摘 要 缺血性腦卒中后細(xì)胞凋亡是神經(jīng)損傷和肢體功能障礙的重要原因,而改善缺血性腦卒中損傷的關(guān)鍵靶點(diǎn)之一是調(diào)控腦缺血半影區(qū)的細(xì)胞凋亡。近年來(lái)許多研究發(fā)現(xiàn)運(yùn)動(dòng)療法在調(diào)控細(xì)胞凋亡方面有積極作用,且該療法在臨床上應(yīng)用廣泛。本文對(duì)運(yùn)動(dòng)干預(yù)腦缺血后細(xì)胞凋亡的相關(guān)研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞 缺血性腦卒中 細(xì)胞凋亡 運(yùn)動(dòng)干預(yù)
中圖分類號(hào):R455; R743.33 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2024)11-0078-06
引用本文 楊靈超, 劉雪晴, 趙莉娟, 等. 運(yùn)動(dòng)干預(yù)調(diào)控缺血性腦卒中細(xì)胞凋亡的研究進(jìn)展[J]. 上海醫(yī)藥, 2024, 45(11): 78-83.
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(82174496、82374574);國(guó)家中醫(yī)藥管理局國(guó)家臨床研究基地專項(xiàng)科研課題(JDZX201923、JDZX201915)
Progress of exercise intervention in regulating apoptosis in ischaemic stroke
YANG Lingchao1,2, LIU Xueqing1, ZHAO Lijuan2,3, PEI Qi1,2, WANG Nianhong1,2,3
(1. Shanghai University of Sport, Shanghai 200438, China; 2. Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; 3. Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)
ABSTRACT Apoptosis serves as a significant contributor to neurological damage and limb dysfunction following ischemic stroke. Regulating apoptosis within the ischemic penumbra represents a pivotal therapeutic target for mitigating the sequelae of this condition. Recently, numerous studies have elucidated the positive impact of exercise therapy on modulating apoptosis, leading to its widespread adoption in clinical practice. This article aims to comprehensively review the progress in research pertaining to the exercise-based intervention for apoptosis following ischemic stroke.
KEY WORDS ischemic stroke; apoptosis; exercise intervention
細(xì)胞凋亡是維持細(xì)胞穩(wěn)態(tài)的自然過(guò)程,是受基因調(diào)控或外界刺激情況下,激活凋亡相關(guān)因子消除衰老和異常細(xì)胞發(fā)生的程序性死亡,該過(guò)程異常或過(guò)度激活將引起靶器官損傷[1]。缺血性腦卒中(ischemic stroke, IS)發(fā)生后,神經(jīng)細(xì)胞內(nèi)鈣超載、自由基的大量生成以及興奮性氨基酸的釋放導(dǎo)致線粒體膜電位消失,三磷酸腺苷(adenosine triphosphate, ATP)水解增加,能量合成受阻,這些因素最終導(dǎo)致細(xì)胞凋亡。有研究指出,神經(jīng)細(xì)胞過(guò)度凋亡是IS患者神經(jīng)和肢體功能障礙以及病情進(jìn)一步發(fā)展的主要原因之一[2]。研究提示,半影區(qū)的凋亡具有可逆性[3],血流再灌注能夠減緩神經(jīng)細(xì)胞凋亡,恢復(fù)神經(jīng)細(xì)胞生存能力,維持神經(jīng)功能,改善IS后功能障礙[4]。運(yùn)動(dòng)療法已被證實(shí)能夠促進(jìn)血液灌注并調(diào)控IS后神經(jīng)細(xì)胞凋亡,緩解神經(jīng)損傷,助力IS患者康復(fù)[5-6]。本文總結(jié)近5年運(yùn)動(dòng)調(diào)控IS后神經(jīng)細(xì)胞凋亡的相關(guān)研究,擬揭示運(yùn)動(dòng)療法在IS疾病防治方面的潛在價(jià)值,并對(duì)其所調(diào)控的各類凋亡形式作一綜述,以期為運(yùn)動(dòng)療法調(diào)控IS后細(xì)胞凋亡的相關(guān)機(jī)制研究提供參考。
