999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

渤海灣盆地新生代玄武巖成因

2024-06-13 00:00:00孫晶蔣蕾茵侯文
吉林大學學報(地球科學版) 2024年2期

摘要:渤海灣盆地新生代玄武巖是華北克拉通東北部新生代玄武巖的重要組成部分,由于該地區的玄武巖在地表出露較少,之前的研究程度一直很低。本次研究在遼河油田選取了鉆孔巖心樣品,通過巖石學、地球化學、SrNdHfPb同位素方法進行分析,探討了新生代玄武巖的成因。結果表明:渤海灣盆地新生代玄武巖主要為玄武巖和粗面玄武巖,玄武巖的w(SiO2)為49.08%~50.70%,w(MgO)為2.63%~5.80%,具有明顯的輕重稀土元素分餾,(La/Yb)N和(Dy/Yb)N值分別為7.96~11.61和1.71~1.84,Eu和Ce沒有明顯的負異常,高場強元素(HFSE)和大離子親石元素(LILE)富集,具有明顯的Nb、Ta和Sr正異常;全巖的Sr、Nd、Hf同位素比值(87Sr/86Sr)i值為0.704 622~0.706 581、εNd(t)值為1.1~1.9和εHf(t) 值為1.6~4.6,(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i值分別為17.257 7~17.409 9、15.201 5~15.335 4和37.185 8~37.912 9,顯示渤海灣盆地新生代玄武巖具有洋島玄武巖(OIB)的地球化學特征和同位素組成。綜合本文研究,表明渤海灣盆地新生代玄武巖是軟流圈地幔低程度部分熔融的結果,且源區中地殼混染和分離結晶作用不顯著。

關鍵詞:新生代;玄武巖;地球化學;地幔;渤海灣盆地

doi:10.13278/j.cnki.jjuese.20230173

中圖分類號:P588.1;P597

文獻標志碼:A

0引言

玄武巖的化學成分和同位素組成可以用來反演地幔源區特征,探索地幔巖漿演化過程和地球深部特征2]。中、新生代時期,華北克拉通發育有大量的玄武質巖漿,為研究華北克拉通巖石圈地幔演化提供了樣品 9]。然而對于這些玄武巖的成因仍然存在較大的爭議,其爭論的焦點在于軟流圈地幔11]與何種物質發生了反應,是與巖石圈地幔相互作用13],單純的地幔柱成因,還是地殼物質16]或俯沖洋殼物質20]加入。

前人[9]對于華北克拉通新生代玄武巖的研究主要集中在出露地表的樣品,而對于盆地中沒有出露的樣品則研究程度較低。本文選取了遼河油田的巖心樣品——渤海灣盆地新生代玄武巖,通過對其進行巖石學、地球化學和SrNdHfPb同位素的分析,討論渤海灣盆地新生代玄武巖的地幔源區特征和巖石成因,以期為研究華北克拉通東部玄武質巖漿的成因與演化提供重要的數據資料補充。

1地質背景與巖石學特征

華北克拉通是世界上最經典的古老克拉通之一(3.8~2.5 Ga[22]),也是中國東部最為重要的地質構造單元。其南北分別以蘇魯—大別造山帶和中亞造山帶為界,東西分別臨太平洋板塊和青藏高原東北部,由南北重力梯度帶劃分為東部和西部地塊,并在1.85 Ga時碰撞拼合。渤海灣盆地位于華北克拉通東北部,具有中國東部最薄的地殼和最高的地溫梯度。遼河盆地位于渤海灣盆地的東北部(圖1a),郯廬斷裂帶的北段,是我國東部大型含油氣裂谷盆地。遼河盆地的次級負向構造單元西部凹陷呈北東向展布[25],發育大量中、新生代火山巖,具體采樣位置見圖1b。

本文樣品來自遼河西部凹陷北部的長古9號井(Cg9)和曙74號井(S74)共5件玄武巖巖心樣品,所在地層為古近紀房身泡組(約60 Ma),上覆地層為沙河街組四段。通過巖石學的觀察(圖2),發現這些樣品均具有氣孔構造,斑狀結構,斑晶主要為輝石、橄欖石和少量長石;基質為間粒結構、間隱結構,主要由斜長石、輝石、橄欖石和不透明礦物組成。

2分析方法

對樣品進行全巖的地球化學和SrNdHfPb同位素分析,本文所有的測試分析都在南京聚譜檢測科技有限公司完成。

2.1全巖的主微量元素分析

玄武巖樣品的全巖主量元素分析利用X熒光光譜(XRF)玻璃熔片分析法,用AXIOS XRF儀器(PANalytical公司,順序式X射線熒光光譜儀)進行測試。元素質量分數的不同分析精度不同,分析精度在1%~5%之間。全巖的微量元素分析采用混合酸溶樣法,測試用的儀器為AgilentArPt1. 太古宇—古元古界;preMz. 前中生界;JK. 侏羅系—白堊系;E23. 始新統—漸新統;N+Q. 新近系—第四系。

