999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

問題導學引領探究活動 深度學習提升學科素養

2024-07-03 07:48:33吳愉
數理化解題研究·綜合版 2024年5期
關鍵詞:深度學習

吳愉

摘?要:本文以“正弦函數、余弦函數的性質”的教學為例,采用“設問-學生回答-再設問-再回答”的模式,闡述如何以問題為導向引導學生復習舊知,同時發現問題,進行探究活動,從而解決問題.

關鍵詞:問題教學;探究活動;深度學習;學科素養

中圖分類號:G632???文獻標識碼:A???文章編號:1008-0333(2024)15-0005-03

根據新課程理念的要求,教師在課堂教學中要從深度學習的視角去探索知識概念的相互關系.從高中數學學科的角度去看,深度學習是依托數學的教學內容,在教師的引領下,以發展學生的數學思維能力和數學學科素養為目標,圍繞具有挑戰性的主題展開探究活動,讓學生積極參與課堂,先獨立思考,后小組合作探究,以達到主動學習的目的.

1 創設問題情境,點燃學生學習興趣點

概念課要從學生認知發展的角度出發,依托數學核心素養,從數學生活的情境入手,創設有效有趣的問題,點燃學生學習的興趣,讓課堂生動起來.因此本節課設置問題如下:

問題1:類比研究一般函數的性質,你覺得正弦函數、余弦函數應該研究哪些性質?

問題2:根據以往研究函數的經驗,為了對函數性質進行研究,先要研究函數的什么?

問題3:如何繪制正弦函數、余弦函數的圖象?五點法作圖的步驟是什么呢?

通過設置問題,啟發引導學生回顧已學知識,回憶正弦函數、余弦函數在0,2π的圖象,進而回憶其在R上的圖象.在點燃學生學習興趣的同時,培養他們的邏輯推理數學核心素養,進而引出本節課所要探究的內容:正弦函數、余弦函數的性質.

2 問題引領探究,突破學生學習疑難點

探究活動的開展需要學生積極參與課堂.因此在課堂教學過程中,教師可以精心設計問題,采用“設問-學生回答-再設問-再回答”的模式,啟發引導學生去發現問題,提出問題,在教師的引領下探究問題,進而解決問題,對正弦函數、余弦函數的性質:周期性以及周期函數的概念進行更深入的學習,突破學生學習疑難點.

問題4:上述問題中,我們類比研究函數的性質,我們知道研究正弦函數、余弦函數的性質:單調性、對稱性和奇偶性,請同學們觀察正弦函數的圖象的特點,它還有什么特征呢?

學生1:通過正弦函數的圖象作圖過程中,可以發現,橫坐標每經過2π個單位長度,點的縱坐標就會相同.

教師:很好,剛才觀察圖象,我們從形的角度定性地分析了圖象的周而復始的規律.

問題5:如何從數的角度定量地分析這一特征呢?

學生2:誘導公式sin(x+2kπ)=sinx(k∈Z),當k=1時,即sin(x+2π)=sinx,即

2π,4π與0,2π的圖象相同,當k=-1時,即sin(x-2π)=sinx,即

-2π,0與0,2π的圖象相同,當k取不同整數時,圖象會重復的出現.

教師:數學上用周期性來刻畫這種重復性的特征.

問題6:請閱讀教科書5.4.2節“1.周期性”中的內容,回答相關問題,周期函數是怎么定義的?什么是周期?什么是最小正周期?

問題7:由周期函數的定義,y=sinx的周期是多少?

追問1:若sinπ6+π3=sinπ6,sinπ3+π3=sinπ3,sin4π3+π3=sin4π3,…,那么能說y=sinx的周期是π3嗎?為什么?

學生3:不是,Ax∈R,sinx+π3=sinx不成立.

教師:定義是對定義域中的每一個x而言,只有個別或少數值滿足fx+T=fx,不能說T是

fx的周期.

追問2:若函數fx的周期為T,則kT,k∈N*也是fx的周期嗎?為什么?

問題8:在正弦函數的所有周期中,是否存在一個最小正周期?

追問3:y=2,x∈R是不是周期函數?若是,其最小正周期是什么?

教師:并不是所有周期函數都有最小正周期.同學們,還能不能舉出其他的例子?

問題9:余弦函數是否為周期函數?若是,請說出其周期和最小正周期.

問題10:我們知道4π是正弦函數的一個周期,我們能說正弦函數的周期是4π嗎?

教師:我們現在談正弦函數、余弦函數的周期時,如果不加解釋,一般指的是最小正周期.

問題11:知道一個函數的周期,對學習函數的圖象與性質有什么幫助?

