摘要 由于年齡相關的退行性病變及并發癥等因素,老年人睡眠障礙發生率高且易被忽略,增加了認知功能障礙、譫妄及心血管事件的發生率。本文就近年來睡眠障礙對認知功能影響的機制及其防治策略進行綜述,以期為臨床老年患者睡眠障礙的防治提供思路。
關鍵詞 睡眠障礙;老年;認知功能;影響機制;防治;研究進展
Research Progress on the Mechanism of Sleep Disorders Affecting Cognitive Function in Elderly Patients and Its Prevention and Treatment Strategies
CAO Lu1,WANG Yingbin2,ZHANG Wei2,LIU Yan1,ZHANG Li1
(1 The Second Clinical Medical College of Lanzhou University,Lanzhou 730000,China; 2 The Second Hospital of Lanzhou University,Lanzhou 730000,China)
Abstract Due to age-related degenerative diseases and comorbidities,the incidence of sleep disorders in the elderly is high and easily overlooked,increasing the incidence of cognitive dysfunction,delirium,and cardiovascular events.This article reviews the mechanisms of sleep disorders on cognitive function and their prevention and treatment strategies in recent years,intending to provide ideas for preventing and treating sleep disorders in clinical elderly patients.
Keywords Sleep disorder; Old people; Cognitive function; Influence mechanism; Prevention and treatment; Research progress
中圖分類號:R256.23文獻標識碼:Adoi:10.3969/j.issn.2095-7130.2024.04.019
睡眠是人類主要的基本生理需求之一,在學習記憶和維持大腦微環境穩定方面發揮重要作用。在衰老過程中,睡眠結構發生改變,睡眠/覺醒節律紊亂,總睡眠時間和慢波睡眠時間縮短,睡眠碎片化和入睡困難程度增加[1],而年齡、基礎疾病、社會因素等多種因素都可加重老年患者睡眠障礙,嚴重影響其生命質量。因此,睡眠是改善老年患者腦功能的可干預目標之一,睡眠障礙的早期篩查和及時干預是減輕或延緩其認知功能障礙的有效途徑。本文基于以往睡眠障礙與認知功能的相關研究,探討老年患者睡眠障礙對認知功能影響的潛在機制及其防治策略。
睡眠與認知功能的關系,
