理清了多寶山地區成礦地質背景[312]。然而該地區晚泥盆世巖漿事件未見報道,其地質構造演化缺乏晚泥盆世巖漿記錄,該時期地質構造背景尚不明確。
A型花崗巖富硅富堿貧水,地球化學上以貧Al、Sr、Eu、Ba、Ti、P等為特征,形成于低壓高溫條件下,大多產于伸展環境或擠壓、剪切體制下派生的局部拉張環境[1317]。盡管A型花崗巖類僅占花崗巖類的一小部分,但該類花崗巖具有重要的地球化學意義,探討其產出的動力學背景可以限定區域構造演化[18]。
鑒于此,本文在多寶山地區1∶5萬區域地質調查工作的基礎上,通過對新發現的A型花崗斑巖進行詳細的巖石學、年代學和元素地球化學研究,準確量定其形成時代,揭示其巖石成因,探討其構造環境,為研究多寶山地區晚泥盆世構造環境及嫩江—黑河洋的構造演化提供新的可靠素材和地質依據,進一步完善多寶山地區的成礦地質背景。
1" 地質概況
研究區位于黑龍江省嫩江市多寶山地區西側,屬興蒙造山帶東段興安地塊東北邊緣(圖1a),經歷了三大構造域的疊加演化,巖漿活動強烈,變質作用復雜,發育古生代弧盆系火山沉積建造、巖漿弧和中生代火山沉積盆地[21]。
研究區古生代海相火山沉積地層和中生代陸相火山沉積地層發育,地層由老到新依次為:下—中奧陶統銅山組(O12t)淺海—半深海—深海陸源碎屑沉積巖夾火山碎屑巖、多寶山組(O12d)島弧型鈣堿性火山巖夾大理巖透鏡體,上奧陶統裸河組(O3l)淺海—濱海相沉積巖夾凝灰巖和結晶灰巖透鏡體、愛輝組(O3ah)淺海—半深海相沉積巖,下志留統黃花溝組(S1h)淺海—半深海相沉積巖,中志留統八十里小河組(S2b)淺海相沉積巖夾火山巖,上志留統臥都河組(S3w)淺海—濱海相沉積巖,下泥盆統泥鰍河組(D1n)淺海相沉積巖夾火山巖,中—上泥盆統根里河組(D23g)淺海相沉積巖,上石炭統—下二疊統寶力高廟組(C2P1bl)中酸性陸相火山巖夾正常沉積碎屑巖,下白堊統龍江組(K1l)陸相中性火山巖、光華組(K1gn)陸相酸性火山巖、九峰山組(K1j)山間半地塹式斷陷盆地沉積巖、甘河組(K1g)陸相基性火山巖和第四系沖洪積物。區域上巖漿活動頻繁,由老到新發育中奧陶世花崗閃長巖和花崗閃長斑巖、早石炭世正長花崗巖、晚石炭世—早二疊世堿長花崗巖、中—晚三疊世花崗閃長巖、早侏羅世閃長巖、中侏羅世花崗閃長巖和二長花崗巖。
本文研究的花崗斑巖呈不規則小巖株狀產出,總體呈近北北東向展布,出露面積約10 km2,侵位于下—中奧陶統銅山組海相沉積巖中,被上石炭統—下二疊統寶力高廟組陸相火山巖不整合覆蓋(圖1b)。其巖相學特征揭示:巖石呈肉紅色,具多斑狀結構,塊狀構造。巖石由斑晶和基質組成,斑晶約占巖石的50%(圖2)。斑晶由鉀長石、石英和少量的斜長石組成,粒徑多為0.5~4.0 mm。鉀長石呈半自形柱狀、粒狀,負低突起,平行消光,具黏土化,體積分數約為25%;石英呈他形粒狀、熔蝕斑狀,晶面平坦,波狀消光,裂紋發育,體積分數約為20%;斜長石呈半自形柱狀,具聚片雙晶,成分為更長石,絹云母化發育,體積分數約為5%。基質主要由微晶結構的長英質礦物和少量黑云母組成,黑云母具綠泥石化、白云母化,部分黑云母鑲嵌在長石、石英斑晶上,斜長石具絹云母化,鉀長石具黏土化。副礦物為磁鐵礦、鋯石。
2" 分析方法
本文對1件樣品進行鋯石UPb法年齡測定,對5件樣品進行巖石地球化學分析測試。樣品較為新鮮,采樣位置見圖1b和表1。
鋯石UPb測年:在野外采集新鮮巖石樣品,選送至河北省區域地質礦產調查研究所實驗室進行單礦物鋯石分選工作。以常規方法將樣品粉碎至80~100目,并用淘洗、電磁選等方法進行單礦物鋯石分選;然后在雙目鏡下挑選透明度較好、晶形較完好、裂紋和包體較少的鋯石用于UPb年齡測定。鋯石制靶、陰極發光(CL)圖像的采集由北京鋯年領航科技有限公司完成。鋯石UThPb同位素分析在中國地質調查局天津地質調查中心完成。鋯石UThPb分析在天津地質調查中心LAMCICPMC儀器上完成,所用儀器由NEW WAVE 193 nm FX激光器和NEPTUNE型多接收等離子質譜組成,激光剝蝕的斑束直徑為35 μm,能量密度為13~14 J/cm2,頻率為8~10 Hz,采用91500和GJ1標準鋯石作為鋯石定年外標,詳細的實驗原理和測試方法見參考文獻[22]。采用Liu等[23]研發的ICPMSDataCAl程序和Ludwig[24]的Isoplot程序進行數據處理、年齡諧和圖繪制和加權平均年齡計算,利用NIST SRM 612玻璃標樣作為外標計算鋯石樣品的Pb、U、Th質量分數。
主量、微量和稀土元素分析測試:在野外采集新鮮巖石樣品,選送不含包體和巖脈的樣品送至自然資源部哈爾濱礦產資源監督檢測中心進行巖石地球化學分析測試。其中主量元素分析采用X射線熒光光譜儀(XRF)完成,所用儀器型號為PW2400/40型,分析誤差優于5%;微量元素和稀土元素分析采用電感耦合等離子體質譜法(ICPMS)測定,所用儀器型號為X SeriesⅡ型,分析誤差優于10%,具體分析測試流程詳見參考文獻[25]。
