999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Laguerre多項(xiàng)式求解分?jǐn)?shù)階Volterra-Fredholm積分-微分方程

2024-11-21 00:00:00李曉潔,陳豫眉

摘要:為求分?jǐn)?shù)階積分-微分方程的近似解,提出了一種基于Laguerre多項(xiàng)式求解分?jǐn)?shù)階Volterra-Fredholm積分-微分方程的近似方法.首先,在Caputo分?jǐn)?shù)階導(dǎo)數(shù)意義下,將分?jǐn)?shù)階積分-微分方程轉(zhuǎn)化為L(zhǎng)aguerre多項(xiàng)式空間上的矩陣形式.然后,利用配置點(diǎn)得到矩陣方程組來進(jìn)行求解.最后,通過數(shù)值算例驗(yàn)證了該方法的有效性和準(zhǔn)確性.該方法與Bernoulli小波法相比更簡(jiǎn)單精確.

關(guān)鍵詞:Laguerre多項(xiàng)式;Caputo分?jǐn)?shù)階導(dǎo)數(shù);分?jǐn)?shù)階Volterra-Fredholm積分-微分方程;矩陣方程

中圖分類號(hào):O241.82文獻(xiàn)標(biāo)志碼:A

Solving Fractional Volterra-Fredholm Integro-differential Equations with Laguerre Polynomials

LI Xiaojie1, CHEN Yumei 2

(1. College of Mathematics and Information, China West Normal University, Nanchong 637009, China2. College of Mathematics Education, China West Normal University, Nanchong 637009, China)

Abstract: In order to find approximate solutions to fractional integro-differential equations, an approximate method for solving fractional Volterra-Fredholm integro-differential equations based on Laguerre polynomials is proposed. Firstly, in the sense of Caputo fractional derivatives, the fractional integro-differential equations are converted into matrix form on Laguerre polynomial space. Then, the matrix equations are obtained by using the collocation points for solution. Finally, the effectiveness and accuracy of this method are verified through numerical examples. This method is simpler and more accurate than the Bernoulli wavelet method.

Key words: Laguerre polynomials; Caputo fractional derivatives; fractional Volterra-Fredholm integro-differential equation; matrix equation

分?jǐn)?shù)階積分-微分方程在物理學(xué)[1]、工程學(xué)[2]、力學(xué)[3]、金融[4-5]等方面有許多應(yīng)用.隨著科學(xué)技術(shù)的發(fā)展,分?jǐn)?shù)階積分-微分方程在各領(lǐng)域的應(yīng)用越發(fā)廣泛,求解分?jǐn)?shù)階積分-微分方程也變得越來越重要,其近似方法包括Adomian分解法[6-8]、同倫攝動(dòng)法[9-10]、配置法[11-12]、小波法[13-15]、Tau近似方法[16]、有限差分法[17]等.

分?jǐn)?shù)階Volterra-Fredholm積分-微分方程作為分?jǐn)?shù)階中比較重要的方程,被越來越多的人關(guān)注.Alkan[18]等提出用sinc配置法求解一類分?jǐn)?shù)階Volterra-Fredholm積分-微分方程,Dehestani等[19]提出一種求解具有比例延遲的分?jǐn)?shù)階Fredholm-Volterra泛函積分-微分方程的數(shù)值方法,Loh等[20]利用Genocchi多項(xiàng)式求解分?jǐn)?shù)階Volterra-Fredholm積分-微分方程.

Laguerre多項(xiàng)式也被用于近似求解分?jǐn)?shù)階積分-微分方程,如Shwayyea等[21]提出用最小二乘法和移位的Laguerre多項(xiàng)式偽譜法求解線性分?jǐn)?shù)階積分-微分方程,Bayram等[22-23]基于Laguerre多項(xiàng)式求解分?jǐn)?shù)階Volterra積分-微分方程和分?jǐn)?shù)階Fredholm積分-微分方程.