睡眠是一個有節奏的自然過程,以90~120分鐘的周期在非快眼動(Non-rapid Eye Movement,NREM)睡眠和快眼動(Rapid Eye Movement,REM)睡眠之間交替進行。NREM睡眠占整個睡眠的75%~80%,可分為四期,其中N3、N4期統稱為慢波睡眠(Slow Wave Sleep,SWS)。NREM睡眠的電活動主要包括慢波振蕩(Slow Oscillations,SOs)、紡錘波和尖波漣漪,三者時空耦合促進由海馬體產生的短期記憶信息向長期記憶轉化[2-3]。此外,δ波是SWS腦電圖的主要標志,其頻率與SOs相似,觸發δ波可削弱SOs驅動的信息整合,從而削弱記憶痕跡激活,促進遺忘[4]。REM睡眠期間,θ波占優勢,下丘腦黑色素濃縮激素(Melanin Concentrating Hormone,MCH)神經元被激活,通過增加抑制性輸入減少海馬錐體神經元放電,促進海馬依賴的記憶遺忘[5]。“突觸穩態假說”強調,REM睡眠期間會修剪最近形成的樹突棘,以促進新樹突棘的后續形成和記憶鞏固[6]。SWS期間,腦脊液和中樞神經系統血流出現與SOs相關的脈沖震蕩,以增強腦代謝廢物排出[7]。綜上所述,正常睡眠通過平衡信息保留與遺忘來確保學習和記憶的功能,腦代謝廢物排出維持大腦微環境穩態,而正常的睡眠/覺醒周期可能通過維持NREM/REM時間分布、腦代謝廢物排出及褪黑素分泌參與海馬依賴性記憶鞏固。
老年人的睡眠特點和認知功能改變,
通常老年人不再有固定的時間表要求其按時睡覺或起床,在睡眠總時間保持相對穩定的情況下,部分老年人入睡時間提前至夜間8、9點,并在凌晨3、4點醒來,且很難再次入睡,導致患者主觀感受入睡困難或保持睡眠困難,繼而在白天又出現精神不濟。研究表明,午睡對睡眠時間和質量受限的老年人的夜間睡眠質量或持續時間幾乎沒有影響,其24 h睡眠量顯著增加。并且可使老年人在午睡后和第2天的認知和精神運動表現增強[8]。另外,衰老過程中,老年人的睡眠結構發生改變,睡眠/覺醒節律紊亂,總睡眠時間和慢波睡眠時間縮短,睡眠碎片化和入睡困難程度增加[1]。與青壯年相比,老年人更容易被聽覺或光線刺激從睡眠中喚醒,且難以重新入睡[9]。
老年人的睡眠時間和睡眠質量與他們的認知功能密切相關。隨著年齡增長,老年人內側前額葉皮層的結構灰質逐漸萎縮,皮層SOs與紡錘波的時空耦合中斷,導致海馬體依賴性的夜間記憶鞏固受損[10]。另外,視網膜血管活性腸肽神經元接受直接視網膜光輸入,而老年人這類神經元缺失,對光信號的吸收能力下降,視交叉上核(Suprachiasmatic Nucleus,SCN)內部節律與之同步,從而導致SCN晝夜節律輸出減少,睡眠/覺醒周期紊亂[11]。老年患者的睡眠和認知功能相關的發展變化存在平行關系,改善老年患者睡眠質量是延緩老年相關癡呆、阿爾茨海默病等神經退行性疾病認知能力下降的有效措施。
1 睡眠障礙相關認知功能損傷的潛在機制
1.1 血腦屏障損傷
血腦屏障(Blood Brain Barrier,BBB)是中樞神經系統(CNS)與循環系統之間的動態多細胞界面,調節循環與腦實質之間的物質交換,維持中樞神經系統穩態。睡眠期間,血腦屏障運輸作用增強,促進β淀粉樣蛋白(Beta-amyloid Peptide,Aβ)等大腦代謝廢物排出,而睡眠不足可通過包括增強炎癥信號和下調緊密連接蛋白等多種機制增加血腦屏障通透性。睡眠不足導致多種促炎介質活性增加,如IL-1β可破壞星形膠質細胞對BBB的保護作用,TNF-α和IL-6可導致人腦微血管內皮細胞緊密連接蛋白ZO-1表達減少和定位錯誤[12]。同樣,限制大鼠睡眠可降低腦微血管中緊密連接蛋白的表達,周細胞與毛細血管壁分離,增加BBB通透性[13]。CD44是細胞外基質成分透明質酸的受體,其高表達可導致大腦微血管內皮細胞屏障完整性受損。睡眠剝奪后星形膠質細胞CD44高表達,大鼠BBB通透性增加,學習和記憶能力受損[14]。BBB損傷與大腦代謝產生的神經毒性物質構成反饋環路,通過囊泡性胞飲增多或緊密連接蛋白破壞打開胞旁通路,導致血管內物質通過受損的BBB滲漏到腦實質或者神經毒性物質無法及時轉運至循環,引起神經功能缺損。