3" 測試結果
3.1" LAICPMS鋯石UPb年齡
本次研究對多寶山地區1個花崗斑巖樣品(039UPb95)進行了LAICPMS鋯石UPb同位素測年,測試結果見表2。CL陰極發光圖像(圖3)顯示用于測試的鋯石內部結構清晰,為自形—半自形晶體,以短柱狀、等軸狀為主,少數鋯石因溶蝕形態不規則,粒徑大小多在90~180 μm之間,長寬比在2∶1~1∶1之間。陰極發光圖像中大多數鋯石可見明顯的巖漿韻律環帶結構,Th/U值較高,介于0.33~0.64之間,具典型巖漿成因鋯石特征[26]。
樣品039UPb95共測試25個鋯石點,其中有4個點(9、16、21、23點)的諧和度小于90%,偏離諧和線,可能發生了204Pb的丟失,所以未參與鋯石年齡的計算;3個點(4、19、22點)的206Pb/238U年齡在392~388 Ma之間,明顯大于其他18個鋯石點的年齡,可能為捕獲鋯石,因此未參與鋯石年齡的計算;其他18個鋯石點位于UPb諧和線上及其附近(圖4),206Pb/238U年齡為374~356 Ma,206Pb/238U加權平均年齡為(365.1±2.6)Ma(n=18,MSWD=0.83),時代為晚泥盆世晚期。所有鋯石點207Pb/206Pb值非常接近,變化于0.051 4~0.060 3之間,表明該批鋯石為同期巖漿鋯石。因此,該加權平均年齡代表本次研究的花崗斑巖結晶年齡,其形成于晚泥盆世晚期。
3.2" 巖石地球化學特征
本次研究于多寶山地區共采集花崗斑巖5件新鮮巖石樣品用于巖石地球化學分析,其主量、微量和稀土元素分析結果列于表3。
從表3可以看出,研究區花崗斑巖樣品具有高硅(w(SiO2)=73.38%~77.12%)、高鉀(w(K2O) =4.73%~5.43%)、富堿(w(Na2O+K2O)=7.58%~9.02%)、低鈦(w(TiO2)=0.09%~0.20%)、低鈣(w(CaO) =0.18%~0.44%)、貧鎂(w(MgO)=0.04%~0.12%)、低Al2O3(w(Al2O3)=11.87%~13.64%)和高TFeO/MgO值(12.37~49.49)的地球化學特征。在R2R1圖解(圖5a)中,所有樣品均落入堿性花崗巖區域。花崗斑巖的AR值介于2.61~3.22之間,屬堿性系列(圖5b);在w(K2O)w(SiO2)圖解(圖5c)中落入高鉀鈣堿性系列;在w(Na2O+K2O-CaO)w(SiO2)圖解(圖5d)中落入堿性系列和堿鈣性系列;在TFeO/(TFeO+MgO)w(SiO2)圖解(圖5e)中落入鐵質(Fenoan)區域;在A/NKA/CNK圖解(圖5f)上落入過鋁質區域,屬弱過鋁質花崗巖;在(Al2O3+CaO)/(TFeO+Na2O+K2O)100(MgO+TFeO+TiO2)圖解(圖5g)上除1個點落入高分異花崗巖區域外,其余4個點均落入堿性花崗巖區域。
樣品中稀土總量較高且變化較大,w(∑REE)=(144.67~388.93)×10-6,平均值為296.68×10-6;相對富集輕稀土元素,虧損重稀土元素,LREE/HREE值除1個樣品為4.82外,其余為19.52~
34.05,平均值為21.54;(La/Yb)N為17.84~51.85(僅1個樣品為3.92),平均值為26.09,在稀土元素配分曲線圖上呈富LREE的右傾型曲線(圖6a);(La/Sm)N=2.65~9.66(平均值為6.23), (Gd/Yb)N=1.17~2.52(平均值為1.96),顯示輕稀土元素分餾程度高于
球粒隕石標準化值和原始地幔標準化值據文獻[34]。
重稀土元素;δEu值介于0.06~0.10之間,平均值為0.08,顯示明顯的負銪異常,表明源區殘留有大量的斜長石或成巖過程經歷了斜長石的分離結晶作用[18,35]。在微量元素蛛網圖(圖6b)上,所有花崗斑巖樣品均富集大離子親石元素Rb、Th、K 和高場強元素Nd、Zr、Hf,而強烈虧損Ba、Sr、P、Ti等元素。
4" 討論
4.1" 巖石成因
I型、S型、A型、M型花崗巖是目前常用的花崗巖巖石成因分類方案[36]。其中真正由地幔巖漿衍生的M型花崗巖較為少見,一般產于大洋火山島弧,巖石組合為大洋斜長花崗巖、輝長巖,w(K2O)<0.6%[3738]。多寶山地區晚泥盆世花崗斑巖w(K2O)=4.73%~5.43%,遠大于0.6%,不可能為M型花崗巖。該期花崗斑巖主要由堿性長石、石英及斜長石等礦物組成,在R2R1圖解(圖5a)中落入堿性花崗巖區域,具有高Si和K,低Ca和Al,富Rb、Th、Zr和Hf,貧Sr、Ba、Eu、Ti和P,高TFeO/MgO值和Rb/Sr值(2.84~4.67),REE分布具有明顯的負銪異常,在稀土元素配分曲線圖上表現出右傾的燕式分布型式。