1 缺血腦區(qū)的細(xì)胞凋亡
腦組織缺血直接導(dǎo)致神經(jīng)元細(xì)胞能量供應(yīng)障礙,細(xì)胞代謝紊亂,細(xì)胞自由基大量積累,Ca2+超負(fù)荷和線粒體功能障礙,破壞了細(xì)胞穩(wěn)態(tài),激活細(xì)胞免疫反應(yīng),中性粒細(xì)胞等炎癥細(xì)胞釋放促炎癥因子并激活細(xì)胞程序性死亡[7]。常見(jiàn)的細(xì)胞程序性死亡方式有自噬、凋亡、焦亡、壞死性凋亡和鐵死亡[8]。腦缺血后缺血核心區(qū)細(xì)胞通過(guò)脂肪水解、蛋白水解、生物能量衰竭和離子穩(wěn)態(tài)迅速被破壞,細(xì)胞程序性死亡過(guò)度表達(dá),大量神經(jīng)細(xì)胞壞死和凋亡,且壞死的細(xì)胞向環(huán)境中釋放谷氨酸和毒素,進(jìn)一步加劇神經(jīng)細(xì)胞凋亡,最終造成功能障礙[9-10],而有效抑制細(xì)胞凋亡能夠降低組織損傷程度[11]。
半影區(qū)指的是IS后損傷嚴(yán)重的核心區(qū)和正常大腦之間存在的一個(gè)功能受損但結(jié)構(gòu)完整的區(qū)域,半影區(qū)血流受限,但仍保留部分能量代謝[12]。積極的干預(yù)能夠減少細(xì)胞凋亡,反之,半影區(qū)持續(xù)細(xì)胞凋亡最終發(fā)生梗死與核心區(qū)融合,加重功能損傷[13]。
臨床急性IS血流再通的臨床治療是通過(guò)靜脈注射組織纖溶酶原激活劑,然而該治療后血液再灌注會(huì)導(dǎo)致有害物質(zhì)活性氧(reactive oxygen species, ROS)產(chǎn)生,進(jìn)而產(chǎn)生氧化應(yīng)激,可導(dǎo)致腦細(xì)胞凋亡、自噬和壞死[14]。
2 運(yùn)動(dòng)療法干預(yù)缺血性腦卒中
運(yùn)動(dòng)療法又稱“體育療法”,是指通過(guò)開(kāi)具運(yùn)動(dòng)處方,對(duì)患者或亞健康人群制訂個(gè)體化的運(yùn)動(dòng)方案,進(jìn)行有目的、有計(jì)劃的個(gè)體運(yùn)動(dòng)訓(xùn)練,以促進(jìn)康復(fù)[15]。研究表明,患者通過(guò)運(yùn)動(dòng)緩解腦缺血病情的同時(shí)還可增強(qiáng)身體機(jī)能,提高日常生活能力和機(jī)體代謝、改善氧化應(yīng)激、降低血脂、抑制腫瘤細(xì)胞增殖等多方面的健康效應(yīng)[16-17]。
2.1 運(yùn)動(dòng)形式
IS后臨床主要采用的康復(fù)訓(xùn)練方式可分為2種:主動(dòng)運(yùn)動(dòng)和被動(dòng)運(yùn)動(dòng)。基礎(chǔ)動(dòng)物實(shí)驗(yàn)分為自主性主動(dòng)運(yùn)動(dòng)和強(qiáng)制性主動(dòng)運(yùn)動(dòng)。
2.1.1 主動(dòng)運(yùn)動(dòng)
IS后臨床采用的主動(dòng)運(yùn)動(dòng)方式包括:簡(jiǎn)單日常活動(dòng)(如吃飯、梳頭、穿脫衣物等)、呼吸肌訓(xùn)練[18]、上肢力量訓(xùn)練(如擰毛巾、抓握木棒)和下肢力量訓(xùn)練(如步行、上下樓梯、跨越障礙、負(fù)重等)。動(dòng)物實(shí)驗(yàn)?zāi)P褪蟛捎米灾髋茌営?xùn)練以及強(qiáng)制運(yùn)動(dòng)的跑臺(tái)和游泳。
2.1.2 被動(dòng)運(yùn)動(dòng)
臨床常見(jiàn)被動(dòng)運(yùn)動(dòng)療法有輔助肢體活動(dòng)(如抬舉四肢、環(huán)轉(zhuǎn)、按摩)、特定關(guān)節(jié)訓(xùn)練器[19]和等速運(yùn)動(dòng)測(cè)力與訓(xùn)練系統(tǒng)[20]進(jìn)行被動(dòng)運(yùn)動(dòng)。
實(shí)踐操作應(yīng)當(dāng)將主動(dòng)訓(xùn)練與被動(dòng)訓(xùn)練相結(jié)合。被動(dòng)訓(xùn)練常發(fā)生在IS患者急性期,當(dāng)患者肢體功能有一定恢復(fù)后方進(jìn)行主動(dòng)運(yùn)動(dòng)鍛煉。
2.2 促進(jìn)腦組織血液再灌注
血液正常循環(huán)在輸送氧氣和能源物質(zhì)的同時(shí)清除細(xì)胞代謝廢物,是大腦維持正常功能的基礎(chǔ)。腦缺血的發(fā)生主要是血管內(nèi)血栓的形成阻礙了血液的正常流通,腦組織能源物質(zhì)供應(yīng)不足,代謝產(chǎn)物堆積,產(chǎn)生細(xì)胞毒性,內(nèi)環(huán)境穩(wěn)態(tài)破壞,最終細(xì)胞凋亡,導(dǎo)致腦功能障礙[21]。