1.2 睡眠依賴性記憶鞏固損傷
“主動系統鞏固假說”認為,NREM期間SOs與紡錘波耦合,在睡眠過程中驅動新編碼記憶的重復再激活,從而促進它們整合到長期記憶存儲位點[15]。圍術期睡眠剝奪、睡眠碎片化等睡眠障礙可能從多個維度破壞NREM睡眠,導致患者記憶功能受損。“突觸內穩態假說”強調清醒狀態下突觸連接被增強,而慢波活動降低突觸權重以避免記憶網絡飽和,從而促進新的學習[16]。睡眠剝奪可導致突觸結構改變,降低突觸可塑性,并伴隨認知功能受損,特別是海馬區突觸更易受影響[17]。哺乳動物的大腦依賴葡萄糖作為主要的能量來源,因此葡萄糖代謝異常可能會引起腦功能障礙或損害正常的認知功能[18]。此外,晝夜節律基因紊亂也可能加劇睡眠障礙引起的神經病理損傷,Bmal1是最經典的晝夜節律基因之一,通過調節小膠質細胞吞噬作用參與海馬依賴性記憶過程[19]。因此,了解睡眠剝奪的詳細分子機制至關重要,提高對睡眠不足不利影響的適應能力將對睡眠剝奪和睡眠障礙的人類、社會和經濟成本產生重大影響。
1.3 代謝廢物清除障礙
圍術期神經認知障礙的相關病理機制涉及Aβ等代謝廢物積累[20],而睡眠障礙可能是導致腦內代謝廢物產生和清除不平衡的原因之一。研究表明,清醒時的神經活動導致Aβ產生和分泌增加,睡眠時神經活動減少,Aβ清除率增加、產生減少,睡眠剝奪可能會干擾睡眠相關的Aβ清除,Aβ水平持續升高,導致Aβ積累[21]。睡眠剝奪后小膠質細胞可能被激活,以應對大腦中可溶性或低聚Aβ的早期變化,但由于細胞代謝需求增加而無法降解該類代謝廢物,導致Aβ沉積[22]。另外,膠質淋巴系統是獨立于血腦屏障進行腦內物質交換的重要環節,睡眠期間依賴水通道蛋白4(Aquaporin-4,AQP4)的腦脊液與間質液的對流交換顯著增加,促進Aβ等神經毒性廢物清除[23]。與清醒狀態和夜間睡眠不足相比,睡眠可提高淋巴系統的代謝廢物清除率[24]。不同睡眠狀態對膠質淋巴系統的影響也有差異,當腦電活動以紡錘波、δ波為主時,更有利于淋巴系統清除代謝廢物[25]。而VASCIAVEO等[26]發現在野生型小鼠中,碎片化睡眠可能通過降低AQP4表達損害膠質淋巴系統,從而影響認知行為。睡眠障礙可擾亂腦代謝廢物排出導致其沉積,引起認知功能損傷,而AQP4作為腦脊液和間質液進行物質交換的關鍵通道,可成為調節上述病理變化的作用靶點。
1.4 其他
WANG等[27]發現,睡眠剝奪亦可引起腸道菌群紊亂、神經炎癥和認知能力受損,將睡眠剝奪組患者腸道菌群移植到無菌小鼠體內,發現小鼠海馬和內側前額皮質小膠質細胞活動增加,認知功能障礙。腸道微生物群的改變可能是慢性睡眠剝奪的一個初始驅動因素,它通過激活腸道內NLRP3炎性小體誘導腸道屏障破壞,炎癥介質釋放。外周炎癥介質通過受損的BBB進一步激活中樞神經系統的NLRP3炎性小體,進而加重突觸功能障礙和認知功能損傷[28]。神經炎癥、氧化應激是神經損傷的常見原因,是認知功能障礙的誘發因素。睡眠剝奪可導致大鼠海馬CA1區炎癥反應,認知功能障礙[29]。色氨酸的主要代謝產物—犬尿氨酸,是免疫反應的主要調節因子,睡眠不足或睡眠剝奪會增加代謝相關關鍵酶的表達,導致犬尿氨酸代謝產物3-羥基犬尿氨酸(3HK)和喹啉酸(QUIN)產生增加,這是主要的神經毒性代謝物,其代謝失調會影響認知功能并促進神經退行性變的發生和進展[30]。另外,朊蛋白(Prion Protein,PrPC)/代謝性谷氨酸受體1(Metabotropic Glutamate Receptor 1,mGluR1)復合物是調節突觸活動的重要元件,與層粘連蛋白(Laminin,LN)結合通過細胞外信號調節激酶(ERK)途徑促進神經元可塑性和記憶鞏固。睡眠剝奪可降低PrPC的表達,增加Aβ肽水平,破壞PrPC和LN的相互作用[31],這可能是導致睡眠剝奪者認知能力低下的分子機制的一部分。