2.2全巖的SrNdHfPb同位素分析

巖石樣品的SrNdHfPb同位素分析前處理的詳細步驟參照文獻,元素質量分數和同位素比值分別在Agilent 7700x四極桿型ICPMS和Nu Plasma II MCICPMS上測定。同位素比值測試時分別選取NIST SRM 987、JNdi1、NIST SRM 981和Alfa Hf作為Sr、Nd、Pb、Hf的外標來校正儀器的漂移。儀器質量分餾校正采用86Sr/88Sr=0.1194,146Nd/144Nd=0.7219,205Tl/203Tl=2.3885,179Hf/177Hf=0.7325。玄武巖BCR2、玄武巖BHVO2、安山巖AGV2是整個化學和分析測試流程中的監測標樣,在化學前處理和質譜測定中都有跟蹤測試。在本次實驗中,這些標樣的SrNdHfPb同位素比值實測值與文獻報道值在誤差范圍內一致,說明本次實驗樣品的測試結果是準確的。

3分析結果

3.1全巖的主量元素特征

渤海灣盆地新生代玄武巖全巖的主量元素分析結果見表1。從TAS(圖3)圖解中可以看出渤海灣盆地新生代玄武巖落在了粗面玄武巖和玄武巖區域,且w(Na2O)大于w(K2O)(表1)。通過CIPW標準礦物計算,巖石中含有石英、鈣長石、正長石和透輝石而無橄欖石和霞石。全巖w(SiO2)為49.08%~50.70% ,w(TiO2)為1.42%~2.14%,w(K2O+Na2O)為4.51%~5.16%,Na2O/K2O值為1.46~2.05,全鐵(TFe2O3)為7.55%~12.04%,Mg#為54.96~69.63。

3.2全巖的微量元素特征

渤海灣盆地新生代玄武巖全巖的微量元素分析結果見表1,稀土元素球粒隕石標準化配分曲線和微量元素原始地幔標準化蛛網圖解見圖4。渤海灣盆地新生代玄武巖全巖的稀土總量為87.35×10-6~134.07×10-6,具有輕稀土元素富集、重稀土元素虧損的右傾稀土元素球粒隕石標準化配分曲線(圖4a)特征,且輕、重稀土元素分餾強烈,(La/Yb)N和(Dy/Yb)N的比值分別為7.96~11.61和1.71~1.78,無明顯的Eu和Ce負異常。在微量元素原始地幔標準化蛛網圖(圖4b)中可以看出,渤海灣盆地新生代玄武巖富集高場強元素(HFSE,如Ti、Zr、Hf等)和大離子親石元素(LILE,如Rb、Sr、Ba、Th、U等),具有明顯的Sr、Nb和Ta正異常,Hf顯示出弱的負異常,其中Nb/U=27.76~49.87,La/Nb=0.66~0.73、Ba/Nb=9.22~21.55。

3.3全巖的SrNdHfPb同位素特征

玄武巖樣品的全巖SrNdHfPb同位素結果見表2。渤海灣盆地新生代玄武巖的Nd同位素組成具有較小的變化范圍(εNd(t)=1.1~1.9);相比而言,Sr和Hf同位素比值變化范圍較大,(87Sr/86Sr)i=0.704622~0.706581,εHf(t)=1.6~4.6。在同位素二元相關圖(圖5)中,渤海灣盆地新生代玄武巖的Sr、Nd和Hf同位素都落在了OIB(洋島玄武巖)內,且εHf(t)與εNd(t)呈弱的正相關并與地幔演化趨勢線重合。

渤海灣盆地新生代玄武巖5個樣品的(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i值分別為17.257 7~17.409 9,15.201 5~15.335 4和37.185 8~37.912 9。從(208Pb/204Pb)i(206Pb/204Pb)i圖(圖6)可見,這些樣品基本落在漢諾壩范圍內,且均落在NHRL(北半球參考線)附近。

4討論

大陸玄武巖可能是部分熔融、分離結晶、地殼混染或它們共同作用的結果。本文將根據渤海灣盆地新生代玄武巖的地球化學特征和SrNdHfPb同位素組成,討論渤海灣盆地新生代玄武巖的巖漿源區特征以及其經歷的熔融程度。

4.1地殼混染作用

從深部地幔上升至地表的過程中,玄武質巖漿會穿過大陸地殼,這一過程可能會遭受到地殼混染作用的影響。因此,在利用地球化學和同位素數據討論源區特征之前,需要確定樣品受到地殼混染作用影響的程度。