單次運(yùn)動(dòng)能夠引起心率加快,全身血液重新分配,循環(huán)血量增多,促進(jìn)血液循環(huán),腦血流量增大[22]。長(zhǎng)期來(lái)看,6個(gè)月的太極拳鍛煉后,參與試驗(yàn)的健康老年人血液循環(huán)功能均改善,體現(xiàn)在安靜狀態(tài)下平均每分心輸出量、每搏量和射血分?jǐn)?shù)顯著提升[23]。在卒中疾病相關(guān)的案例中,4周短期康復(fù)訓(xùn)練(包括床上練習(xí)和床下緩慢步行)治療后IS偏癱患者腦血流阻力減小,大腦前動(dòng)脈、中動(dòng)脈和后動(dòng)脈的平均血流速度提高[24]。動(dòng)物實(shí)驗(yàn)表明,4周的跑臺(tái)運(yùn)動(dòng)干預(yù)后血管性認(rèn)知障礙和癡呆模型小鼠腦血流量增大,紅細(xì)胞變形能力增強(qiáng),海馬和大腦皮層細(xì)胞死亡數(shù)量減少,認(rèn)知功能增強(qiáng)[25]。
2.3 調(diào)控細(xì)胞凋亡
研究表明,運(yùn)動(dòng)干預(yù)能夠減小腦缺血大鼠腦梗死面積,增加梗死周圍存活神經(jīng)細(xì)胞數(shù)量[26]。運(yùn)動(dòng)干預(yù)的神經(jīng)保護(hù)作用潛在的機(jī)制是通過(guò)調(diào)控肌因子的表達(dá)從而調(diào)節(jié)炎癥反應(yīng)、抑制ROS和細(xì)胞凋亡、促進(jìn)神經(jīng)再生、大腦結(jié)構(gòu)和功能重塑以及減少腦缺血后的組織損傷[27-28]。細(xì)胞凋亡主要有3種途徑:內(nèi)源性凋亡、外源性凋亡和內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡。3種途徑相互關(guān)聯(lián),互相影響[29]。
2.3.1 內(nèi)源性凋亡
內(nèi)源性細(xì)胞凋亡其作用主要發(fā)生在線粒體。因此,內(nèi)源性細(xì)胞凋亡又稱為線粒體凋亡。內(nèi)源性凋亡與B淋巴細(xì)胞瘤-2基因(B-cell lymphoma-2, Bcl-2)的表達(dá)產(chǎn)物Bcl-2家族蛋白密切關(guān)聯(lián)[30]。凋亡相關(guān)的Blc-2家族蛋白可分為抗凋亡蛋白Bcl-2和促凋亡蛋白Bax(Bcl-2 associated X protein, Bax)、Bak(Bcl-2 homologous antagonist killer, Bak)[31]。當(dāng)機(jī)體受到缺血刺激時(shí),腦組織的能源物質(zhì)轉(zhuǎn)運(yùn)受阻,能量供應(yīng)不足,ATP濃度下降,胞內(nèi)離子濃度梯度改變,引起細(xì)胞毒性,Ca2+大量積累觸發(fā)鈣蛋白酶的激活,鈣蛋白酶是Bcl-2重要底物,鈣蛋白酶把Bcl-2相互作用結(jié)構(gòu)域切割成短的活性形式(tBid),進(jìn)而與線粒體膜上的Bax和Bak發(fā)生作用,增大線粒體膜通透性,導(dǎo)致各種促凋亡因子釋放,包含細(xì)胞色素C(cytochrome C, Cyt C)和凋亡誘導(dǎo)因子(apoptosis inducing factor, AIF)[32-33]。Cyt C與凋亡酶激活因子(apoptotic protease activating factor-1, APAF-1)結(jié)合,其復(fù)合體能激活半胱天冬酶-9(Caspase 9),并進(jìn)一步激活下游的Caspase蛋白(如Caspase-3)形成凋亡通路[34]。AIF可從線粒體釋放并直接到達(dá)細(xì)胞核,激活水解細(xì)胞核DNA的核酸內(nèi)切酶,誘導(dǎo)細(xì)胞凋亡[35]。
適度的運(yùn)動(dòng)能夠增加抗凋亡蛋白Bcl-2表達(dá)水平,下調(diào)tBid、Bak和Bax,提高細(xì)胞抗凋亡能力[36]。8周有氧運(yùn)動(dòng)干預(yù)后,腦缺血模型大鼠Bcl-2的表達(dá)上升、Bax表達(dá)下降,最終使得凋亡水平降低[37]。Bcl-2蛋白可以通過(guò)抑制線粒體釋放Cyt C以及干擾死亡受體的反應(yīng)通路來(lái)抑制凋亡[38]。跑臺(tái)運(yùn)動(dòng)可調(diào)控Caspase-3、Bcl-2和Bax進(jìn)而減少神經(jīng)元細(xì)胞凋亡,提升衰老小鼠的學(xué)習(xí)記憶能力,機(jī)制可能通過(guò)下調(diào)蛋白質(zhì)折疊促進(jìn)因子(death domain-associated protein, DAXX)從而抑制凋亡信號(hào)調(diào)節(jié)激酶1(apoptosis signal regulating kinase-1, Ask1)和應(yīng)激活化蛋白激酶(c-Jun N-terminal kinase, JNK)通路,抑制下游凋亡相關(guān)因子表達(dá)[39]。腦缺血能夠引起Caspase-3在凋亡細(xì)胞中大量表達(dá),通過(guò)基因敲除或使用Caspase-3抑制劑能夠?qū)δX損傷產(chǎn)生明顯的保護(hù)效應(yīng)。缺血再灌注大鼠經(jīng)過(guò)6周游泳運(yùn)動(dòng)后Caspase-3陽(yáng)性表達(dá)率比對(duì)照組明顯下降,且游泳30 min與10 min無(wú)明顯差別[40]。