以上幾點明顯不同于I型和S型花崗巖,而表現出A型花崗巖的特征[3641]。Whalen等[40]對比研究了大量M、I、S、A 型花崗巖地球化學數據,提出一系列相關判別圖解,如(Na2O+K2O)/CaO(NK/C)w(Zr+Ce+Nb+Y)和TFeO/MgOw(Zr+Ce+Nb+Y)圖解,對A型花崗巖的判定較為準確。Eby[42]的研究表明,對于高硅的(w(SiO2)>74%)I、S、A 型花崗巖,利用TFeO/MgO w(SiO2)圖解能有效地把大多數A型花崗巖區別出來。在這些圖解(圖7a、b、c)中,晚泥盆世花崗斑巖除1個樣品點在TFeO/MgO w(Zr+Ce+Nb+Y)圖解中未落入A型花崗巖區域外,其余樣品點均落入A型花崗巖區域。但是,A型花崗巖與w(SiO2)>72%的高分異I型、S型花崗巖具有一定的相似性[40,4345]。相對于未分異花崗巖,高分異花崗巖具有低的Zr/Hf值(<38)[45]。相對于A型花崗巖,高分異S型花崗巖具有低的w(Na2O)(平均值為2.81%)和高的w(P2O5)(平均值為0.14%)[46],高分異I型花崗巖具有相對低的w(TFeO)(一般<1%)和高的w(Rb)(>270×106)[47]。多寶山地區晚泥盆世花崗斑巖具有高的Zr/Hf值、高的w(Na2O)和w(FeO)、低的w(P2O5)和w(Rb)(表3),與高分異I型、S型花崗巖明顯不同,且在(Al2O3+CaO)/(TFeO+Na2O+K2O)100(MgO+TFeO+TiO2)圖解(圖5g)上,僅有1個樣品點落入高分異花崗巖區域,說明該期花崗斑巖不是高分異I型、S型花崗巖,但可能經歷一定的分離結晶作用。
低壓和高溫是A型花崗巖形成的重要條件[1315,3940]。張旗等[4849]在分析歸納大量資料的基礎上,將中酸性花崗巖按Sr、Yb的質量分數和反映的源區壓力劃分為埃達克巖型花崗巖(w(Sr)>300×
10-6,w(Yb)<2.5×10-6,最小壓力>1.2 GPa)、喜馬拉雅型花崗巖(w(Sr)<300×10-6,w(Yb)<2×10-6,壓力為0.8~1.4 GPa)、浙閩型花崗巖(w(Sr)=(40~400)×10-6,w(Yb)>1.5×10-6,壓力為0.8~1.0 GPa)、廣西型花崗巖(w(Sr)>400×10-6,w(Yb)>2×10-6,壓力尚不明確)和南嶺型花崗巖(w(Sr)=(2~100)×10-6,w(Yb)=(1~30)×10-6,壓力<0.8 GPa)等五類。多寶山地區晚泥盆世花崗斑巖w(Sr)= (21~46)×10-6,w(Yb)= (1.05~3.99)×10-6,屬南嶺型花崗巖,其源區壓力小于0.8 GPa,反映了與A型花崗巖一致的低壓特征。對于長英質巖漿,鋯石飽和溫度(TZr)近似于熔體的分離溫度,可以通過鋯石飽和溫度計算來獲取巖漿初始溫度[50]。計算公式:TZr=12900/[2.95+0.85M+ln(496000/Zr熔體)],式中溫度為絕對溫度,M=[(Na+K+2Ca)/(Al×Si)] [5051]。經計算,本文花崗斑巖樣品的鋯石飽和溫度介于807.87~834.73 ℃之間(平均值為822.38 ℃),明顯高于I型花崗巖的飽和溫度(764 ℃和781 ℃)和S型花崗巖的飽和溫度(703 ℃和779 ℃),而與澳大利亞Lachlan 褶皺帶A型花崗巖的平均溫度(839 ℃)相近[43,52]。
綜上,多寶山地區晚泥盆世花崗斑巖屬于A型花崗巖,可能經歷一定的分離結晶作用。
多寶山地區晚泥盆世花崗斑巖樣品在微量元素原始地幔標準化蛛網圖上顯示Nb、Ta、P、Ti的貧化,指示其源區主要來自地殼。表4中可見,樣品的Rb/Sr值gt;0.5,Ti/Zr值lt;20,Ti/Y值lt;100,屬于殼源巖漿[5556]。另外,樣品的Rb/Y、Rb/Nb、Rb/U、Ba/Sr、La/Yb、La/Sm、La/Nb、Sm/Nd、Y/Nb、Yb/Ta、Nb/Th、Nd/Th 、Th/La、Th/Yb等14個特征微量元素比值與大陸地殼相應的元素比值相近,而與原始地幔的相應值相差較遠,加之較低的MgO(0.04%~0.12%)、Cr(13.7%~35.6%)質量分數和
Mg#值(4.07~14.49),也顯示殼源巖石的特征。然而,Nb/Ta、Nb/U值介于大陸地殼與原始地幔相應值之間,表明其巖漿源區有地幔物質的參與。基于上述研究成果,多寶山地區晚泥盆世花崗斑巖應是有幔源物質貢獻的新生下地殼部分熔融的產物。
4.2" 構造環境與地質意義