2 睡眠障礙防治策略
2.1 藥物干預
2.1.1 氯胺酮/艾司氯胺酮
關于氯胺酮用于抑郁癥治療的研究發現,氯胺酮改善睡眠質量的機制可能與晝夜節律系統相互作用以及神經認知和抗焦慮作用相關[32]。氯胺酮可在NREM睡眠期間刺激慢波活動,延長深度睡眠時間,并上調腦源性神經營養因子表達[33],誘導N3期睡眠[34]。氯胺酮可作用于環磷腺苷效應元件結合蛋白(cAMP Related Element Binding Protein,CREB)通路,導致哺乳動物生物鐘核心成分受到調節[35]。艾司氯胺酮是氯胺酮的右消旋體,較氯胺酮對NMDAR有更大的親和力,亞麻醉劑量的艾司氯胺酮具有更強的抗抑郁作用[36]。在一項關于艾司氯胺酮應用于婦科腹腔鏡手術的臨床研究[37]中發現,術中輸注艾司氯胺酮可降低運動疼痛VAS評分,并減少術后24 h內阿片類藥物用量,降低圍術期睡眠障礙發生率。除NMDAR外,艾司氯胺酮與μ-阿片受體有中等親和力,NMDAR和μ-阿片受體可能共同參與了艾司氯胺酮對圍術期睡眠障礙的預防作用[38],其具體作用機制需要進一步探討。
2.1.2 右美托嘧啶
右美托咪定(Dexmedetomidine,DEX)通過激活藍斑中樞突觸前、后α2受體發揮催眠作用,誘導一種類似于自然睡眠的無意識狀態。其腦電圖結果與NREM睡眠最為相似,紡錘波也在DEX鎮靜后的額葉腦電圖中出現。當較高劑量DEX產生更深的鎮靜作用時,紡錘波消失,SOs主導腦電圖,類似于NREM睡眠N3階段[39]。睡眠結構分析表明,DEX通過減少睡眠-覺醒轉換、增加長期NREM睡眠和減少短期清醒來穩定光相睡眠結構,用于ICU患者鎮靜時,夜間睡眠效率顯著提高,相較于異丙酚鎮靜,DEX組對睡眠質量和疼痛的其他主觀評估也有所改善,且機械通氣時間縮短[40-41]。DEX聯合舒芬太尼自控鎮痛持續輸注DEX(200或400 μg)可顯著改善結直腸癌術后睡眠質量,且DEX(200 μg)在改善術后睡眠質量且不影響胃腸運動功能方面優于DEX(400 μg)[42]。另外,PERSSON等[43]表明,DEX可改善腦內膠質淋巴系統流動,進而促進Aβ等代謝廢物排出,減少中樞去甲腎上腺素能信號、神經炎癥,增強NREM睡眠,并可同時緩解躁動或譫妄,可作為長期門診治療的鎮靜催眠藥物。因此,DEX配合全麻使用可為手術提供可靠的鎮靜作用,且在改善患者手術后睡眠障礙方面具有顯著優勢。
2.1.3 褪黑素
由下丘腦視交叉上核(Suprachiasmatic Nucleus,SCN)產生的神經輸出信號誘導松果體在夜間合成褪黑激素,向生物鐘傳遞黑暗信息,并誘導夜間生理功能,例如睡眠/覺醒周期、血壓和新陳代謝等[44],衰老過程中,生物鐘穩定性、夜間褪黑激素分泌破壞,導致睡眠結構紊亂。在ICU環境中,疾病狀態、不規則光線和機械通氣等各種因素都可能引起生物鐘信息紊亂,褪黑激素分泌被破壞,導致睡眠剝奪,從而增加譫妄的風險,外源性補充褪黑激素可提高患者血清褪黑激素濃度并顯著改善患者睡眠質量[45]。另外,麻醉藥物大多是NMDAR拮抗劑或γ-氨基丁酸(Gamma-aminobutyric Acid,GABA)受體激動劑,上述2種受體在調節生物鐘方面發揮重要作用,麻醉藥物可干擾體內生物鐘,引起術后褪黑激素晝夜節律發生改變,導致睡眠異常[46]。SONG等[47]表明,對于髖關節置換術的老年患者,蛛網膜下腔麻醉和全身麻醉均可影響術后晝夜褪黑激素分泌和睡眠,但蛛網膜下腔麻醉對褪黑激素節律和睡眠的損害較小,術后譫妄發生率較低。一項針對褪黑激素治療圍手術期睡眠質量臨床療效薈萃分析表明[48],從術前開始使用褪黑激素治療可以改善術后主觀睡眠質量,延長總睡眠時間,提高睡眠效率。但是褪黑激素不會增加SWS的數量,而SWS被認為是穩態睡眠的標志,因此褪黑激素的睡眠促進作用主要歸因于晝夜節律重建。