由此可見(jiàn),運(yùn)動(dòng)鍛煉可調(diào)控凋亡相關(guān)蛋白Bcl-2家族和Caspase-3,改善線粒體膜通透性,減少凋亡蛋白的釋放,抑制Caspase蛋白激活,促進(jìn)抗凋亡蛋白表達(dá),起到抑制凋亡,減輕神經(jīng)元損傷,改善IS的作用。
2.3.2 外源性凋亡
外源性凋亡又稱為壞死性凋亡,壞死性凋亡期間,腫瘤壞死因子(tumor necrosis factor, TNF)超家族(TNFSF)的成員可以通過(guò)與其細(xì)胞表面受體結(jié)合并激活導(dǎo)致外源性細(xì)胞凋亡的死亡信號(hào)級(jí)聯(lián)反應(yīng)來(lái)誘導(dǎo)細(xì)胞死亡[41]。壞死性凋亡依賴于受體相互作用的蛋白激酶(receptor-interacting protein kinase, RIPK)介導(dǎo)RIPK1、RIPK3和混合譜系激酶結(jié)構(gòu)域樣(mixed lineage kinase domain-like protein, MLKL)形成壞死體復(fù)合物[42],誘導(dǎo)TNF、TNF相關(guān)凋亡誘導(dǎo)配體(TNF-related apoptosisinducing ligand, TRAIL)一起啟動(dòng),通過(guò)FADD/TRADD接頭激活Caspase-8,再激活Caspase-3 或切割 Bid 以產(chǎn)生 tBid 并觸發(fā)內(nèi)在細(xì)胞凋亡[43]。
在腦缺血引起炎癥反應(yīng)的過(guò)程中,免疫細(xì)胞的激活也會(huì)通過(guò)外源性凋亡途徑釋放引發(fā)細(xì)胞凋亡的因子TNF和TRAIL[44]。血流恢復(fù)后的再灌注可能導(dǎo)致活性氧的爆發(fā),ROS可介導(dǎo)RIPK1自磷酸化,繼而促進(jìn)RIPK3依賴的外源性凋亡[45]。
運(yùn)動(dòng)能夠直接激活ROS酶,調(diào)節(jié)細(xì)胞氧化還原狀態(tài),進(jìn)而調(diào)控凋亡[46]。方子文[47]的研究表明RIPK1和RIPK3血清水平與IS后神經(jīng)功能缺損程度、梗死體積大小呈正相關(guān)關(guān)系。有研究指出,定期運(yùn)動(dòng)能提高人體抗炎效應(yīng),通過(guò)降低TNF表達(dá)來(lái)實(shí)現(xiàn),TNF表達(dá)減少,與RIPK1、RIPK3和MLKL的結(jié)合也減少,細(xì)胞凋亡減弱[48]。閆冬[49]對(duì)腦缺血再灌注大鼠進(jìn)行8周跑臺(tái)運(yùn)動(dòng)干預(yù)后,大鼠腦組織TNF-a和泛素連接酶(TNF receptor associated factor 6, TRAF6)表達(dá)下降。運(yùn)動(dòng)能減少Fas-配體蛋白、Fas-死亡受體、TNF-a受體、Fas相關(guān)死亡結(jié)構(gòu)域 FADD、Caspase-8和Caspase-3的表達(dá)[50]。
運(yùn)動(dòng)干預(yù)外源性細(xì)胞凋亡,通過(guò)調(diào)節(jié)細(xì)胞氧化還原狀態(tài)和RIPK及其下游因子TNF,減少壞死凋亡關(guān)鍵因子作用受體,有效抑制神經(jīng)細(xì)胞凋亡。
2.3.3 內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡
內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)指當(dāng)細(xì)胞受到缺氧、營(yíng)養(yǎng)物質(zhì)缺乏和氧化應(yīng)激等條件變化時(shí),產(chǎn)生的一系列應(yīng)激反應(yīng)。ERS發(fā)生后內(nèi)質(zhì)網(wǎng)腔內(nèi)蛋白質(zhì)未折疊和錯(cuò)誤折疊增多,進(jìn)而激活未折疊蛋白質(zhì)反應(yīng)(unfolded protein response, UPR)以應(yīng)對(duì)外部環(huán)境變化[51]。ERS最初是為減少內(nèi)質(zhì)網(wǎng)應(yīng)激損傷,但隨著應(yīng)激時(shí)間過(guò)長(zhǎng)會(huì)導(dǎo)致細(xì)胞由抗凋亡向促凋亡轉(zhuǎn)換[52]。UPR激活能夠觸發(fā)肌醇需求酶1(inositol-requiring enzyme 1, IRE1)、轉(zhuǎn)錄激活因子(activating transcription factor, ATF)-6(ATF6)和蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase R-like endoplasmic reticulum kinase, PERK),開(kāi)始一連串糾錯(cuò)行動(dòng),緩解ERS。