教師:借助函數的周期性,有助于從局部認識整體,比如借助周期性,正弦函數、余弦函數的圖象可從0,2π發展到R上.

3 開展深度學習,提升學生學習素養點

在新課標、新教材、新高考的教育背景下,教育教學應該站在學生的角度,發展學生的思維,提升學生數學核心素養,培育學生的勇于奮斗的求知精神和積極進取的學習意識,進而達到提升其素養的目的.那么,怎樣在課堂教學中落實素養,從哪些方面著手提升學生的素養呢?筆者依托深度教學,發揮育人價值,通過讓學生獨立思考、自主探索、小組合作、討論交流、師生共探、歸納提升,進行深度學習,并將素養的發展目標分解到相應的數學教學環節中.

3.1 獨立思考,自主探索

在研究正弦函數與余弦函數的性質時,我們已經根據三角函數的作圖過程中圖象周而復始的規律,研究函數的周期性,并懂得了正弦函數和余弦函數的周期為2π.類比一般函數的研究方法,三角函數還存在其他的性質.教師可組織學生先觀察圖象,讓他們獨立思考,自主探索,去發現正弦、余弦函數的性質[1].

問題12:觀察正弦函數、余弦函數的圖象,你能看出他們有何奇偶性嗎?

學生4:觀察正弦曲線與余弦曲線,可以發現,正弦曲線關于0,0對稱,余弦曲線關于y軸對稱,所以正弦函數是奇函數,余弦函數是偶函數.

問題13:除了觀察正弦函數、余弦函數的圖象,你們還有沒有其他方法來證明正弦函數、余弦函數的奇偶性?

學生5:sin(-x)=-sinx,cos(-x)=cosx.

教師:數無形時少直觀,形少數時難入微,數形結合是解決函數問題的一種常用手段.由“形”到“數”,由“數”到“形”,加深對概念的理解,促進學生數學思維能力和表達能力的提高.

通過設置這一教學環節,訓練學生思維能力,提升學生的直觀想象、邏輯推理數學核心素養.

3.2 小組合作,討論交流

通過前面的設問,我們知道要研究三角函數,可研究正弦函數、余弦函數的性質.

問題14:觀察正弦曲線,完成下表1中正弦函數性質部分的內容.表1?正弦、余弦函數的性質表

內容正弦函數余弦函數定義域

值域(最值點x)周期性

奇偶性單調遞增區間

單調遞減區間對稱軸

對稱中心

師生活動:教師安排填表任務并組織學生進行小組合作學習,學生之間相互討論交流,完成表格的填寫.在學生分組討論時,教師巡視課堂,啟發學生積極思考,用心觀察,充分調動學生的學習主動性.討論結束,教師請小組派代表展示討論結果.

學生6:(展示小組討論結果以及思維過程)

①定義域:R,值域:-1,1,x=π2+2kπk∈Z,ymax=1,

x=-π2+2kπk∈Z,ymax=-1.

②周期性:y=sinx的周期為2π;

奇偶性:y=sinx為奇函數.

③單調性:單調遞增區間:[-π2+2kπ,π2+2kπ](k∈Z),

單調遞減區間:[π2+2kπ,3π2+2kπ](k∈Z);

④對稱性:對稱軸:x=π2+kπk∈Z,對稱中心:kπ,0k∈Z;

教師:很好,有沒有補充說明的?匯總各小組在小組合作交流中碰到的疑惑,教師進行點評指導.

教師:在剛才的環節中,我們是通過觀察正弦函數的圖象,數形結合定性的得出正弦函數的性質的結論,那么能不能從另一個角度定量分析正弦函數的性質.

追問1:如何理解直線x=π/2是正弦函數y=sinx的對稱軸?又如何理解點π,0是正弦函數y=sinx的對稱中心呢?

學生7:直線x=π/2是正弦函數y=sinx的對稱軸,即對于任意的x,有sinx=sinπ-x;π,0是正弦函數y=sinx的對稱中心,即對于任意的x,有sinx=sin(2π-x).

教師:非常好,正弦函數的對稱軸和對稱中心,可以根據函數的對稱性特點,加以解釋;其次正弦函數的對稱軸是其取最大值和最小值的時候,正弦函數的對稱中心是其取到零點的時候.

追問2:為什么對稱軸和對稱中心“+kπ”就可以,而單調區間和最值要“+2kπ”呢?

學生8:對稱軸和對稱中心每隔π個單位,會重復出現,而單調區間和最值要每隔2π個單位,才會重復出現.