本文基于Laguerre多項(xiàng)式求解如下的分?jǐn)?shù)階Volterra-Fredholm積分-微分方程

Dαy(x)=z(x)y(x)+λ1∫x0K1(x,t)y(t)dt+λ2∫10K2(x,t)y(t)dt+g(x),n-1lt;α≤n,n∈N (1)

初始條件為

y(j)(0)=dj, j=0,1,…,n-1.(2)

其中K1(x,t),K2(x,t),z(x),g(x)為已知函數(shù),y(x)為未知函數(shù),Dα為Caputo分?jǐn)?shù)階微分算子.

1預(yù)備知識(shí)

1.1Caputo分?jǐn)?shù)階導(dǎo)數(shù)

定義1.1[24] α階的Caputo分?jǐn)?shù)階微分算子Dα被定義為

Dαf(x)=1Γ(n-α)∫x0f(n)(t)(x-t)α+1-ndt,αgt;0,n-1lt;αlt;n,n∈N.

Caputo導(dǎo)數(shù)有以下性質(zhì)[25]

DαC=0, (C是常數(shù))

Dαxβ=0, β∈N,βlt;「α.Γ(β+1)Γ(β+1-α)xβ-α, β∈N,β≥「α.(3)

其中「α為ceiling函數(shù),表示大于等于α的最小整數(shù).

Dα是一個(gè)線性算子[26],即

Dα(λf(x)+μg(x))=λDαf(x)+μDαg(x),(4)

其中λ,μ是常數(shù).

1.2Laguerre多項(xiàng)式

i階的Laguerre多項(xiàng)式Li(x)定義為[27]

Li(x)=∑ik=0(-1)ki!(i-k)!(k!)2 xk.(5)

函數(shù)y(x)用Laguerre多項(xiàng)式表示為

y(x)=∑ SymboleB@

i=0aiLi(x).

函數(shù)y(x)的N次近似Laguerre多項(xiàng)式y(tǒng)N為

y(x)yN(x)=∑Ni=0aiLi(x)=L(x)A,(6)

其中L(x)=[L0(x),L1(x),…,LN(x)]和A=[a0,a1,…,aN]T分別表示Laguerre向量和Laguerre系數(shù)向量.

函數(shù)xk的Laguerre級(jí)數(shù)為[28]

xk=k!∑kj=0(-1)jkjLj(x),0lt;xlt; SymboleB@

,k=0,1,…(7)

L(x)的整數(shù)階導(dǎo)數(shù)滿足[29]

L(i)(x)=L(x)(MT)i,i=0,1,…(8)

其中

M=000…00-100…00-1-10…00-100…00-1-1-1…-10或M=[mp,q], mp,q=-1,pgt;q0,p≤q, p,q=0,1,…,N.

2問題求解

定理2.1設(shè)L(x)為L(zhǎng)aguerre向量,則L(x)的Caputo分?jǐn)?shù)階導(dǎo)數(shù)滿足:

DαL(x)=x-αL(x)Sα,

其中Sα為N+1維方陣

Sα=0S1,110S1,2+20S2,210S1,3+20S2,3+30S3,3…∑Nk=1k0Sk,N0-S1,1-11S1,2+21S2,2-11S1,3+21S2,3+31S3,3…-∑Nk=1k1Sk,N0022S2,222S2,3+32S3,3…∑Nk=1k2Sk,N000-33S3,3…-∑Nk=1k3Sk,N0000…(-1)NNNSN,N

方陣中Sk,i項(xiàng)定義如下

Sk,i=(-1)kk!Γ(k+1-α)ik,「α≤k≤i,0,其它.

證明:使用式(4)和式(5)得到Li(x)的Caputo分?jǐn)?shù)階導(dǎo)數(shù)

DαLi(x)=Dα∑ik=0(-1)ki!(i-k)!(k!)2xk

=∑ik=0(-1)ki!(i-k)k(k!)2Dα(xk).(9)

將式(3)和式(7)代入式(9)可知:當(dāng)ilt;「α?xí)r,有

DαLi(x)=0.