PERK激活后,真核起始因子2a(eukaryotic initiation factor 2a, eIF2a)發(fā)生磷酸化導(dǎo)致翻譯過(guò)程受到抑制,減少了新蛋白質(zhì)的合成,ATF4激活,誘導(dǎo)轉(zhuǎn)錄因子C/EBP同源蛋白CHOP的表達(dá)[53],這一系列反應(yīng)構(gòu)成了PERK-eIF2α-ATF4凋亡通路。IRE1和CHOP是UPR誘導(dǎo)細(xì)胞凋亡的兩個(gè)主要途徑,能調(diào)控 Bcl-2 家族蛋白表達(dá)和活性,進(jìn)而激活JNK,JNK可以提高BCL-2相關(guān)的細(xì)胞死亡激動(dòng)因子(Bcl-2 associated death promoter,Bad)表達(dá)來(lái)抑制Bcl-2促使細(xì)胞凋亡[54]。IRE1的亞型IRE1α可與TRAF2形成復(fù)合物,激活Caspase-12,還可結(jié)合Bak和Bax,激活線粒體凋亡途徑[55]。此外,IRE1a也可以誘導(dǎo)ROS,引起凋亡[56]。游離的ATF6被激活后轉(zhuǎn)移至高爾基體進(jìn)行裂解,胞內(nèi)片段遷移至細(xì)胞核活化并與轉(zhuǎn)錄因子形成復(fù)合體,促進(jìn)CHOP表達(dá),誘發(fā)凋亡,緩解ERS[57]。
低強(qiáng)度和高強(qiáng)度的跑臺(tái)運(yùn)動(dòng)都能夠改善MCAO大鼠腦梗死體積、神經(jīng)系統(tǒng)缺陷、腦水腫和細(xì)胞凋亡,腦組織中內(nèi)質(zhì)網(wǎng)應(yīng)激標(biāo)志物葡萄糖調(diào)節(jié)蛋白78(GRP78)、IRE1a、ATF6、CHOP和Caspase-12的表達(dá)下降,長(zhǎng)期和輕度的運(yùn)動(dòng)有更好的抗細(xì)胞凋亡效果[58]。余政澤[59]將心肌缺血再灌注損傷模型小鼠進(jìn)行8周的跑臺(tái)運(yùn)動(dòng)預(yù)適應(yīng)后,模型組小鼠內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)標(biāo)志物ATF6和IRE1α以及促凋亡的Bax、Caspase-3表達(dá)水平下降,抗凋亡的Bcl-2表達(dá)水平升高,抑制內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的細(xì)胞凋亡,心肌缺血損傷減輕。3個(gè)月的跑臺(tái)運(yùn)動(dòng)改善AD模型小鼠癥狀,通過(guò)抑制PERK、eIF4α和ATF4的激活,預(yù)防小鼠UPR信號(hào)轉(zhuǎn)導(dǎo)的過(guò)度激活,減少細(xì)胞凋亡[60]。5周的高強(qiáng)度運(yùn)動(dòng)內(nèi)質(zhì)網(wǎng)應(yīng)激和凋亡信號(hào)減少,骨骼肌ATF4和CHOP水平顯著降低,而低強(qiáng)度和高強(qiáng)度組PERK磷酸化水平?jīng)]有顯著變化[61]。跑臺(tái)運(yùn)動(dòng)能夠抑制細(xì)胞凋亡主要是抑制PERK過(guò)度激活進(jìn)而提高細(xì)胞自噬活性,從而減少小鼠腦內(nèi)錯(cuò)誤折疊蛋白質(zhì)的生成和聚集,減輕UPR翻譯,抑制細(xì)胞凋亡[62]。綜上,運(yùn)動(dòng)影響ERS主要通過(guò)調(diào)控IRE1、PERK和ATF6介導(dǎo)的相關(guān)途徑來(lái)調(diào)控細(xì)胞凋亡,減輕UPR以恢復(fù)內(nèi)質(zhì)網(wǎng)功能和蛋白質(zhì)折疊從而維持細(xì)胞的正常生理功能。
3 結(jié)論
本文對(duì)運(yùn)動(dòng)調(diào)控IS后神經(jīng)細(xì)胞凋亡的相關(guān)研究進(jìn)行了綜述,探討了運(yùn)動(dòng)療法在該領(lǐng)域的新進(jìn)展,運(yùn)動(dòng)能夠調(diào)控腦組織血液循環(huán),通過(guò)內(nèi)源性凋亡、外源性凋亡和內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡三種途徑,減少神經(jīng)細(xì)胞凋亡途徑相關(guān)炎癥因子和促凋亡因子蛋白表達(dá),增加抗凋亡因子蛋白表達(dá),緩解凋亡,提高神經(jīng)細(xì)胞生存能力,改善神經(jīng)與肢體功能。現(xiàn)有研究多聚焦于線粒體凋亡途徑,外源性凋亡和內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡的運(yùn)動(dòng)干預(yù)作用研究較少。此外,今后需要進(jìn)一步研究運(yùn)動(dòng)療法作用于這些途徑的具體機(jī)制以及各途徑之間的關(guān)聯(lián),探究不同運(yùn)動(dòng)強(qiáng)度、時(shí)間和運(yùn)動(dòng)項(xiàng)目對(duì)IS細(xì)胞凋亡的影響,明確運(yùn)動(dòng)干預(yù)的最佳參數(shù)。