前人的研究結果顯示,Th/La和La/Nb值可以有效地確定玄武巖是否受到了地殼混染作用的影響。大陸地殼的Th/La平均值為0.15,渤海灣盆地新生代玄武巖的Th/La值為0.10~0.12,明顯低于大陸地殼的平均值。它們的La/Nb值為0.66~0.73,也明顯低于中國東部大陸地殼的La/Nb值1.7。同時,大陸地殼以Nb、Ta和Ti虧損為特征,且具有較低的Nb和Ta質量分數,而渤海灣新生代玄武巖具有富集的Nb、Ta,在微量元素原始地幔標準化蛛網圖中呈現出正異常,與大陸地殼的特征不一致。這些地球化學特征都說明渤海灣新生代玄武巖所受到的地殼混染作用的影響程度較小。

4.2分離結晶作用

從巖相學觀察可以看出,玄武巖樣品斑晶中含有橄欖石和輝石,這暗示著渤海灣盆地的玄武巖巖漿曾經歷過橄欖石和輝石的分離結晶作用。從圖7中也可以看出樣品的強不相容元素與Th之間呈現較好的線性相關性,加上全巖的Mg#為54.96~69.63,說明巖漿在演化過程中經歷了一定程度的分離結晶作用。但是,渤海灣盆地新生代玄武巖并沒有明顯的Eu負異常(圖4),這說明斜長石沒有大量晶出。同時,渤海灣盆地新生代玄武巖全巖的w(MgO)較低,且w(Ni)不隨w(MgO)變化,暗示著橄欖石的分離結晶作用較弱。雖然我們沒有進行Cr元素的分析,無法判斷輝石的分離結晶作用程度,但是從巖相學和全巖的地球化學組成上分析,渤海灣盆地新生代玄武巖并沒有經歷非常強烈的分離結晶作用。

4.3巖漿源區特征

通過前文的討論,可以看出渤海灣盆地新生代玄武巖在形成過程中經歷過較弱的地殼混染作用和分離結晶作用,這說明該地區新生代玄武巖樣品的地球化學和同位素特征可以代表其原始巖漿的成分,可以用來反映該地區巖漿的源區特征和部分熔融條件。渤海灣盆地新生代玄武巖具較高的w(TiO2)(1.42%~2.14%)和w(TFe2O3)(7.55%~12.04%),暗示著它們的地幔源區相對飽滿且未經歷大程度熔體的抽離51]。渤海灣盆地新生代玄武巖的(87Sr/86Sr)i值、εNd(t)和εHf(t)值分別為0.704 622~0.706 581,1.1~1.9,1.6~4.6,呈現不均一的虧損同位素組成特征。在εNd(t)(87Sr/86Sr)i(圖5a)、εHf (t) εNd(t)(圖5b)和(208Pb/204Pb)i(206Pb/204Pb)i同位素圖解(圖6)上,渤海灣盆地新生代玄武巖與華北克拉通東部地區新生代玄武巖一樣都落在漢諾壩和OIB所在的區域內,結合它們富集Rb、Ba等大離子親石元素和Nb、Ta、Ti等高場強元素的特征,顯示了軟流圈地幔的源區屬性,且沒有受到地殼物質混染和俯沖帶的影響,暗示其形成于板內構造環境。

4.4熔融程度與深度

玄武巖的硅飽和程度與巖漿的部分熔融深度有關53],實驗巖石學得出硅飽和的拉斑玄武巖漿產生的壓力要低于硅不飽和的堿性巖漿55]。前人的研究顯示,華北克拉通堿性玄武巖的源區深度gt;80 km,而拉斑玄武巖的源區深度為50~60 km。渤海灣盆地新生代玄武巖為粗面玄武巖和玄武巖,介于堿性和亞堿性玄武巖之間,說明這些玄武巖的熔融深度可能存在一定的差異,這些差異可能暗示著地幔源區的不均一性。

渤海灣盆地新生代玄武巖的輕、重稀土元素強烈分餾,(La/Yb)N=7.96~11.61,(Dy/Yb)N=1.71~1.84,暗示著其源區有石榴石的殘留。Yb在石榴石中為相容元素,La、Sm是不相容元素,這也表明源區中石榴石相橄欖巖部分熔融程度越低,對應的La/Yb和Sm/Yb值變化越大;與之相反,尖晶石相橄欖巖在部分熔融作用中表現出來的La/Yb值變化較小,Sm/Yb值基本不變58]。因此,Sm/YbLa/Yb圖解(圖8)可以用于區分玄武巖是來自石榴石相橄欖巖源區還是尖晶石相橄欖巖源區的部分熔融。從圖8中可以看出,該地區的玄武巖落在了石榴石二輝橄欖巖熔融模擬曲線附近,且熔融的程度為3%~5%。因此,渤海灣盆地新生代玄武巖是石榴石相二輝橄欖巖經過3%~5%部分熔融的結果,且玄武巖來源深度存在一定的差異。