當(dāng)i=「α,「α+1,…,N時(shí),有

DαLi(x)=x-α∑ik=「α∑kj=0(-1)jkjSk,iLj(x),

其中Sk,i=(-1)kk!Γ(k+1-α)ik.

從而

DαL(x)=[DαL0(x),DαL1(x),…,DαLN(x)]=x-αL(x)Sα.

按以下步驟推導(dǎo)分?jǐn)?shù)階方程(1)和初始條件(2)的離散格式,并求解.

第一步:將方程(1)的微分部分用Laguerre多項(xiàng)式近似為矩陣形式.

利用式(6)和定理2.1將方程(1)的微分部分近似為如下矩陣形式

Dαy(x)DαL(x)A=x-αL(x)SαA.(10)

第二步:將初始條件式(2)近似為矩陣形式.

由式(6)和式(8)可得

yj(0)=L(0)(MT)jA=dj, j=0,1,…,n-1.

記Uj=L(0)(MT)j,則初始條件(2)轉(zhuǎn)化為如下矩陣形式

UjA=dj, j=0,1,…,n-1.

第三步:矩陣方程求解.

將式(6)和式(10)代入方程(1),得

x-αL(x)SαA=z(x)L(x)A+λ1∫x0K1(x,t)L(t)Adt+λ2∫10K2(x,t)L(t)Adt+g(x)(11)

將配置點(diǎn)xs(s=0,1,…,N)代入式(11),即

x-αsL(xs)SαA=z(xs)L(xs)A+λ1∫xs0K1(xs,t)L(t)Adt+λ2∫10K2(xs,t)L(t)Adt+g(xs)(12)

記v1(xs)=λ1∫xs0K1(xs,t)L(t)dt,v2(xs)=λ2∫10K2(xs,t)L(t)dt,則式(12)為

{XαLSα-ZL-λ1V1-λ2V2}A=G(13)

滿足

Xα=x-α00…00x-α1…000…x-αN,Z=z(x0)0…00z(x1)…000…z(xN),L=L(x0)L(x1)L(xN),

V1=v1(x0)v1(x1)v1(xN),V2=v2(x0)v2(x1)v2(xN), G=g(x0)g(x1)g(xN).

將式(13)記為WA=G,將n行增廣矩陣[Uj;dj]疊加到n行增廣矩陣[W;G]中得到新的矩陣形式[W~;G~],解此矩陣方程得未知Laguerre系數(shù)a0,a1,…,aN,從而由式(6)得在初始條件(2)下方程(1)的近似解yN.

3數(shù)值算例

本文給出數(shù)值算例來驗(yàn)證方法的有效性和準(zhǔn)確性,并使用Matlab 2016a進(jìn)行編碼實(shí)現(xiàn).絕對(duì)誤差e(xs)=|y(xs)-yN(xs)|,配置點(diǎn)xs=[1-cos(s+1N+1)]/2,s=0,1,…,N.

例1考慮如下的分?jǐn)?shù)階奇異積分-微分方程[30]

D1/4y(x)=13∫x0y(t)(x-t)1/2dt+15∫10(x2+t2)y(t)dt+g(x),

初始條件y(0)=0,其中

g(x)=Γ(22/3)Γ(85/12)x73/12+Γ(17/2)Γ(33/4)x29/4-πΓ(22/3)3Γ(47/6)x41/6-πΓ(17/2)3Γ(9)x8-19374x2-17420 .

精確解y(x)=x19/3+x15/2.

該問題可轉(zhuǎn)化為如下矩陣方程

X1/4LS1/4-13V1-15V2A=G,U0A=0.

當(dāng)N=6時(shí),配置點(diǎn)為

x0=0.049 5,x1=0.188 3,x2=0.388 7,x3=0.611 3,x4=0.811 7,x5=0.950 5,x6=1.000 0.