A型花崗巖具有一定的構造指示意義,幾乎都是構造伸展背景或擠壓、剪切體制下派生的局部拉張環境的產物[1316]。Eby[13]根據不相容元素比值將A型花崗巖分為A1和A2兩個亞類。A1亞類中不相容元素的比值與洋島玄武巖相似,其巖漿來源以地幔為主,主要形成于地幔柱或裂谷環境;A2亞類中不相容元素比值變化較大,其相似范圍從大陸地殼平均值到島弧玄武巖平均值,其巖漿來源主要是地殼,主要形成于弧后、碰撞后或造山期后的張性環境。多寶山地區晚泥盆世花崗斑巖在Ce/NbY/Nb、Yb/Ta Y/Nb和Rb/NbY/Nb圖解(圖8a、b、c)中均落入A1型花崗巖區域及其附近,在NbYCe圖解(圖8d)中落入A1型花崗巖與A2型花崗巖界線附近,顯示其為A1型花崗巖,兼具A2型花崗巖特征。巖石在R2R1構造環境判別圖解(圖9a)中落入非造山和造山后期區域,反映該期花崗斑巖形成于伸展構造背景下的拉張環境中。在微量元素w(Rb)w(Y+Nb)、w(Rb)w(Yb+Ta)和w(Nb)w(Y)構造環境判別圖解(圖9b、c、d)上,樣品落入火山弧和板內花崗巖區域。然而,多寶山地區晚泥盆世花崗斑巖的巖漿來源主要是地殼,可能有地幔物質的參與,這與典型的A1亞類花崗巖不同。因此,本文認為該期花崗斑巖形成的構造環境也有別于A1亞類花崗巖,其構造環境需結合區域數據進行綜合分析。
多寶山地區早奧陶世至晚泥盆世早期為海相化石豐富的地層,晚泥盆世晚期的地層開始出現陸相化石,標志著多寶山海盆于晚泥盆世開始閉合;晚石炭世—早二疊世沉積地層的缺失標志著多寶山地區此時處于碰撞造山階段[60]。本區南部霍龍門、嫩江
底圖據文獻[13]。
等地發育的早石炭世—晚石炭世早期(351~322 Ma)的花崗巖具有板塊碰撞前—碰撞的地球化學特征[6164],反映興安地塊與松嫩地塊的拼貼時間應為早石炭世—晚石炭世早期;扎蘭屯地區發育的晚古生代早期(405~325 Ma)花崗巖類可能與興安地塊和松嫩地塊的碰撞拼合作用有關,其拼合時限可能為早石炭世中期[65]。本文中A型花崗巖形成于(365.1±2.6)Ma,屬晚泥盆世晚期,不可能是碰撞后花崗巖。有學者在本區南部哈達陽地區和扎蘭屯地區發現具有火山弧型玄武巖特征的鎂鐵—超鎂鐵質巖石和具有火山弧性質的中酸性火山巖,形成于晚泥盆世晚期(363.3~362.1 Ma)[6667];在本區東北部三道灣子金礦發現晚泥盆世((363.3±2.6)、(369.2±2.3)、(377.0±3.0)Ma)埃達克巖和I型花崗巖,形成于由洋殼俯沖的島弧環境向洋殼閉合陸陸碰撞的擠壓造山的過渡階段[68]。由此可見,晚泥盆世時期,興安地塊和松嫩地塊之間的黑河洋尚未消失,正處于俯沖消減階段。另外,Gou等[69]在本區西部滿洲里—額爾古納地區發現一套晚泥盆世(360±4)Ma的A2型花崗巖,可能形成于弧后伸展環境;Li等[7072]在額爾古納地塊中南部識別出形成于弧后伸展環境的晚泥盆世(365.2 ± 3.9)Ma的流紋巖,說明晚泥盆世額爾古納地塊處于伸展環境。本文研究的A型花崗斑巖位于興安地塊東北緣的多寶山地區,離滿洲里—額爾古納地區較遠,而離嫩江—黑河洋較近,受嫩江—黑河洋北向俯沖的影響較大。因此,多寶山地區在晚泥盆世時期應總體處于洋殼俯沖的擠壓背景。結合上述A型花崗巖的分析,本文認為多寶山地區晚泥盆世A型花崗斑巖應形成于嫩江—黑河洋北向俯沖擠壓體制下派生的局部拉張環境。
a底圖據文獻[57];b、c、d底圖據文獻[5859]。
5" 結論
1) 多寶山地區晚泥盆世花崗斑巖的鋯石LAICPMS定年顯示,其鋯石加權平均年齡為(365.1±2.6)Ma,表明本期花崗斑巖的侵位年齡為晚泥盆世晚期。
2) 巖石學、地球化學特征顯示,多寶山地區晚泥盆世花崗斑巖為弱過鋁質A型花崗巖,是有幔源物質貢獻的新生下地殼部分熔融的產物。
3) 多寶山地區晚泥盆世花崗斑巖為非典型的A1亞類花崗巖,兼具火山弧和板內花崗巖的元素地球化學特征,形成于嫩江黑河洋北向俯沖擠壓體制下派生的局部拉張環境,表明多寶山地區約365 Ma處于擠壓背景下的局部伸展環境。
參考文獻(References):
[1]" Hao Y J, Ren Y S, Duan M G, et al. Metallogenic Events and Tectonic Setting of the Duobaoshan Ore Field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Ences, 2015, 97:442458.
[2]" Wu G, Chen Y C, Sun F Y, et al. Geochronology, Geochemistry, and SrNdHf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance[J]. Journal of Asian Earth Sciences, 2015, 97:229250.
[3]" 劉寶山,程招勛,錢程,等.大興安嶺多寶山晚三疊世雙峰式侵入巖年代學及地球動力學背景[J].地球科學,2021,46(7):23112328.