4.5地球動力學

自中、新生代以來,渤海灣盆地共發育3期巖漿活動,分別為晚侏羅世(165 Ma)的中性火山巖、早白堊世(122 Ma)的長英質火山巖和新生代的玄武巖。從稀土元素球粒隕石標準化配分曲線(圖4a)可以看出,侏羅紀中性火山巖虧損重稀土元素且沒有明顯的Eu負異常,說明巖漿源區有石榴石且沒有斜長石的殘留,意味著渤海灣盆地此時的地殼厚度在晚侏羅世大于50 km。早白堊世長英質火山巖虧損重稀土元素、具有明顯的Eu負異常,暗示著石榴石和斜長石在其源區都有殘留,意味著渤海灣盆地在此時地殼變薄,為30~50 km。到了新生代,玄武巖沒有明顯的Eu負異常,巖漿的形式逐漸轉變為OIB型。同樣,從同位素中也可以看出從侏羅紀到白堊紀再到新生代巖漿性質的變化。在Nd同位素與年齡的圖解(圖9)中可以看出,從侏羅紀到新生代,εNd(t)值顯著增加,巖漿從富集型轉變為虧損型,反映了地幔物質逐漸加入到了巖漿中的演化過程。渤海灣盆地3期火山巖的這些特征與華北克拉通東部地區中、新生代巖漿的特征基本一致,說明華北克拉通東部在白堊紀大規模減薄后,到了新生代,軟流圈物質突破了巖石圈厚度的限制,不斷上涌形成玄武巖。前人對中國東部及鄰區大地構造環境的研究也表明,在新生代中國瀕太平洋區域的主要構造熱事件是陸內伸展擴張作用,渤海灣盆地就是在這一事件中形成的伸展盆地,渤海灣盆地新生代的玄武質巖漿就是在區域伸展構造體制下快速上升噴發形成的。

5結論

1)渤海灣盆地新生代玄武巖為粗面玄武巖和玄武巖,具有類似于OIB的地球化學特征,表明它們可能起源于軟流圈地幔源區。

2)渤海灣盆地新生代玄武巖未受到明顯的地殼混染和分離結晶作用的影響。

3)渤海灣盆地新生代玄武巖全巖的地球化學和SrNdHfPb同位素組成顯示,該地區新生代的玄武巖是石榴石相橄欖巖經小程度(3%~5%)部分熔融而形成的。

參考文獻(References):

1.鄭建平, 路鳳香.華北地臺東部金伯利巖源區反演及其不均一性探討.吉林大學學報(地球科學版),1997, 27(2): 135140.

Zheng Jianping, Lu Fengxiang. Inversion of the Kimberlite Source Area in the Eastern Part of the North China Platform and Exploration of Its Heterogeneity. Journal of Jilin Unviersity(Earth Science Edition),1997, 27(2): 135140.

2.徐義剛. 用玄武巖組成反演中新生代華北巖石圈的演化.地學前緣,2006,13(2): 93104.

Xu Yigang. Inversion of Meso Cenozoic Lithosphere Evolution in North China Using Basalt Composition.Earth Science Frontiers,2006,13(2): 93104.

Xu Y G. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel Beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy,2001, 26(9/10): 747757.

Zhang H F, Sun M, Zhou X H, et al. Mesozoic Lithosphere Destruction Beneath the North China Craton: Evidence from Major, Trace-Element and SrNdPb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology,2002,144 (2): 241254.

Wu F Y, Walker R J, Ren X W, et al. Osmium Isotopic Constraints on the Age of Lithospheric Mantle Beneath Northeastern China. Chemical Geology, 2003,196(1/2/3/4): 107 129.

Gao S, Rudnick R L, Yuan H L, et al. Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432: 892897.

3.朱昱升,侯廣順,楊進輝.鶴壁新生代玄武巖源區及成因:地球化學和SrNdHf 同位素證據. 巖石學報,2012,28 (12) : 40644076.

Zhu Yusheng, Hou Gguangshun, Yang Jinhui. Sources and Petrogenesis of the Cenozoic Alkali Basalts in Hebi, Eastern North China Craton: Geochemical and SrNdHf Isotopic Evidence. Acta Petrologica Sinica,2012,28(12): 40644076.

4.張新濤,張藜,劉曉健.渤海灣盆地渤中凹陷中生界火山巖優質儲層發育規律.吉林大學學報(地球科學版),2023,53(1):116.

Zhang Xintao,Zhang Li,Liu Xiaojian. Development Regularity of the Mesozoic Volcanic Reservoir in Bozhong Sag, Bohai Bay

Basin, China.Journal of Jilin University(Earth Science Edition),2023,53(1):116.

5.左程吉,陸哲昆,王宏偉,等.遼河油田東部凹陷玄武巖測井特征分析.世界地質,2016,35(4):10951100.

Zuo Chengji,Lu Zhekun,Wang Hongwei,et al. Logging Characteristic Analysis of Basalt in Eastern Depression of Liaohe Oil Field.World ""Geology,2016,35(4):10951100.

Zhou X H, Armstrong R L. Cenozoic Volcanic Rocks of Eastern China: Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 1982,58(3): 301329.