其中主要矩陣滿足

X1/4=0.105 000000000.285 800000000.492 300000000.691 300000000.855 200000000.962 600000001.000 0,

S1/4=0-1.088 1-1.554 4-1.851 1-2.068 7-2.240 5-2.382 500-0.621 8-0.960 9-1.198 3-1.381 5-1.530 9000-0.452 2-0.723 5-0.923 4-1.082 80000-0.361 7-0.590 2-0.764 100000-0.304 6-0.503 3000000-0.264 90000000,

V1=0.445 00.430 40.416 00.401 80.388 00.374 50.361 20.867 80.758 90.658 20.565 20.479 60.400 90.328 81.247 00.923 80.650 90.422 70.234 00.080 2-0.042 91.563 70.926 50.445 10.092 2-0.155 5-0.318 4-0.413 81.801 90.826 80.168 3-0.247 0-0.479 4-0.577 6-0.581 01.949 90.714 3-0.051 5-0.475 1-0.657 2-0.676 0-0.591 62.000 00.666 7-0.133 3-0.552 4-0.709 0-0.694 0-0.575 7,

V2=0.335 80.084 6-0.066 3-0.144 5-0.172 2-0.166 2-0.139 60.368 80.101 1-0.060 8-0.145 9-0.177 4-0.173 2-0.146 70.484 50.158 9-0.041 5-0.150 7-0.195 8-0.197 4-0.171 70.707 00.270 2-0.004 4-0.160 0-0.231 0-0.244 1-0.219 90.992 30.412 80.043 2-0.171 9-0.276 2-0.303 9-0.281 71.236 80.535 00.083 9-0.182 1-0.314 9-0.355 2-0.334 61.333 30.583 30.100 0-0.186 1-0.330 2-0.375 4-0.355 5,

U0=1111111.

通過求解該矩陣方程得到未知系數(shù),再將未知系數(shù)代入式(6)得到方程的近似解yN.同理,可求得N取不同值時(shí)的主要矩陣形式.

表1給出了N取不同值時(shí)Laguerre多項(xiàng)式法的絕對(duì)誤差.圖1給出了N取不同值時(shí)精確解與Laguerre多項(xiàng)式法的數(shù)值解的比較圖.

由表1可知,在自變量x取不同值時(shí),算例的絕對(duì)誤差隨著N值的增大而減小.由圖1可知當(dāng)自變量x取不同值時(shí)數(shù)值解y(x)無限接近于精確解,說明本文方法的精確性.

例2考慮下列分?jǐn)?shù)階Fredholm-Volterra積分-微分方程[31]

D1.7y(x)=g(x)+∫x0(x-t)y(t)dt+∫10(x+t)y(t)dt,

初始條件y(0)=0,y′(0)=0.其中

g(x)=Γ(3)Γ(1.3)x0.3+Γ(4)Γ(2.3)x1.3-x412-x520-7x12-920 .

精確解y(x)=x2+x3.

該問題可轉(zhuǎn)化為以下矩陣方程

{X1.7LS1.7-V1-V2}A=G,U0A=0,U1A=0.

當(dāng)N取不同值時(shí),本文方法與Bernoulli小波法[31]的絕對(duì)誤差比較見表2,結(jié)果表明本文方法有更高的精度.

圖2表示自變量x取不同值時(shí),例2分?jǐn)?shù)階Volterra-Fredholm積分-微分方程的精確解與不同N值下本文方法得到的數(shù)值解和Bernoulli小波法[31]得到的數(shù)值解的比較圖.通過比較可知本文方法更無限接近于精確解,說明本文方法優(yōu)于Bernoulli小波法.

4結(jié)語

鑒于多數(shù)分?jǐn)?shù)階積分-微分方程的解析解難以得到,并且其解析解大多都是非顯式的,文中基于Laguerre多項(xiàng)式,使用配置點(diǎn)將分?jǐn)?shù)階Volterra-Fredholm積分-微分方程轉(zhuǎn)化為矩陣方程,求解矩陣方程得到未知系數(shù),進(jìn)而得到方程的近似解.該方法與Bernoulli小波法相比更精確有效且簡(jiǎn)單.