2.1.4 其他
苯二氮?類藥物通過增強GABA與其受體結合,開放氯離子通道,引起神經細胞超極化,從而起到中樞抑制作用,常用于焦慮和失眠的對癥治療。苯二氮?類藥物會導致NREM睡眠N2階段時間增加,N1、3、4時間減少,而第3、4階段是一個以慢波睡眠(SWS)為特征的階段[49]。老年患者服用苯二氮?類藥物可能會增加其跌倒的風險,此外還可能引起認知和注意力障礙[50],導致癡呆風險增加。非苯二氮?類藥物對GABA受體α亞基選擇性更強,藥理活性譜更窄,對認知功能的影響較苯二氮?類更小,但其不良反應和死亡的發生可能與BZDs相似[51],在老年患者中仍需慎用該藥物。另外,睡眠障礙是抑郁癥患者的重要臨床表現,因而三環類抗抑郁藥也被用于睡眠障礙的治療,短期使用低劑量的多慮平和曲唑酮可能對睡眠質量有輕微的改善。但由于不良事件的報道有限,抗抑郁藥治療失眠癥的耐受性和安全性尚不確定[52]。近年來研究發現食欲素[53]是睡眠覺醒周期內穩態的關鍵調節劑,通過激活上升覺醒系統的膽堿能/單胺能神經通路來幫助覺醒,食欲素受體拮抗劑可能通過在夜間對抗食欲素級聯反應,減少過度覺醒,并改善睡眠的連續性。相較于其他鎮靜催眠藥物,食欲素受體拮抗劑能增強快速眼動睡眠,有可能誘發更嗜睡的生理睡眠,且不良反應更小。
2.2 非藥物干預
認知行為療法是目前公認的非藥物治療的最佳選擇[54],可改善主、客觀睡眠質量,療效不劣于藥物干預,且操作簡潔,不良反應遠小于藥物治療,安全性更高。另外,鑒于老年人生活作息時間改變,可指導患者每天記錄睡眠日記,持續2周,確定患者起床時間。然后倒數7.5 h,找到合適的睡覺時間。除基礎疾病外,睡眠環境中的噪聲、光線干擾也是導致老年患者睡眠障礙的重要因素,建議由多組分非藥物干預代替藥物治療,側重于保持正常的晝夜模式,盡量減少夜間環境刺激影響[55],比如為ICU患者提供耳塞和眼罩可顯著改善其主觀睡眠質量。另外中醫針灸療法通過多種機制在減少去甲腎上腺素和抑制炎癥方面發揮重要作用,可能加速淋巴清除改善睡眠障礙[56]。最后,由于重力會影響大腦血液流動和分布,因此睡眠姿勢可能是影響大腦廢物清除的一個重要因素。麻醉狀態下,大鼠側臥位時腦代謝廢物的轉運和清除效率高于仰臥位和俯臥位,這與生理條件下大鼠在休息和睡眠時偏好側臥的行為相對應[57]。因此,側臥可能是促進腦代謝廢物排出的有效方法,其潛在的機制值得探索。
3 總結與展望
老年人睡眠障礙發生率高,可導致包括老年癡呆在內的認知功能障礙相關疾病加速進展,嚴重影響老年人身心健康。臨床應該給予老年患者睡眠障礙更多重視,及時診斷并制定個體化多模式治療方案,改善老年患者睡眠問題,減少或延緩其認知功能損害。由于睡眠健康從多個維度衡量,且受到患者年齡、基礎疾病、睡眠環境等多種因素影響,未來的研究需要涉及更大、更均勻的患者群體樣本,進一步探究睡眠障礙和認知功能損傷相關機制,以制定準確有效的睡眠治療方案。
利益沖突聲明:無。
參考文獻
[1]WANG X,HUA D,TANG X,et al.The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders[J].Nature and science of sleep,2021,13:1395-1410.