Liu Baoshan, Cheng Zhaoxun, Qian Cheng, et al. Geochronology and Geodynamic Background Study of the Late Triassic Bimodal Pattern Intrusive Rock in Da Hinggan Mountains Duobaoshan Area[J]. Earth Science, 2021, 46(7): 23112328.
[4]" Zhao C, Qin K Z, Song G X, et al. The Triassic Duobaoshan Appinite-Granite Suite, NE China: Implications for a Water-Fluxed Lithospheric Mantle and an Extensional Setting Related to the Subduction of the Mongol-Okhotsk Ocean[J]. Lithos, 2021, 394/395: 106169.
[5]" Cai W Y, Wang K Y, Li J, et al. Geology, Geochronology and Geochemistry of Large Duobaoshan CuMoAu Orefield in NE China: Magma Genesis and Regional Tectonic Implications[J]. Geoscience Frontiers, 2021, 12(1): 265292.
[6]" Liu J, Zhou Z H, He Z F, et al. Ircon UPb Dating and Geochemistry of Ore-Bearing Tonalite in Tongshan Copper Deposit, Heilongjiang Province[J]. Mineral Deposits, 2015, 34(2): 289308.
[7]" Chu S X, Zeng Q D, Liu J M, et al. Early-Middle Jurassic Magmatism and Skarn-Porphyry Mineralization in NE China: Geochronological and Geochemical Constraints from the Sankuanggou Skarn FeCu(Mo) Deposit, and Tectonic Implications[J]. Journal of Geochemical Exploration, 2019, 200: 84103.
[8]" Gao R Z, Xue C J, Lu X B, et al. Genesis of the Zhengguang Gold Deposit in the Duobaoshan Ore Field, Heilongjiang Province, NE China: Constraints from Geology, Geochronology and SPb Isotopic Compositions[J]. Ore Geology Reviews, 2017, 84: 202217.
[9]" Yuan M W, Li L, Li S R, et al. Bitumen SmNd, Pyrite RbSr and Zircon UPb Isotopes Constrain Timing of Ore Formation and Hydrocarbon Deposition in the Erdaokan AgPbZn Deposit, NE China[J]. Ore Geology Reviews, 2021, 134: 104161.
[10]" 冷亞星,王建平,任紀舜.黑龍江多寶山斑巖銅礦賦礦巖體侵位深度及其對成礦的約束[J].地質通報,2022,41(4):642656.
Leng Yaxing, Wang Jianping, Ren Jishun. The Emplacement Depth of Ore-Hosting Rock Body and Its Constraints on Mineralization in Duobaoshan Porphyry Copper Deposit, Heilongjiang Province[J]. Geological Bulletin of China, 2022, 41(4): 642656.
[11]" 李玉潔,李成祿,楊元江,等.大興安嶺東北部多寶山礦集區二道坎銀鉛鋅礦床磁鐵礦地球化學特征[J].吉林大學學報(地球科學版),2023,53(2):436449.