[參考文獻(xiàn)]

[1]HILFRE R.Applications of fractional calculus in physics[M].Singapore:World Scientific,2000:1-472.

[2]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier,2006:1-523.

[3]MERAL F C,ROYSTON T J,MAGIN R.Fractional calculus in viscoelasticity:an experimental study[J].Communications in nonlinear science and numerical simulation,2010,15(4):939-945.

[4]BERTIN K,TORRES S,TUDOR C A.Drift parameter estimation in fractional diffusions driven by perturbed random walks[J].Statistics amp; probability letters,2011,81(2):243-249.

[5]ZOZULYA V V,GONZALEZ-CHI P I.Weakly singular,singular and hypersingular integrals in 3-D elasticity and fracture mechanics[J].Journal of the Chinese Institute of Engineers,1999,22(6):763-775.

[6]MOMANI S,NOOR M A.Numerical methods for fourth-order fractional integro-differential equation[J].Applied Mathematics and Computation,2006,182(1):754-760.

[7]MITTAL R C,NIGAM R.Solution of fractional integro-differential equations by Adomian decomposition method[J].International Journal of Applied Mathematics and Mechanics,2008,4(2):87-94.

[8]WANG Q.Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method[J].Applied Mathematics and Computation,2006,182(2):1048-1055.

[9]SAYEVAND K,F(xiàn)ARDI M,MORADI E,et al.Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order[J].Alexandria Engineering Journal,2013,52(4):807-812.

[10]DAS P,RANA S,RAMOS H.Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations[J].Computational and Mathematical Methods,2019,1(5):1-9.

[11]RAWASHDEH E A,Numerical solution of fractional integro-differential equations by collocation method[J].Applied Mathematics and Computation,2006,176(1):1-6.

[12]SAADATMANDI A,DEHGHAN M A Legendre collocation method for fractional integro-differential eauatiion[J].Journal of Vibration and Control,2011,17(13):2050-2058.

[13]MENG Z,WANG L,LI H,et al.Legendre wavelets method for solving fractional integro-differential equations[J].International Journal of Computer Mathematics,2015,92(6):1275-1291.

[14]閆冰,王立峰,任俊華,等.Legendre小波法求解分?jǐn)?shù)階Bratu型積分微分方程[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,33(3):413-416.

[15]MALEKNEJAD K,SAHLAN M N,OSTADI A,Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets[C].London:In Proceedings of the World Congress on Engineering,2013:1-6.

[16]VANANI S K,AMINATAEI A,Operational Tau approximation for a general class of fractional integro-differertial equations[J].Computational amp; Applied Mathematics,2011,30(3):655-674.

[17]李瑞.泊松方程的廣義有限差分方法[J].西安文理學(xué)院學(xué)報(bào)(自然科學(xué)版),2022,25(2):1-4.

[18]ALKAN S,HATIPOGLU V F.Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order[J].Tbilisi Mathematical Journal,2017,10(2):1-13.

[19]DEHESTANI H,ORDOKHANI Y,RAZZAGHI M.Hybrid functions for numerical solution of fractional Fredholm- Volterra functional integro-differential equations with proportional delays[J].International Journal of Numerical Modelling Electronic Networks Devices and Fields,2019,32(5):1-27.

[20]LOH J R,PHANG C,ISAH A.New operational matrix via Genocchi polynomials for solving Fredholm- Volterra fractional integro-differential equations[J].Advances in Mathematical Physics,2017,2017(1):1-12.

[21]MAHDY A M S,SHWAYYEA R T.Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method[J].International Journal of Scientific Engineering and Research,2016,7(4):1589-1596.

[22]BAYRAM D V,DASCIOGLU A.A method for fractional Volterra integro-differential equations by Laguerre polynomials[J].Advances in Difference Equations,2018,2018(1):1-11.

[23]BAYRAM D V,DASCIOGLU A.Solving fractional Fredholm integro-differential Equations by Laguerre Polynomials[J].Sains Malaysiana,2019,48(1):251-257.