[2]GIRARDEAU G,LOPES-DOS-SANTOS V.Brain neural patterns and the memory function of sleep[J].Science(New York,NY),2021,374(6567):560-564.
[3]OLIVA A,FERNáNDEZ-RUIZ A,LEROY F,et al.Hippocampal CA2 sharp-wave ripples reactivate and promote social memory[J].Nature,2020,587(7833):264-269.
[4]KIM J,GULATI T,GANGULY K.Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting[J].Cell,2019,179(2):514-526.e513.
[5]IZAWA S,CHOWDHURY S,MIYAZAKI T,et al.REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories[J].Science(New York,NY),2019,365(6459):1308-1313.
[6]LI W,MA L,YANG G,et al.REM sleep selectively prunes and maintains new synapses in development and learning[J].Nature neuroscience,2017,20(3):427-437.
[7]FULTZ N E,BONMASSAR G,SETSOMPOP K,et al.Coupled electrophysiological,hemodynamic,and cerebrospinal fluid oscillations in human sleep[J].Science(New York,NY),2019,366(6465):628-631.
[8]CAMPBELL S S,MURPHY P J,STAUBLE T N.Effects of a nap on nighttime sleep and waking function in older subjects[J].Journal of the American Geriatrics Society,2005,53(1):48-53.
[9]FARASAT S,DORSCH J J,PEARCE A K,et al.Sleep and Delirium in Older Adults[J].Current sleep medicine reports,2020,6(3):136-148.
[10]HELFRICH R F,MANDER B A,JAGUST W J,et al.Old Brains Come Uncoupled in Sleep:Slow Wave-Spindle Synchrony,Brain Atrophy,and Forgetting[J].Neuron,2018,97(1):221-230.
[11]WANG J L,LIM A S,CHIANG W Y,et al.Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans[J].Annals of neurology,2015,78(2):317-322.
[12]CUDDAPAH V A,ZHANG S L,SEHGAL A.Regulation of the Blood-Brain Barrier by Circadian Rhythms and Sleep[J].Trends in neurosciences,2019,42(7):500-510.
[13]MEDINA-FLORES F,HURTADO-ALVARADO G,CONTIS-MONTES DE OCA A,et al.Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function[J].Brain,behavior,and immunity,2020,89:118-132.
[14]SUN J,WU J,HUA F,et al.Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44[J].Frontiers in neurology,2020,11:563916.
[15]ZHANG Y,GRUBER R.Can Slow-Wave Sleep Enhancement Improve Memory?A Review of Current Approaches and Cognitive Outcomes[J].The Yale journal of biology and medicine,2019,92(1):63-80.
[16]RAVEN F,VAN DER ZEE E A,MEERLO P,et al.The role of sleep in regulating structural plasticity and synaptic strength:Implications for memory and cognitive function[J].Sleep medicine reviews,2018,39:3-11.
[17]PEI W,MENG F,DENG Q,et al.Electroacupuncture promotes the survival and synaptic plasticity of hippocampal neurons and improvement of sleep deprivation-induced spatial memory impairment[J].CNS neuroscience amp; therapeutics,2021,27(12):1472-1482.
[18]KIM S M,ZHANG S,PARK J,et al.REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse[J].Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics,2021,18(4):2504-2517.
[19]WANG X L,KOOIJMAN S,GAO Y,et al.Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity[J].Molecular psychiatry,2021,26(11):6336-6349.