參考文獻(xiàn)
[1] Kuypers FA. Hyperinflammation, apoptosis, and organ damage[J]. Exp Biol Med (Maywood), 2022, 247(13): 1112-1123.
[2] Wang Q, Yang F, Duo K, et al. The role of necroptosis in cerebral ischemic stroke[J/OL]. Mol Neurobiol, 2023 Dec 1[2024-02-19]. https://doi.org/10.1007/s12035-023-03728-7.
[3] 梅小平, 翟陽(yáng), 王凱華, 等. 壯藥雙路通腦方對(duì)缺血-再灌注腦損傷大鼠神經(jīng)元自噬和凋亡的影響[J]. 醫(yī)藥導(dǎo)報(bào), 2023, 42(6): 781-789.
[4] Ermine CM, Bivard A, Parsons MW, et al. The ischemic penumbra: from concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509.
[5] 劉曉敏, 張雅素, 李新民, 等. 有氧運(yùn)動(dòng)對(duì)腦卒中后抑郁海馬蛋白的影響及相關(guān)蛋白組學(xué)研究進(jìn)展[J]. 中國(guó)老年學(xué)雜志, 2023, 43(5): 1239-1242.
[6] Wang Q, Wills M, Han Z, et al. Mini review (partⅠ): an experimental concept on exercise and ischemic conditioning in stroke rehabilitation[J]. Brain Circ, 2020, 6(4): 242-247.
[7] Maida CD, Norrito RL, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches[J]. Int J Mol Sci, 2020, 21(18): 6454.
[8] 馮亞碩, 吳毅, 王念宏. 針刺影響細(xì)胞程序性死亡治療缺血性腦卒中的研究進(jìn)展[J]. 針刺研究, 2023, 48(7): 713-717.
[9] Hossmann KA. Viability thresholds and the penumbra of focal ischemia[J]. Ann Neurol, 1994, 36(4): 557-565.
[10] Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J]. Med Res Rev, 2022, 42(1): 259-305.
[11] Radak D, Katsiki N, Resanovic I, et al. Apoptosis and acute brain ischemia in ischemic stroke[J]. Curr Vasc Pharmacol, 2017, 15(2): 115-122.
[12] Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives[J]. Lancet Neurol, 2023, 22(5): 418-429.
[13] Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia[J]. Stroke, 2009, 40(5), e331-e339.
[14] Orellana-Urzúa S, Rojas I, Líbano L, et al. Pathophysiology of ischemic stroke: role of oxidative stress[J]. Curr Pharm Des, 2020, 26(34): 4246-4260.
[15] 馮思嘉, 高寒, 陳俊, 等. 運(yùn)動(dòng)療法在運(yùn)動(dòng)系統(tǒng)相關(guān)疾病治療中的應(yīng)用[J]. 中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志, 2023, 42(1): 74-79.