[24]PODLUBNY I.Fractional differential equations[C].San Diego:Mathematics in Science and Engineering,1999:1-340.

[25]DIETHELM K,F(xiàn)ORD N J,F(xiàn)ERRD A D,et al.Algorithms for the fractional calculus:A selection of numerical methods[J].Computer Methods in Applied Mechanics and Engineering,2005,194(6-8):743-773.

[26]HERRMANN R.Fractional calculus:An introduction for Physicists[M].2rd ed.Singapore:World Scientific,2014:1-500.

[27]BELL W W.Special functions for scientists and engineers[M].London:Van Nostrand,1968:1-272.

[28]SILVERMAN R A.Special functions and their applications[M].New York:Dover Publications,1972:1-336.

[29]YUZBASI S.Laguerre approach for solving pantograph-type Volterra integro-differential equations[J].Applied Mathematics and Computation,2014,232:1183-1199.

[30]許小勇,饒智勇,樊繼秋.分?jǐn)?shù)階弱奇異積分微分方程數(shù)值解的Legendre小波方法[J].河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(2):100-107.

[31]周曉琴.分?jǐn)?shù)階積分微分方程的Bernoulli小波數(shù)值解法[D].銀川:寧夏大學(xué),2018,20-23.

[責(zé)任編輯趙小俠]

主站蜘蛛池模板: 日韩成人午夜| 欧美翘臀一区二区三区| 99偷拍视频精品一区二区| 日本午夜影院| 国产本道久久一区二区三区| 精品一区二区三区视频免费观看| 国产日韩av在线播放| 午夜激情福利视频| 国产91视频免费| 亚洲一区二区约美女探花| 成人韩免费网站| 亚洲欧美自拍中文| 99热最新在线| 国产一级一级毛片永久| 久久永久精品免费视频| 日韩毛片免费| 一级一级特黄女人精品毛片| 亚洲成在人线av品善网好看| 亚洲无码A视频在线| www.91在线播放| 亚洲精品黄| 亚洲成人动漫在线观看 | 伊人激情久久综合中文字幕| 国产精品欧美激情| 午夜爽爽视频| 四虎精品国产AV二区| 国产丝袜无码精品| 国产在线欧美| 欧美天堂久久| 国产人在线成免费视频| 亚洲精品在线观看91| 国内精品自在欧美一区| 亚洲一区二区日韩欧美gif| 国产一区二区三区夜色| 高清视频一区| 人人妻人人澡人人爽欧美一区 | 国产SUV精品一区二区6| 久久精品最新免费国产成人| 性视频一区| 欧美人与性动交a欧美精品| 亚洲a级在线观看| 国产免费精彩视频| 亚洲精品成人7777在线观看| 日韩欧美国产区| 亚洲最猛黑人xxxx黑人猛交| 国产福利免费视频| 99精品久久精品| 在线观看免费AV网| 乱人伦99久久| 日本精品影院| 国产极品嫩模在线观看91| 在线国产欧美| 欧美一级在线| 欧美日本激情| 91精品国产一区自在线拍| 欧美视频二区| 免费人成视网站在线不卡| 亚洲av无码成人专区| 中文字幕在线欧美| 亚洲国产综合精品中文第一| 久久福利网| 亚洲第一区在线| 欧美啪啪精品| 国产成人AV男人的天堂| 亚洲综合精品第一页| 2020亚洲精品无码| 色噜噜在线观看| 国产一区二区福利| 最新加勒比隔壁人妻| 九九九精品视频| 国产成人久久综合777777麻豆| 在线观看国产精品日本不卡网| 亚洲精品成人福利在线电影| 国产噜噜噜| AⅤ色综合久久天堂AV色综合| 五月天丁香婷婷综合久久| 看av免费毛片手机播放| 精品福利一区二区免费视频| 国产欧美日韩91| 狂欢视频在线观看不卡| 亚洲热线99精品视频| 国产日本视频91|