Li Yujie, Li Chenglu, Yang Yuanjiang, et al. Geochemical Characteristics of Magnetite in Erdaokan AgPbZn Deposit, Duobaoshan Ore Concentration Area, Northeastern Great Xing’an Range[J]. Journal of Jilin University (Earth Science Edition), 2023,53(2):436449.
[12]" 符安宗,李金明,呂石佳,等.黑龍江多寶山地區裸河巖體鋯石UPb年齡、地球化學特征及地質意義[J].中國地質調查,2023,10(1):5261.
Fu Anzong, Li Jinming, Lü Shijia, et al. Zircon UPb Ages, Geochemical Characteristics and Geological Significance of Luohe Pluton in Duobaoshan Area, Heilongjiang Province [J]. Geological Survey of China, 2023,10(1):5261.
[13]" Eby G N. Chemical Subdivision of the AType Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7): 641644.
[14]" Martin R F. AType Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment[J]. Lithos, 2006, 91(1): 125136.
[15]" 吳鎖平,王梅英,戚開靜. A型花崗巖研究現狀及其述評[J].巖石礦物學雜志,2007,26(1):5766.
Wu Suoping, Wang Meiying, Qi Kaijing. Present Situation of Researches on AType Granites :A Review[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 5766.
[16]" 張旗. A型花崗巖的標志和判別:兼答汪洋等對“A型花崗巖的實質是什么”的質疑[J].巖石礦物學雜志,2013,32(2):267274.
Zhang Qi. The Criteria and Discrimination for AType Granites:A Reply to the Question Put Forward by Wang Yang and Some Other Persons for “AType Granite:What is the Essence?” [J]. Acta Petrologica et Mineralogica,2013,32(2):267274.
[17]" Deng C Z, Sun D Y, Sun G Y, et al. Age and Geochemistry of Early Ordovician AType Granites in the Northeastern Songnen Block, NE China[J]. Acta Geochimica, 2018, 37(6): 805819.
[18]" 李金超,國顯正,孔會磊,等.東昆侖浪麥灘地區A型花崗巖年代學、地球化學特征及其地質意義[J].地質學報,2021,95(5):15081522.
Li Jinchao, Guo Xianzheng, Kong Huilei, et al. Geochronology,Geochemical Characteristics and Geological Significance of AType Granite from the Langmaitan Area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 15081522.
[19]" 潘桂棠, 肖慶輝, 陸松年, 等.中國大地構造單元劃分[J].中國地質,2009,36(1):128.
Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of Tectonic Units in China [J]. Geology in China,2009,36(1):128.
[20]" 符安宗, 楊文鵬, 劉淵, 等. 大興安嶺中段碾子山地區晚三疊世埃達克質侵入巖的發現及其地質意義[J].現代地質, 2022, 36(1):266281.
Fu Anzong, Yang Wenpeng, Liu Yuan, et al. Discovery of Late Triassic Adakitic Rocks at Nianzishan in the Central Great Xing’an Range and Its Geological Significance [J]. Geoscience, 2022, 36(1):266281.
[21]" 張昱, 杜兵盈, 張鐵安,等. 黑龍江省嫩江黑河地區古、中生代洋陸轉換的巖漿巖記錄及相關的礦床類型[J]. 地球科學, 2020, 45(7):23602378.
Zhang Yu, Du Bingying, Zhang Tiean, et al. Record of Magmatic Rocks and Related Type of Deposit for Paleozoic and Mesozoic Ocean-Land Transition in Nenjiang-Heihe Area, Heilongjiang Province [J]. Earth Science, 2020, 45(7):23602378.
[22]" Jackson S E, Pearson N J, Griffin W L, et al. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ UPb Zircon Geochronology[J]. Chemical Geology, 2004, 211(1/2): 4769.
[23]" Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon UPb Isotope and Trace Element Analyses by LAICPMS[J]. Chinese Science Bulletin, 2010, 55(15): 15351546.
[24]" Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.
[25]" Qi L, Hu J, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3): 507513.
[26]" Hoskin P W O, Black L P. Metamorphic Zircon Formation by Solid﹕Tate Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423439.
[27]" De la Roche H, Leterrier J, Grandclaude P, et al. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses:Its Relationships with Current Nomenclature[J]. Chemical Geology, 1980, 29(1/2/3/4): 183210.
[28]" Wright J B. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis[J]. Geological Magazine, 1969, 106(4):370384.
[29]" Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy amp; Petrology, 1976, 58(1):6381.
[30]" Frost C D, Frost B R. On Ferroan (AType) Granitoids: Their Compositional Variability and Modes of Origin[J]. Journal of Petrology, 2011, 52(1):3953.
[31]" Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11):20332048.
[32]" Maniar P D , Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geol Soc Am Bull, 1989, 101(5):635643.
[33]" Sylvester P J. Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97(3): 261280.
[34]" Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313345.
[35]" 支倩, 李永軍, 段豐浩, 等.新疆西準噶爾烏爾禾地區早二疊世A1型花崗巖成因及其地質意義[J].地質學報,2021,95(8):24532470.