[16] Lee KE, Choi M, Jeoung B. Effectiveness of rehabilitation exercise in improving physical function of stroke patients: a systematic review[J]. Int J Environ Res Public Health, 2022, 19(19): 12739.
[17] 江宇, 季鐵成, 王長(zhǎng)帥, 等. 運(yùn)動(dòng)療法防治癌癥的作用及相關(guān)分子機(jī)制[J]. 中國(guó)免疫學(xué)雜志, 2024, 40(1): 208-212; 219.
[18] 王曉蕾, 蘇劍清, 汪伍, 等. 呼吸肌訓(xùn)練改善腦卒中病人軀干穩(wěn)定性的應(yīng)用進(jìn)展[J]. 實(shí)用老年醫(yī)學(xué), 2023, 37(7): 728-731.
[19] 朱琳, 常冬梅, 王亞囡, 等. 簡(jiǎn)易膝關(guān)節(jié)訓(xùn)練器對(duì)腦卒中偏癱患者膝關(guān)節(jié)屈曲主動(dòng)運(yùn)動(dòng)的療效[J]. 中國(guó)康復(fù)理論與實(shí)踐, 2022, 28(3): 356-360.
[20] 郭京偉, 葛瑞東, 白碩, 等. 等速被動(dòng)運(yùn)動(dòng)模式下腦卒中患者下肢痙攣肌群表面肌電信號(hào)的特征[J]. 中國(guó)康復(fù)理論與實(shí)踐, 2022, 28(12): 1473-1477.
[21] Patabendige A, Singh A, Jenkins S, et al. Astrocyte activation in neurovascular damage and repair following ischaemic stroke[J]. Int J Mol Sci, 2021, 22(8): 4280.
[22] Triantafyllou GA, Dipla K, Triantafyllou A, et al. Measurement and changes in cerebral oxygenation and blood flow at rest and during exercise in normotensive and hypertensive individuals[J]. Curr Hypertens Rep, 2020, 22(9): 71.
[23] 宋清華. 太極拳運(yùn)動(dòng)對(duì)老年人呼吸及心腦血液循環(huán)功能的影響[J]. 中國(guó)老年學(xué)雜志, 2014, 34(24): 7074-7075.
[24] 王雪, 胡志高, 戴春花, 等. 針灸及功能鍛煉對(duì)腦中風(fēng)癱瘓恢復(fù)期療效及腦血流、功能恢復(fù)的影響[J]. 中華中醫(yī)藥學(xué)刊, 2019, 37(11): 2588-2591.
[25] Khan MB, Alam H, Siddiqui S, et al. Exercise improves cerebral blood flow and functional outcomes in an experimental mouse model of vascular cognitive impairment and dementia (VCID)[J]. Transl Stroke Res, 2024, 15(2): 446-461.
[26] Pianta S, Lee JY, Tuazon JP, et al. A short bout of exercise prior to stroke improves functional outcomes by enhancing angiogenesis[J]. N Neuromolecular Med, 2019, 21(4): 517-528.
[27] Huang QR, Wu ML, Wu XY, et al. Muscle-to-tumor crosstalk: the effect of exercise-induced myokine on cancer progression[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188761.
[28] Hafez S, Eid Z, Alabasi S, et al. Mechanisms of preconditioning exercise-induced neurovascular protection in stroke[J]. J Stroke, 2021, 23(3): 312-326.
[29] D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
[30] Pe?a-Blanco A, García-Sáez AJ. Bax, Bak and beyond— mitochondrial performance in apoptosis[J]. FEBS J, 2018, 285(3): 416-431.
[31] Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease[J]. EMBO J, 2021, 40(14): e107341.
[32] Leng T, Shi YJ, Xiong ZG, et al. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?[J]. Prog Neurobiol, 2014, 115: 189-209.
[33] Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-193.
[34] Santucci R, Sinibaldi F, Cozza P, et al. Cytochrome C: an extreme multifunctional protein with a key role in cell fate[J]. Int J Biol Macromol, 2019, 136: 1237-1246.
[35] Zong L, Liang Z. Apoptosis-inducing factor: a mitochondrial protein associated with metabolic diseases—a narrative review[J]. Cardiovasc Diagn Ther, 2023, 13(3): 609-622.
[36] Akbar AY, Cui ZY, Hsu CJ, et al. Anti-apoptotic and antifibrotic efficacy of exercise training in hypertensive hearts: a systematic review[J]. Front Cardiovasc Med, 2023, 10: 1138705.
[37] 褚晶晶. 有氧運(yùn)動(dòng)通過(guò)外泌體介導(dǎo)的miR-19b對(duì)腦缺血再灌注損傷細(xì)胞凋亡的影響[D]. 成都: 成都體育學(xué)院, 2021.