Zhi X C, Song Y, Frey F A, et al. Geochemistry of Hannuoba Basalts, Eastern China: Constraints on the Origin of Continental Alkalic and Tholeiitic Basalt. Chemical Geology, 1990,88(1/2): 133.

Xu Y G, Ma J L, Frey F A, et al. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology,2005,224(4): 247271.

Tang Y J, Zhang H F, Ying J F. Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime: Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton. Chemical Geology,2006,233(3/4): 309327.

Wang T, Guo L, Zheng Y D, et al.Timing and Processes of Late Mesozoic Mid-Lower-Crustal Extension in Continental NE Asia and Implications for the Tectonic Setting of the Destruction of the North China Craton: Mainly Constrained by Zircon UPb Ages from Metamorphic Core Complexes. Lithos, 2012,154: 315345.

Liu C Z, Snow J E, Hellebrand E, et al.Ancient, Highly Heterogeneous Mantle Beneath Gakkel Ridge, Arctic Ocean. Nature,2008, 452:311316.

Chen L H, Zeng G, Jiang S Y, et al. Sources of Anfengshan Basalts: Subducted Lower Crust in the Sulu UHP Belt, China. Earth and Planetary Science Letters, 2009,286(3/4): 426435.

Zhang J J, Zheng Y F, Zhao Z F. Geochemical """Evidence for Interaction Between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China. Lithos, 2009,110(1/2/3/4): 305326.

Wang Y, Zhao Z F, Zheng Y F, et al. Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East-Central China. Lithos, 2011,125(3/4): 940955.

Li Y Q, Ma C Q, Robinson P T, et al. Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone: Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China. Lithos, 2015,230: 146165.

6.閆東晗,李萌萌,徐智濤,等.長白山天池火山區黑石溝玄武巖墻成因及其構造意義.吉林大學學報(地球科學版),2023,53(3):904919.

Yan Donghan,Li Mengmeng,Xu Zhitao,et al. Genesis and Its Tectonic Significance of Heishigou Basaltic Dyke in Tianchi Volcanic Area,Changbai Mountain.Journal of Jilin University(Earth Science Edition),2023,53(3):904919.

Jahn B M,Auvray B,Cornichet J, et al. 3.5 Ga Old Amphibolites from Eastern Hebei Province, China: Field Occurrence, Petrography, SmNd Isochron Age and REE Geochemistry.Precambrian Research,1987,34(3/4): 311346.

Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology,1992,20(4): 339342.

Zhao G C, Wilde S A, Cawood P A, et al. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and PT Path Constraints and Tectonic Evolution. Precambrian Research,2001,107(1/2): 4573.

7.孫卉. 遼河東部凹陷中新生代火山事件與構造作用.中國石油勘探,2005,10(5):2833.

Sun Hui. Mesozoic-Cenozoic Volcanic Events and Structure Effects in the Eastern Sag in Liaohe Depression. China Petroleum Exploration,2005,10(5):2833.

8.于福生, 董月霞, 童亨茂, 等. 渤海灣盆地遼河西部凹陷古近紀變形特征及成因. 石油與天然氣地質, 2015,36(1): 110.

Yu Fusheng, Dong Yuexia, Tong Hengmao, et al. Characteristics and Origins of Structural Deformation in the Paleogene in the Western Sag of Liaohe Depression, Bohai Bay Basin. Oil and Gas Geology,2015,36(1): 110.

9.劉志超, 劉小馳, 余良軍, 等. 喜馬拉雅康巴淡色花崗巖的高分異成因及巖漿熱液演化特征.南京大學學報(自然科學),2020,56(6): 15.

Liu Zhichao, Liu Xiaochi, Yu Liangjun, et al. Highly Fractionated Origin and Magmtic-Hydrothermal Evolution of the Kampa Leucogranites in the Tethyan Himalaya. Journal of Nanjing University(Natural Science),2020,56(6): 15.

Weis D, Kieffer B, Maerschalk C, et al.High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MCICPMS. Geochemistry Geophysics Geosystems, 2006, 7(8): 130.

10.侯文. 渤海灣盆地火山巖的時代和地球化學特征:對華北克拉通破壞時限的制約.北京:中國石油大學(北京), 2020.

Hou Wen. Age and Geochemical Characteristics of Volcanic Rocks in Bohai Bay Basin:Constraints on the Time Limit of North China Craton Destruction. Beijing:China University of Petroleum (Beijing), 2020.

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications,1989,42(1): 313345.

Sun J, Liu Z, Zhang S, et al. Large-Scale Removal of Lithosphere Underneath the North China Craton in the Early Cretaceous: Geochemical Constraints from Volcanic Lavas in the Bohai Bay Basin. Lithos, 2017, 292/293: 6980.

Zindler A, Hart S. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences,1986,14: 493571.

11.馬金龍,徐義剛.河北陽原和山西大同新生代玄武巖的巖石地球化學特征: 華北克拉通西部深部地質過程初探.地球化學,2004,33(1) : 7588.