前面的研究,我們已經了解正弦函數的相關性質,那么余弦函數的性質又如何呢?教師可以讓學生嘗試歸納,并進行合作探究,引導學生閱讀教科書,規范認識余弦函數的性質,并精準規范地表達,促進學生對知識有更深層次的理解.

4 教學反思

在課堂教學過程中,問題導學是一種行之有效的教學手段,它以問題為核心,教師根據教學目標和學生的認知水平,進行核心問題的設計,學生依據問題,結合已有的知識和技能展開獨立的思考和自主探究,嘗試解決問題.學生也可以采用小組合作、討論交流的方式進行探究活動,通過討論,將研究成果進行分享.教師根據學生的學習反饋,設計有挑戰性的學習問題,引導學生思考和解決問題,培養他們的創新思維,從而實現深度學習,進而提升學生數學核心素養.

5 結束語

問題導學可以有效引領探究活動,促進學生深度學習,進而提升學生素養.因此,在實際的課堂教學過程中,教師要不斷地調整教學策略,關注學生的個性差異,因材施教,創造有利于學生發展的教學環境,從而實現立德樹人的根本任務.

參考文獻:

[1]吳景峰.新授課深度學習的六個觸動點[J].中學數學教學參考,2023(09):28-31.

[責任編輯:李?璟]

猜你喜歡
深度學習
從合坐走向合學:淺議新學習模式的構建
面向大數據遠程開放實驗平臺構建研究
基于自動智能分類器的圖書館亂架圖書檢測
搭建深度學習的三級階梯
有體驗的學習才是有意義的學習
電子商務中基于深度學習的虛假交易識別研究
現代情報(2016年10期)2016-12-15 11:50:53
利用網絡技術促進學生深度學習的幾大策略
考試周刊(2016年94期)2016-12-12 12:15:04
MOOC與翻轉課堂融合的深度學習場域建構
大數據技術在反恐怖主義中的應用展望
深度學習算法應用于巖石圖像處理的可行性研究
軟件導刊(2016年9期)2016-11-07 22:20:49
主站蜘蛛池模板: 在线观看免费人成视频色快速| 中文字幕日韩丝袜一区| 在线看片国产| 欧美第二区| AV无码国产在线看岛国岛| 色爽网免费视频| 一本大道无码日韩精品影视| 国产精品亚洲一区二区三区z| 午夜视频日本| 欲色天天综合网| 极品国产在线| 在线观看无码a∨| 男女猛烈无遮挡午夜视频| 91精品福利自产拍在线观看| 露脸真实国语乱在线观看| 怡春院欧美一区二区三区免费| 国产AV毛片| 欧美成人a∨视频免费观看| 免费全部高H视频无码无遮掩| 精品乱码久久久久久久| 日韩国产黄色网站| 无码AV动漫| 免费观看国产小粉嫩喷水| 欧美日韩国产综合视频在线观看 | 婷婷激情亚洲| 老色鬼欧美精品| 成人字幕网视频在线观看| 日韩精品成人在线| 国产综合无码一区二区色蜜蜜| 国产精品一区二区国产主播| 国产久草视频| 亚洲精品国产首次亮相| 亚洲黄色高清| 久久99国产精品成人欧美| 精品无码专区亚洲| 夜色爽爽影院18禁妓女影院| 园内精品自拍视频在线播放| 欧美三級片黃色三級片黃色1| 久草视频精品| 波多野结衣中文字幕一区| 无码国内精品人妻少妇蜜桃视频 | 人人91人人澡人人妻人人爽| 538精品在线观看| 亚洲美女一区二区三区| 一区二区三区四区在线| 996免费视频国产在线播放| 国产高清在线丝袜精品一区| 精品少妇人妻av无码久久| 欧美日韩国产综合视频在线观看 | a在线观看免费| 手机精品福利在线观看| 国产精品亚洲片在线va| 国产成人a毛片在线| 久久久久无码精品| 国产色爱av资源综合区| 中文字幕无码中文字幕有码在线| 91麻豆精品国产高清在线| 成人综合网址| 亚洲精品国产首次亮相| 免费国产小视频在线观看| 国产乱人伦精品一区二区| 免费在线播放毛片| 99这里只有精品在线| 亚洲有码在线播放| 成人精品区| 国产91麻豆视频| 欧美福利在线播放| 在线观看视频一区二区| 亚洲成人免费看| 97影院午夜在线观看视频| 成年女人a毛片免费视频| 91九色国产porny| 欧美成人国产| 亚洲最大情网站在线观看 | 五月婷婷丁香综合| 欧美影院久久| 1769国产精品视频免费观看| 久久精品丝袜| 国产精品嫩草影院视频| 91亚洲国产视频| 国产成人禁片在线观看| 欧美影院久久|