[38] 彭靜華, 張育德, 張鴻日, 等. 過(guò)表達(dá)BCL-2對(duì)急性腦梗死大鼠神經(jīng)細(xì)胞凋亡及相關(guān)基因的影響[J]. 河南科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2017, 35(2): 85-87; 91.
[39] 方炫鴻. DAXX-ASK1-JNK通路在運(yùn)動(dòng)調(diào)控衰老小鼠海馬神經(jīng)元細(xì)胞凋亡中的作用研究[D]. 成都: 成都體育學(xué)院, 2023.
[40] 鐘衛(wèi)權(quán). 不同負(fù)荷游泳訓(xùn)練對(duì)腦缺血再灌注大鼠Caspase-3和IL-1的表達(dá)影響[J]. 中國(guó)康復(fù)理論與實(shí)踐, 2009, 15(10): 928-930.
[41] Kist M, Vucic D. Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40(5): e106700.
[42] Galluzzi L, Kepp O, Krautwald S, et al. Molecular mechanisms of regulated necrosis[J]. Semin Cell Dev Biol, 2014, 35: 24-32.
[43] Duan HXY, Zhang Q, Liu J, et al. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis[J]. Pharmacol Res, 2021, 168: 105599.
[44] Burgaletto C, Munafò A, Di Benedetto G, et al. The immune system on the TRAIL of Alzheimer’s disease[J]. J Neuroinflammation, 2020, 17(1): 298.
[45] Zhang YY, Su SS, Zhao SB, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome[J]. Nat Commun, 2017, 8: 14329.
[46] Radak Z, Suzuki K, Higuchi M, et al. Physical exercise, reactive oxygen species and neuroprotection[J]. Free Radic Biol Med, 2016, 98: 187-196.
[47] 方子文. 急性缺血性腦卒中患者血清RIPK1、RIPK3水平與病情嚴(yán)重程度及預(yù)后的相關(guān)性研究[D]. 百色: 右江民族醫(yī)學(xué)院, 2023.
[48] Paolucci EM, Loukov D, Bowdish DME, et al. Exercise reduces depression and inflammation but intensity matters[J]. Biol Psychol, 2018, 133: 79-84.
[49] 閆冬. 運(yùn)動(dòng)預(yù)處理通過(guò)外泌體介導(dǎo)miR146a對(duì)腦缺血再灌注大鼠炎癥因子的影響[D]. 成都: 成都體育學(xué)院, 2021.
[50] Pahlavani HA. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes[J]. Front Cell Dev Biol, 2022, 10: 950927.
[51] Zhang J, Guo JF, Yang NN, et al. Endoplasmic reticulum stress-mediated cell death in liver injury[J]. Cell Death Dis, 2022, 13(12): 1051.
[52] Hetz C, Zhang KZ, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. N Nat Rev Mol Cell Biol, 2020, 21(8): 421-438.
[53] Cui HX, Zhang SJ, Wu ZX, et al. Insulin-like growth factor-1 reduces hyperoxia-induced lung inflammation and oxidative stress and inhibits cell apoptosis through PERK/eIF2/ATF4/ CHOP signaling[J]. Exp Lung Res, 2022, 48(4-6): 187-197.
[54] Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress[J]. Nat Cell Biol, 2011, 13(3): 184-190.
[55] Huang RX, Hui Z, Wei S, et al. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis[J]. J Cell Physiol, 2022, 237(1): 118-127.
[56] Chen XY, Shi CR, He MH, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 352.
[57] 馮登峰. PERK/eIF2/ATF4通路在腦出血繼發(fā)性腦損傷中介導(dǎo)神經(jīng)元壞死性凋亡的機(jī)制研究[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2023.
[58] Li F, Geng X, Lee H, et al. Neuroprotective effects of exercise postconditioning after stroke via SIRT1-mediated suppression of endoplasmic reticulum (ER) stress[J]. Front Cell Neurosci, 2021, 15: 598230.
[59] 余政澤. 內(nèi)質(zhì)網(wǎng)應(yīng)激ATF6和IRE1-XBP1信號(hào)通路在運(yùn)動(dòng)預(yù)適應(yīng)心肌保護(hù)中的作用研究[D]. 桂林: 廣西師范大學(xué), 2023.
[60] Xia J, Li BX, Yin LY, et al. Treadmill exercise decreases amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response[J]. Neurosci Lett, 2019, 703: 125-131.
[61] Kim K, Kim YH, Lee SH, et al. Effect of exercise intensity on unfolded protein response in skeletal muscle of rat[J]. Korean J Physiol Pharmacol, 2014, 18(3): 211-216.
[62] 夏杰, 趙娜, 王璟, 等. 有氧運(yùn)動(dòng)對(duì)APP/PS1小鼠海馬內(nèi)質(zhì)網(wǎng)應(yīng)激-細(xì)胞自噬偶聯(lián)的影響[J]. 體育科學(xué), 2022, 42(8): 55-65.