Ma Jinlong, Xu Yigang. Petrogeochemical Characteristics of Cenozoic Basalts in Yangyuan, Hebei Province and Datong, Shanxi Province:A Preliminary Study of Deep Geological Processes in the Western Part of the North China Craton. Geochemica,2004,33(1): 7588.

12.張文慧,韓寶福,杜蔚,等.內蒙古集寧新生代玄武巖的地幔源區特征: 元素及SrNdPb 同位素地球化學證據.巖石學報,2005,21(6): 15691582.

Zhang Wenhui, Han Baofu, Du Wei, et al.Characteristics of Mantle Source for Jining Cenozoic Basalts from Southern Inner Mongolia: Evidence from Element and SrNdPb Isotopic Geochemistry. Acta Petrologica Sinica, 2005,21(6): 15691582.

Zhang W H, Zhang H F, Fan W M, et al. The Genesis of Cenozoic Basalts from the Jining Area, Northern China: SrNdPbHf Isotope Evidence. Journal of Asian Earth Sciences,2012,61:128142.

13.郭華, 夏斌, 王潤紅, 等. 渤海灣盆地陽信地區古近紀玄武巖地球化學特征及其地質意義. 地球化學,2006,35(3):227239.

Guo Hua, Xia Bin, Wang Runhong, et al. Geochemistry and Geotectonic Significance of Eogene Basalts in Yangxin Area, Bohai Bay Basin. Geochemica, 2006, 35(3): 227239.

14.杜景霞,肖龍,周海民,等.渤海灣盆地南堡凹陷新生代火山巖地球化學特征及成因.桂林工學院學報,2008,28(2):157166.

Du Jingxia, Xiao Long, Zhou Haimin, et al.Petrogenesis and Geochemical Characteristics of Volcanic Rocks from Nanpu Sag of Bohai Bay Basin, East China.Journal of Guilin University of Technology,2008,28(2):157166.

15.張超,馬昌前,廖群安, 等.渤海灣黃驊盆地晚中生代新生代火山巖地球化學:巖石成因及構造體制轉換.巖石學報,2009,25(5):11591177.

Zhang Chao, Ma Changqian, Liao Qun’an, et al. Geochemistry of Late Mesozoic-Cenozoic Volcanic Rocks in the Huanghua Depression, Bohai Bay: Petrogenesis and Implications for Tectonic Transition. Acta Petrologica Sinica ,2009, 25 (5) :11591177.

Barry T L, Kent R W. Cenozoic Magmatism in Mongolia and the Origin of Central and East Asian Basaltsp//Flower M F J,Chung S L,Lo C H,et al. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: American Geophysical Union,1998:347364.

Zou H B, Zindler A,Xu X S, et al. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology,2000,171(1/2): 3347.

Hart S R. ALarge-Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature,1984,309:753757.

Zhang M, Zhou X H, Zhang J B. Nature of the Lithospheric Mantle Beneath NE China: Evidence from Potassic Volcanic Rocks and Mantle Xenoliths//Flower M F J,Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington:Geodynamics Series, American Geophysical Union, 1998:197219.

Zou H B, Reid M R, Liu Y S, et al. Constraints on the Origin of Historic Potassic Basalts from Northeast China by UTh Disequilibrium Data. Chemical Geology, 2003,200(1/2): 189201.

16.郭華, 夏斌, 陳根文, 等. 惠民凹陷漸新世玄武巖地球化學特征及大地構造意義. 大地構造與成礦學,2005, 29(3):13.

Guo Hua, Xia Bin, Chen Genwen, et al.Geochemistry of Basalts During Oligocene in Huimin Depression and Its Geotectonic Significance. Geotectonica et Metallogenia, 2005, 29(3):13.

Song Y, Frey F A, Zhi X C. Isotopic Characteristics of Hannuoba Basalts, Eastern China: Implications for Their Petrogenesis and the Composition of Subcontinental Mantle. Chemical Geology,1990,88 (1/2): 3552.

Basu A R, Wang J W, Huang W K, et al. Major Element, REE, and Pb, Nd, and Sr Isotopic Geochemistry of Cenozoic Volcanic Rocks of Eastern China: Implications for Their Origin from Suboceanic-Type Mantle Reservoirs. Earth and Planetary Science Letters,1991,105(1/2/3): 149169.

17.解廣轟,王俊文.漢諾壩玄武巖及其超鎂鐵巖捕虜體的地球化學//劉若新.中國新生代火山巖年代學與地球化學.北京:地震出版社,1992:149170.

Xie Guanghong, Wang Junwen. Geochemistry of Hannuoba Basalt and Its Ultramafic Xenoliths//Liu Ruoxin.Cenozoic Volcanic Rock Chronology and Geochemistry in China.Beijing: Seismological Press,1992:149170.

