









摘 要:本文利用無損檢測來測試混凝土強度,并用超聲回彈綜合法來測試混凝土的回彈值。超聲回彈綜合法是一種常用的無損檢測方法,本文采用origin和SPSS軟件來進行單一回歸分析和多元回歸分析,研究回彈值、超聲波速與彈性波速,靜態彈性模量之間的相關性。研究發現,回彈值、超聲波波速、彈性模量之間的相關性都為正相關。當單變量回歸分析時,超聲波波速與回彈值的相關性最大,多元回歸分析時,彈性模量與超聲波波速的相關性較大。
關鍵詞:無損檢測;超聲回彈綜合法;靜態彈性模量;多元回歸分析
中圖分類號:TU 528 " 文獻標志碼:A
傳統無損檢測方法是超聲回彈綜合法。傳統的破壞性檢測方法在檢測過程中可能會對混凝土結構造成不可逆的損傷,因此需要采用無損檢測技術來保證結構的完整性和保障安全性。無損檢測技術不僅可以準確評估混凝土結構的質量,還可以在不破壞結構的情況下發現潛在問題,及時為維護和修復工作提供指導[1]。隨著科技的發展,混凝土無損檢測技術從最初的視覺檢查和敲擊聽聲法,逐步發展為更先進的方法,例如超聲波檢測和電磁波檢測等。這些先進技術提升了檢測的準確性和效率,能夠有效檢測混凝土結構內部的裂縫、空洞及腐蝕等問題[2]。因此,本文基于無損檢測參數來研究混凝土彈性模量,并采用SPSS軟件和origin對參數進行回歸分析,最終得出回彈值、超聲波波速以及彈性模量之間的相關性進行分析和研究。
1 回彈法發展現狀
1.1 回彈法的基本概況
從常規混凝土施工過程來看,確定混凝土強度的方法有兩種:損傷法和非損傷法[3]。其中非損傷法主要基于回彈法客觀表現,它客觀反映了混凝土結構的真實強度、鑄造實踐包括其他不受外部環境的影響因數。而隨著混凝土年齡不斷增加,其可能會出現碳化物等外部因素偏差問題,此時可利用超聲回彈綜合法進行檢測,提高混凝土強度檢測的準確性和可靠性。
1.2 超聲回彈綜合法應用
在混凝土施工過程中,由于施工技術水平等方面因素的影響,因此使混凝土內部結構不同部位之間密度存在較大的差異,進而影響不同結構的強度。利用超聲波設備對混凝土構件進行檢測,能夠明確超聲波在構件中的傳播時間[4]和超聲波傳遞的聲音速度信息,利用設備儀器對其內部密度進行分析,從而確定混凝土強度能夠達到施工設計要求。利用超聲回彈綜合法對混凝土密度進行檢測,能夠有效避免傳統測定方案中水泥標號不同、混凝土含水量和碳化程度不同等因素所帶來的干擾因素,從而提升檢測精度,擴展了其應用范圍,為保證工程質量奠定了良好的基礎[5]。
2 試驗方案
2.1 試驗材料
水泥材料:P.II.42.5;混凝土材料:機制砂,瓜子石,公分石。
2.2 試驗儀器和步驟
一體式數顯回彈儀;多功能混凝土超聲波檢測儀;液壓機;彈性模量測試儀。用一體式數顯回彈儀和多功能混凝土超聲波檢測儀來測出試塊的回彈值、超聲波速和彈性波速,用液壓機測試試塊的破壞強度。
2.3 試驗步驟
選擇預測面,盡量選擇表面規整,光滑,利于研究的平面作為預測面劃分測區。將每塊試塊的兩個對立面作為一個測區,每個測區有16個測點,且一個測區兩個對立面均勻分配8個測點,并且每個試塊兩個對立面沿對角線設置超聲測點[6]。
超聲回彈檢測:在檢測前,對儀器進行檢查和校對,先進行回彈檢測,使用水平敲擊,并且要保證回彈儀的軸線與試塊的預側面垂直,緩慢進行測試,并把回彈儀測度精確度調整到1;超聲檢測時要用對測法[7],檢測前先在儀器上設置好需要測試試塊的測距,在換能器上涂抹耦合劑,將聲時測量精確度調整到0.1μs,聲速值精確度調整到0.1km/s,測量誤差不超過±1%。
破壞試驗:用液壓機對試塊進行破壞,并測出其破壞強度。根據《 回彈法檢測混凝土抗壓強度技術規程A5》(JGJ T23—2011)計算試塊的回彈值和超聲波速。
靜態彈性模量檢測:對彈性模量檢測儀進行率定,用彈性模量檢測儀敲擊試塊,測出試塊的靜態彈性模量。
2.4 試驗數據處理
當計算測區平均回彈值時,應從測區的16個回彈值中去掉3個最大值和3個最小值[8],計算過程如公式(1)所示。
(1)
式中:R為測區平均回彈值;Ri為第i個點的測區回彈。
超聲波波速代表值計算過程如公式(2)所示。
V=3L/(t1+t2+t3) (2)
式中:V為測距聲波速,km/s;L為超聲測距值,mm;t1、t2、t3為3個測試點位的聲時值,μs 。
測區回彈值平均差及標準差的計算過程如公式(3)、公式(4)所示。
(3)
(4)
式中:f c cu為試件的抗壓強度換算值;f c cu,i為第i塊試件的強
度推定值。
3 試驗結果分析
3.1 試驗測試結果
根據回彈值計算公式、超聲波速計算公式,可以計算試塊的回彈值和超聲波速值,見表1。