Zhi Qian, Li Yongjun, Duan Fenghao, et al. Petrogenesis and Its Geological Implications of Early Permian AType Granite in Urho Area, Western Junggar, Xinjiang [J]. Acta Geologica Sinica, 2021, 95(8): 24532470.
[36]" 吳福元, 李獻華, 楊進輝, 等.花崗巖成因研究的若干問題[J].巖石學報,2007,23(6):12171238.
Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites [J]. Acta Petrologica Sinica, 2007,23(6): 12171238.
[37]" 馬鴻文.花崗巖成因類型的判別分析[J].巖石學報,1992,8(4):341350.
Ma Hongwen. Discrimination of Genetic Types of Granitoid Rocks[J].Acta Petrologica Sinica,1992,8(4):341350.
[38]" Gerlach D C , Hans G A, Leeman W P. An Island Arc Origin for the Canyon Mountain Ophiolite Complex, Eastern Oregon, USA[J]. Earth amp; Planetary Ence Letters, 1981, 53(2):255265.
[39]" 張旗, 冉皞, 李承東. A型花崗巖的實質是什么?[J].巖石礦物學雜志,2012,31(4):621626.
Zhang Qi, Ran Hao, Li Chengdong. AType Granite:What Is the Essence? [J]. Acta Petrologica et Mineralogica, 2012, 31(4): 621626.
[40]" Whalen J B , Currie K L , Chappell B W. AType Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy amp; Petrology, 1987, 95(4):407419.
[41]" Collins W J, Beams S D, White A J R, et al. Nature and Origin of AType Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy amp; Petrology, 1982, 80(2):189200.
[42]" Eby G N.The AType Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26(1):115134.
[43]" King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous AType Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997(3):371391.
[44]" 王楠, 劉治博, 宋揚, 等. 西藏班戈地區早白堊世高分異花崗巖年代學及巖石成因[J].巖石學報, 2020, 36(2): 409425.
Wang Nan, Liu Zhibo, Song Yang, et al. Geochronology and Petrogenesis of Highly Fractionated Early Cretaceous Granite in Baingoin Area, Tibet[J]. Acta Petrologica Sinica, 2020, 36 (2) :409425.
[45]" Wu F Y, Liu X C, Ji W Q, et al. Highly Fractionated Granites: Recognition and Research[J].Science China(Earth Sciences),2017,60(7):12011219.
[46]" Chappell B W,White A J R. I and SType Granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences,1992, 83(1/2): 126.
[47]" 王強, 趙振華, 熊小林. 桐柏—大別造山帶燕山晚期A型花崗巖的厘定[J].巖石礦物學雜志,2000,19(4):297306,315.
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin.The Ascertainment of Late-Yanshanian AType Granite in Tongbai-Dabie Orogenic Belt[J]. Acta Petrologica et Mineralogica, 2000,19(4): 297306,315.
[48]" 張旗, 王焰, 李承東, 等. 花崗巖的SrYb分類及其地質意義[J].巖石學報,2006,22(9):22492269.
Zhang Qi, Wang Yan, Li Chengdong, et al. Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J].Acta Petrologica Sinica,2006,22(9):22492269.
[49]" 張旗, 金惟俊, 李承東, 等. 再論花崗巖按照SrYb的分類:標志[J].巖石學報,2010,26(4):9851015.
Zhang Qi, Jin Weijun, Li Chengdong, et al. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index [J]. Acta Petrologica Sinica, 2010, 26(4): 9851015.
[50]" Miller C F , Mcdowell S M , Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003, 31(6):529532.
[51]" Watson E B , Harrison T M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth amp; Planetary Ence Letters, 1983, 64(2):295304.
[52]" King P L, Chappell B W, Allen C M, et al. Are AType Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences,2001,48(4):501514.
[53]" Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. London: Blackwell Scientific Publications, 1985.
[54]" Rudnick R L, Gao Shan. Composition of the Continental Crust [J]. Treatise on Geochemistry, 2003,3:164.
[55]" Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden[J]. Zeitschrift Fuer Geologische Wissenschaften, 1985, 13(5):615627.
[56]" Wilson M. Igneous Petrogenesis: A Global Tectonic Approach [M]. Dordrecht: Springer ,1989.
[57]" Batchelor R A, Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters[J]. Chemical Geology, 1985, 48(1):4355.
[58]" Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956983.
[59]" Pearce J. Sources and Settings of Granitic Rocks[J]. Episodes, 1996, 19(4):120125.
[60]" 趙煥利, 劉旭光, 劉海洋, 等.黑龍江多寶山古生代海盆閉合的巖石學證據[J].世界地質,2011,30(1):1827.
Zhao Huanli, Liu Xuguang, Liu Haiyang, et al. Petrological Evidence of Paleozoic Marine Basin Closure in Duobaoshan of Heilongjiang[J].Global Geology,2011,30(1):1827.
[61]" 代宇,劉江領,劉旭光, 等.黑龍江多寶山地區大岔子正長花崗巖鋯石UPb年齡及其地質意義[J].地質與資源,2012,21(2):188193.