[20]ZHANG J,ZHU S,JIN P,et al.Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice[J].Theranostics,2020,10(26):11908-11920.
[21]SHOKRI-KOJORI E,WANG G J,WIERS C E,et al.β-Amyloid accumulation in the human brain after one night of sleep deprivation[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(17):4483-4488.
[22]PARHIZKAR S,GENT G,CHEN Y,et al.Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice[J].Science translational medicine,2023,15(693):eade6285.
[23]XIE L,KANG H,XU Q,et al.Sleep drives metabolite clearance from the adult brain[J].Science(New York,NY),2013,342(6156):373-377.
[24]LEE S,YOO R E,CHOI S H,et al.Contrast-enhanced MRI T1 Mapping for Quantitative Evaluation of Putative Dynamic Glymphatic Activity in the Human Brain in Sleep-Wake States[J].Radiology,2021,300(3):661-668.
[25]BENVENISTE H,HEERDT P M,FONTES M,et al.Glymphatic System Function in Relation to Anesthesia and Sleep States[J].Anesthesia and analgesia,2019,128(4):747-758.
[26]VASCIAVEO V,IADAROLA A,CASILE A,et al.Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models[J].Acta neuropathological communications,2023,11(1):16.
[27]WANG Z,CHEN W H,LI S X,et al.Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation[J].Molecular psychiatry,2021,26(11):6277-6292.
[28]ZHAO N,CHEN Q G,CHEN X,et al.Intestinal dysbiosis mediates cognitive impairment via the intestine and brain NLRP3 inflammasome activation in chronic sleep deprivation[J].Brain,behavior,and immunity,2023,108:98-117.
[29]GUO B,CHEN C,YANG L,et al.Effects of dexmedetomidine on postoperative cognitive function of sleep deprivation rats based on changes in inflammatory response[J].Bioengineered,2021,12(1):7920-7928.
[30]BHAT A,PIRES A S,TAN V,et al.Effects of Sleep Deprivation on the Tryptophan Metabolism[J].International journal of tryptophan research:IJTR,2020,13:1178646920970902.
[31]DA LUZ M H M,PINO J M V,SANTOS T G,et al.Sleep deprivation regulates the availability of PrP(C) and Aβ peptides which can impair interaction between PrP(C) and laminin and neuronal plasticity[J].Journal of Neurochemistry,2020,153(3):377-389.
[32]SONG B,ZHU J.A Novel Application of Ketamine for Improving Perioperative Sleep Disturbances[J].Nature and science of sleep,2021,13:2251-2266.
[33]WANG M,ZHANG B,ZHOU Y,et al.Sleep improvement is associated with the antidepressant efficacy of repeated-dose ketamine and serum BDNF levels:a post-hoc analysis[J].Pharmacological reports:PR,2021,73(2):594-603.
[34]DUNCAN W C,SARASSO S,FERRARELLI F,et al.Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder[J].The international journal of neuropsychopharmacology,2013,16(2):301-311.
[35]KOHTALA S,ALITALO O,ROSENHOLM M,et al.Time is of the essence:Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine[J].Pharmacology amp; therapeutics,2021,221:107741.
[36]SINGH J B,FEDGCHIN M,DALY E,et al.Intravenous Esketamine in Adult Treatment-Resistant Depression:A Double-Blind,Double-Randomization,Placebo-Controlled Study[J].Biological psychiatry,2016,80(6):424-431.
[37]QIU D,WANG X M,YANG J J,et al.Effect of Intraoperative Esketamine Infusion on Postoperative Sleep Disturbance after Gynecological Laparoscopy:A Randomized Clinical Trial[J].JAMA network open,2022,5(12):e2244514.
[38]SCHATZBERG A F.Mechanisms of Action of Ketamine and Esketamine[J].The American journal of psychiatry,2021,178(12):1130.
[39]MOODY O A,ZHANG E R,VINCENT K F,et al.The Neural Circuits Underlying General Anesthesia and Sleep[J].Anesthesia and analgesia,2021,132(5):1254-1264.