18.王焰. 云南二疊紀白馬寨銅鎳硫化物礦床的成因:地殼混染與礦化的關系. 礦物巖石地球化學通報,2008,27(4):332343.

Wang Yan. Origin of the Permian Baimazhai Magmatic NiCu(PGE) Sulfide Deposits Yunnan: Implications for the Relationship of Crustal Contamination and Mineralization. Bulletin ofMineralogy,Petrology and"Geochemistry,2008,27(4):332343.

19.陳立輝,曾罡,胡森林, 等. 地殼再循環與大陸堿性玄武巖的成因:以山東新生代堿性玄武巖為例. 高校地質學報, 2012, 18(1): 1627.

Chen Lihui, Zeng Gang, Hu Senlin, et al.Crustal Recycling and Genesis of Continental Alkaline Basalts: Case Study of the Cenozoic Alkaline Basalts from Shandong Province, Eastern China. Geological Journal of China Universities, 2012, 18(1): 1627.

20.趙莉, 張招崇, 閆升好, 等. 新疆阿爾泰庫衛巖體的SHRIMP鋯石UPb年齡及其地球化學特征. 巖石礦物學雜志, 2006, 25(3): 194202.

Zhao Li, Zhang Zhaochong, Yan Shenghao, et al. SHRIMP UPb Zircon Dating and Geochemistry of Kuwei Intrusion in the Altay Mountains Xinjiang. Acta Petrologica et Mineralogica, 2006, 25(3): 194202.

Hirose K, Kushiro I. Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond. Earth and Planetary Science Letters,1993,114(4): 477489.

Walter M J. Melt Extraction and Compositional Variability in Mantle Lithosphere. Treatise on Geochemistry, 2003, 2: 363394.

Green D H, O’Hara M J. Composition of Basaltic Magmas as Indicators of Conditions Origin: Application to Oceanic Volcanism. Philosophical Transactions of the Royal Society of London (Series A, Mathematical and Physical Sciences),1971,268: 707725.

DePaolo D J, Daley E E. Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning During Continental Extension. Chemical Geology,2000,169(1/2): 157185.

Falloon T J, Green D H, Hatton C J, et al. Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis. Journal of Petrology,1988,29 (6):12571282.

Kushiro I. Partial Melting Experiments on Peridotite and Origin of Mid-Ocean Ridge Basalt. Annual Review of Earth and Planetary Sciences Letters, 2001,29: 71107.

Nohda S, Chen H, Tatsumi Y. Geochemical Stratification in the Upper Mantle Beneath NE China. Geophysical Research Letters,1991,18 (1): 97100.

21.孫嘉祥, 李霓, 張雯倩. 大同第四紀玄武巖成因:主微量元素及SrNdPbHf同位素研究. 巖石學報, 2020,36(11): 33313345.

Sun Jiaxiang, Li Ni, Zhang Wenqian.Petrogenesis and Characteristics of the Mantle Source for the Quaternary Datong Basalt:

Research on the Major, Trace Elements and SrNdPbHf Isotopes. Acta Petrologica Sinica, 2020, 36(11): 33313345.

22.葉蕾, 劉金菊, 牛耀齡, 等. 山西繁峙新生代玄武巖地幔源區及成因探討:元素及SrNdPbHf同位素地球化學證據. 巖石學報, 2015,31(1):161175.

Ye Lei, Liu Jinju, Niu Yaoling, et al. Mantle Sources and Petrogenesis of the Cenozoic Basalts in Fanshi, Shanxi Province: Geochemical and SrNdPbHf Isotopic Evidence. Acta Petrologica Sinica, 2015,31(1):161175.

Johnson K T M, Dick H J B, Shimizu N. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research, 1990,95(B3): 26612678.

23.趙睿. 含油氣盆地演化對板塊運動的遠程響應.北京:中國地質大學(北京),2021.

Zhao Rui. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Philosophy.Beijing:China University of Geosciences(Beijing),2021.

Mckenzie D P, O’Nions R K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology,1991,32(5): 10211091.

Liu J G, Cai R H, Pearson D G, et al. Thinning and Destruction of the Lithospheric Mantle Root Beneath the North China Craton: A Review. Earth-Science Reviews, 2019,196(1): 102873.

Zhou X, Armstrong R L. Cenozoic Volcanic Rocks of Eastern China:Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth amp; Planetary Science Letters, 1982, 58(3): 301329.

Yang Z F, Li J, Liang W F, et al.On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth-Science Reviews, 2016,157(1/2/3): 1831.

Wang Y, Zhao Z F, Zheng Y F, et al. Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East-Central China. Lithos, 2011, 125(3/4): 940955.

Chen B, Jahn B M, Arakawa Y, et al. Petrogenesis of the Mesozoic Intrusive Complexes from the Southern Taihang Orogen, North China Craton: Elemental and SrNdPb Isotopic Constraints. Contributions to Mineralogy amp; Petrology, 2004, 148(4): 489501.