Dai Yu, Liu Jiangling, Liu Xuguang, et al. Zircon UPb Age of the Dachazi Syenogranite in Duobaoshan Area,Heilongjiang Province: Geological Implication [J]. Geology and Resources, 2012, 21(2): 188193.
[62]" 崔芳華, 鄭常青, 徐學純, 等. 大興安嶺全勝林場地區晚石炭世巖漿活動研究:對興安地塊與松嫩地塊拼合時間的限定[J].地質學報,2013,87(9):12471263.
Cui Fanghua, Zheng Changqing, Xu Xuechun, et al. Late Carboniferous Magmatic Activities in the Quanshenglinchang Area,Great Xing’an Range:Constrains on the Timing of Amalgamation Between Xing’an and Songnen Massifs [J].Acta Geologica Sinica,2013,87(9):12471263.
[63]" 李成祿, 曲暉, 趙忠海, 等. 黑龍江霍龍門地區早石炭世花崗巖的鋯石UPb年齡、地球化學特征及構造意義[J].中國地質,2013,40(3):859868.
Li Chenglu, Qu Hui, Zhao Zhonghai, et al. Zircon UPb Ages, Geochemical Characteristics and Tectonic Implications of Early Carboniferous Granites in Huolongmen Area, Heilongjiang Province[J].Geology in China,2013,40(3):859868.
[64]" 汪巖, 付俊彧, 楊帆, 等. 嫩江—黑河構造帶收縮與伸展:源自晚古生代花崗巖類的地球化學證據[J].吉林大學學報(地球科學版),2015,45(2):374388.
Wang Yan, Fu Junyu, Yang Fan, et al. Contraction and Extension in NenjiangHeihe Tectonic Belt:Evidence from the Late Paleozoic Granitoid Geochemistry[J]. Journal of Jilin University(Earth Science Edition),2015,45(2):374388.
[65]" 錢程, 陸露, 秦濤, 等. 大興安嶺北段扎蘭屯地區晚古生代早期花崗質巖漿作用:對額爾古納興安地塊和松嫩地塊拼合時限的制約[J].地質學報,2018,92(11):21902214.
Qian Cheng, Lu Lu, Qin Tao, et al. The Early Late-paleozoic Granitic Magmatism in the Zalantun Region, Northern Great Xing’an Range, NE China: Constraints on the Timing of Amalgamation of Erguna-Xing’an and Songnen Blocks[J].Acta Geologica Sinica,2018, 92(11):21902214.
[66]" 付俊彧, 汪巖, 那福超, 等. 內蒙古哈達陽鎂鐵超鎂鐵質巖鋯石UPb年代學及地球化學特征:對嫩江—黑河地區晚泥盆世俯沖背景的制約[J].中國地質,2015,42(6):17401753.
Fu Junyu, Wang Yan, Na Fuchao, et al. Zircon UPb Geochronology and Geochemistry of the Hadayang Maficultramafic Rocks in Inner Mongolia:Constraints on the Late Devonian Subduction of Nenjiang-Heihe Area, Northeast China[J].Geology in China,2015,42(6):17401753.
[67]" 張渝金, 張超, 吳新偉, 等. 大興安嶺北段扎蘭屯地區晚古生代海相火山巖年代學和地球化學特征及其構造意義[J].地質學報,2016,90(10):27062720.
Zhang Yujin, Zhang Chao, Wu Xinwei, et al. Geochronology and Geochemistry of Late Paleozoic Marine Volcanic from the Zhalantun Area in Northern Da Hinggan Mountains and Its Geological Significance [J].Acta Geologica Sinica, 2016, 90(10): 27062720.
[68]" 劉佳宜. 黑龍江省三道灣子地區花崗巖年代學和地球化學研究[D].北京:中國地質大學(北京),2016.
Liu Jiayi. The Geochronological and Geochemical Research of Granites in Sandaowanzi,Heilongjiang Province[D].Beijing: China University of Geosciences (Beijing),2016.
[69]" Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China: Geochronological, Geochemical and Hf Isotopic Evidence[J]. Journal of Asian Earth Sciences,2013,67/68: 114137.
[70]" Li Y, Xu W L, Wang F, et al. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China: Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime[J].Journal of Asian Earth Sciences,2017,144: 205224.
[71]" 王之晟,高天棟,王洪志,等.大興安嶺阿爾山地區寶力高廟組淺變質巖年代學、地球化學特征及原巖建造探討[J].世界地質,2024,43(1):118.
Wang Zhisheng,Gao Tiandong,Wang Hongzhi,et al. Chronology,Geochemical Characteristics and Protolith Formation of Low-Grade Metamorphic Rocks from Baoligaomiao Formation in Aershan Area,Da Hinggan Ling (Mts.)[J]. World Geology,2024,43(1):118.
[72]" 王楚杰,武振,王國君.興安地塊阿力格亞林場早二疊世石英閃長巖的成因及構造意義[J].世界地質,2023,42(1):110.
Wang Chujie,Wu Zhen,Wang Guojun. Petrogenesis and Tectonic Implications of Early Permian Quartzdiorite in Aligya Forest Farm, Xing’an Block[J]. World Geology,2023,42(1):110.