[40]SU X,MENG Z T,WU X H,et al.Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery:a randomised,double-blind,placebo-controlled trial[J].Lancet(London,England),2016,388(10054):1893-1902.
[41]SKROBIK Y,DUPREY M S,HILL N S,et al.Low-Dose Nocturnal Dexmedetomidine Prevents ICU Delirium.A Randomized,Placebo-controlled Trial[J].American journal of respiratory and critical care medicine,2018,197(9):1147-1156.
[42]SUI X,WANG Y,JIN M,et al.The effects of dexmedetomidine for patient-controlled analgesia on postoperative sleep quality and gastrointestinal motility function after surgery:A prospective,randomized,double-blind,and controlled trial[J].Frontiers in pharmacology,2022,13:990358.
[43]PERSSON N,UUSALO P,NEDERGAARD M,et al.Could dexmedetomidine be repurposed as a glymphatic enhancer?[J].Trends in pharmacological sciences,2022,43(12):1030-1040.
[44]ZISAPEL N.New perspectives on the role of melatonin in human sleep,circadian rhythms and their regulation[J].British journal of pharmacology,2018,175(16):3190-3199.
[45]GANDOLFI J V,DI BERNARDO A P A,CHANES D A V,et al.The Effects of Melatonin Supplementation on Sleep Quality and Assessment of the Serum Melatonin in ICU Patients:A Randomized Controlled Trial[J].Critical care medicine,2020,48(12):e1286-e1293.
[46]COPPOLA S,CACCIOPPOLA A,CHIUMELLO D.Internal clock and the surgical ICU patient[J].Current opinion in anaesthesiology,2020,33(2):177-184.
[47]SONG Y,LIU Y,YUAN Y,et al.Effects of general versus subarachnoid anaesthesia on circadian melatonin rhythm and postoperative delirium in elderly patients undergoing hip fracture surgery:A prospective cohort clinical trial[J].EBioMedicine,2021,70:103490.
[48]GAO Y,CHEN X,ZHOU Q,et al.Effects of Melatonin Treatment on Perioperative Sleep Quality:A Systematic Review and Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials[J].Nature and science of sleep,2022,14:1721-1736.
[49]DE MENDON?A F M R,DE MENDON?A G,SOUZA L C,et al.Benzodiazepines and Sleep Architecture:A Systematic Review[J].CNS amp; neurological disorders drug targets,2023,22(2):172-179.
[50]MARRON L,SEGURADO R,KENNY R A,et al.The association between benzodiazepine use and falls,and the impact of sleep quality on this association:data from the TILDA study[J].QJM:monthly journal of the Association of Physicians,2020,113(1):31-36.
[51]GUO F,YI L,ZHANG W,et al.Association Between Z Drugs Use and Risk of Cognitive Impairment in Middle-Aged and Older Patients with Chronic Insomnia[J].Frontiers in human neuroscience,2021,15:775144.
[52]EVERITT H,BALDWIN D S,STUART B,et al.Antidepressants for insomnia in adults[J].The Cochrane database of systematic reviews,2018,5(5):Cd010753.
[53]WU X,XUE T,CHEN Z,et al.Orexin Receptor Antagonists and Insomnia[J].Current psychiatry reports,2022,24(10):509-521.
[54]ALIMORADI Z,JAFARI E,BROSTR?M A,et al.Effects of cognitive behavioral therapy for insomnia(CBT-I) on quality of life:A systematic review and meta-analysis[J].Sleep medicine reviews,2022,64:101646.
[55]MCKENNA H,VAN DER HORST G T J,REISS I,et al.Clinical chronobiology:a timely consideration in critical care medicine[J].Critical care(London,England),2018,22(1):124.
[56]YI T,GAO P,ZHU T,et al.Glymphatic System Dysfunction:A Novel Mediator of Sleep Disorders and Headaches[J].Frontiers in neurology,2022,13:885020.
[57]LEE H,XIE L,YU M,et al.The Effect of Body Posture on Brain Glymphatic Transport[J].The Journal of neuroscience:the official journal of the Society for Neuroscience,2015,35(31):11034-11044.