Yang Q Y, Santosh M. Early Cretaceous Magma FlareUp and Its Implications on Gold Mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews, 2015, 65: 626642.

24.吳福元, 楊進輝, 柳小明. 遼東半島中生代花崗質巖漿作用的年代學格架. 高校地質學報, 2005,11(3): 305317.

Wu Fuyuan, Yang Jinhui, Liu Xiaoming. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 2005, 11(3): 305317.

Wu F Y, Yang J H, Wilde S A, et al. Geochronology,Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221(1/2):127156.

Xu Y G, Huang X L, Ma J L, et al.Crust-Mantle Interaction During the Tectono-Thermal Reactivation of the North China Craton: Constraints from SHRIMP Zircon UPb Chronology and Geochemistry of Mesozoic Plutons from Western Shandong. Contributions to Mineralogy and Petrology, 2004, 147(6): 750767.

Zhang C, Ma C Q, Liao Q A, et al. Implications of Subduction and Subduction Zone Migration of the Paleo-Pacific Plate Beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 2011, 100(7): 16651684.

Wang G C, Yang H J, Zheng L, et al. Multiple Origins for the Middle Jurassic to Early Cretaceous High-K Calc-Alkaline IType Granites in Northwestern Fujian Province, SE China and Tectonic Implications. Lithos, 2016, 21(3): 246247.

Wang Y B, Zeng Q D, Zhang S, et al.Spatial-Temporal Relationships of Late Mesozoic Granitoids in Zhejiang Province, Southeast China: Constraints on Tectonic Evolution. International Geology Review, 2017(8): 131.

Cao H H, Xu W L, Pei F P, et al. Zircon UPb Geochronology and Petrogenesis of the Late Paleozoic-Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 2014, 72(2): 191207.

5.漆家福, 陸克政, 張一偉, 等. 渤海灣盆地新生代構造與油氣關系. 石油大學學報(自然科學版),1995,19(增刊1):713.

Qi Jiafu,Lu Kezheng,Zhang Yiwei, et al. Relationship Between Tectonics and Hydrocarbon in Bohai Bay Basin Province.Journal of China University of Petroleum(Edition of Natural Science),1995,19(Sup.1):713.

主站蜘蛛池模板: 91视频精品| 国产成人综合欧美精品久久| 欧美激情网址| 亚洲毛片一级带毛片基地| 一区二区理伦视频| 天堂网国产| 亚洲伊人电影| 亚洲精选无码久久久| 国产精品美人久久久久久AV| 91无码视频在线观看| 99精品这里只有精品高清视频| 一本大道视频精品人妻| 国产精品思思热在线| 日韩无码视频专区| 亚洲首页在线观看| 精品人妻系列无码专区久久| 就去色综合| 国产熟睡乱子伦视频网站| 91娇喘视频| 亚洲精品成人片在线观看| 国产一级毛片高清完整视频版| 香蕉久久国产精品免| 国产在线观看一区精品| 天天躁夜夜躁狠狠躁躁88| 国产在线麻豆波多野结衣| 4虎影视国产在线观看精品| 青青青国产视频| 国内毛片视频| 亚洲一区二区三区在线视频| 久久久久人妻一区精品| 午夜精品久久久久久久无码软件 | 久久狠狠色噜噜狠狠狠狠97视色| 91亚洲免费| 亚洲精品日产AⅤ| 2018日日摸夜夜添狠狠躁| 五月天在线网站| 少妇被粗大的猛烈进出免费视频| Jizz国产色系免费| 日日拍夜夜嗷嗷叫国产| 精品人妻系列无码专区久久| 国产亚洲精品资源在线26u| 欧美另类第一页| 亚洲欧美人成电影在线观看| 国产幂在线无码精品| 久久综合丝袜日本网| www.99在线观看| 五月天丁香婷婷综合久久| 色窝窝免费一区二区三区 | 欧美一级在线看| 欧美成人午夜视频| 欧美成人综合在线| 国产激爽大片在线播放| 国产正在播放| 欧美日韩在线国产| 狠狠五月天中文字幕| 丰满人妻一区二区三区视频| 波多野结衣在线se| 在线色综合| 亚洲日韩精品欧美中文字幕| 免费人成网站在线高清| 国产精品视频999| 国产极品美女在线播放| 欧美午夜小视频| 91丝袜在线观看| 亚洲成肉网| 国产精品尤物在线| 国外欧美一区另类中文字幕| 成人国产小视频| 精品欧美视频| 456亚洲人成高清在线| 日韩av电影一区二区三区四区| 国产福利免费在线观看| 国产乱人乱偷精品视频a人人澡| 成人福利视频网| 亚洲精品自产拍在线观看APP| 老熟妇喷水一区二区三区| 91国内视频在线观看| 欧美区一区二区三| 久久综合九九亚洲一区| 54pao国产成人免费视频| 久久综合九九亚洲一区| 99精品在线看|