經過28天的齡期,對試塊進行測量,用回彈儀,超聲波速檢測儀,彈性模量測試儀進行測量,測出平均回彈值、靜態彈性模量、彈性波波速、超聲波波速。
用以上表格記錄平均回彈值、超聲波波速、靜態彈性模量的數據,通過回彈值、超聲波速和彈性模量之間的多元回歸相關性曲線以及回彈值、超聲波速與彈性模量的的一元相關性曲線,判斷回彈值、超聲波速與彈性模量三者之間的相關性。
3.2 試驗測試曲線
3.2.1 單變量回歸分析
回彈值與靜態彈性模量相關性如圖1所示。
由圖1可以看出,回彈值和靜態彈性模量的相關性較大,線性關系為正相關,靜態彈性模量隨著回彈值增加而增加。當回彈值為23.9時,靜態彈性模量為最小值22100MPa,混凝土材料為C15;當回彈值為46.7時,靜態彈性模量為最大值47100MPa,混凝土材料為C50,回彈值和靜態彈性模量之間的相關性系數為0.7324。
超聲波波速和靜態彈性模量相關性如圖2所示。
通過上圖可以看出超聲波波速和靜態彈性模量的相關性很大,線性關系為正相關,靜態彈性模量隨著超聲波波速增加而增加。當超聲波波速為3.89km/s時,靜態彈性模量為最小值22100MPa,混凝土材料為C15;當超聲波波速為5.32km/s時,靜態彈性模量為最大值47100MPa,混凝土材料為C50,超聲波波速和靜態彈性模量之間的相關性系數為0.8975。
彈性波波速和靜態彈性模量相關性如圖3所示。
通過上圖可以看出彈性波波速和靜態彈性模量的相關性較大,線性關系為正相關,靜態彈性模量隨著彈性波波速增加而增加。當彈性波波速為3.218km/s時,靜態彈性模量為最小值22100MPa,混凝土材料為C15;當彈性波波速為4.463km/s時,靜態彈性模量為最大值47100MPa。混凝土材料為C50,彈性波波速和靜態彈性模量之間相關性系數為0.797。
3.2.2 多元回歸分析
對平均回彈值,超聲波波速以及彈性模量進行多元回歸分析,本文將采用SPSS軟件回歸方法中的“輸入”來進行分析,分為以下兩種:因變量為靜態彈性模量y,自變量為回彈值x1,超聲波波速x2;因變量為回彈值y,自變量為超聲波波速x1,靜態彈性模量x2。通過回歸分析建立回歸方程分析三者之間的相關性,操作過程如下。首先,打開SPSS軟件,將表1中回彈值、超聲波波速和彈性模量的相關數據錄入軟件中。其次,在菜單欄當中選擇“分析-回歸-線性”,在線性回歸的對話框中,將y輸入因變量,x1,x2輸入自變量,如圖4、圖5所示,在統計對話框中選擇“估計值”和“模型模擬擬合”,最后,點擊繼續,點擊確定[9]。
圖6、圖7為輸入變量x1,x2(超聲波波速)之后回歸分析模型的相關系數,當靜態彈性模量為因變量,回彈值和超聲波波速為自變量時,常數項系數為-58462.633,自變量系數為-531.785,23897.561,因此回歸方程y=-58462.633-531.785×x1+23897.561×x2;當因變量為回彈值,自變量為超聲波波速和靜態彈性模量時,常數項系數為-59.134,自變量系數為24.526,-0.01,因此回歸方程y=-59.134+24.526×x1-0.01×x2。
通過分析發現,無論是回彈值還是靜態彈性模量為因變量,顯著性都是<0.01,因此,回彈值,超聲波波速以及靜態彈性模量之間的相關性良好。
4 結論
通過試驗數據表格和相關性回歸分析得出結論,當單變量回歸分析時,超聲波波速與回彈值的相關性最大,超聲波波速與彈性波波速、超聲波波速與靜態彈性模量相關性其次;彈性波波速與回彈值、回彈值與靜態彈性模量、彈性波波速與靜態彈性模量相對較小,它們的最小值使用的混凝土材料一般為C15,最大值使用的混凝土材料一般為C50。當進行多元回歸分析時,發現彈性模量與回彈值的相關性較小,彈性模量與超聲波波速的相關性較大,相關性系數為0.947。
參考文獻
[1]梁建華.無損檢測技術在混凝土檢測中的應用分析[J].四川水泥,2023(9):158-160,169.
[2]陳利,付文金.混凝土無損檢測技術應用—以沙特阿美項目為例[J].廣東建材,2024,40(3):53-56.
[3]俞長隆. 超聲回彈綜合法在混凝土強度檢測中的應用[J]. 黑龍江水利科技,2020,48(10):140-142.
[4]林時鐵. 混凝土檢測技術及檢測結果的處理方法研究[J]. 四川水泥,2019(1):15.
[5]邵云沖. 超聲回彈綜合法用于混凝土強度檢測的實踐分析[J]. 城鎮建設,2019(9):54.
[6]楊坤,唐曉玲,李友彬,等. 超聲回彈綜合法檢測堆石混凝土強度的試驗研究[J]. 水利規劃與設計,2022(11):153-157.
[7]中華人民共和國住房與城鄉建設部.回彈法檢測混凝土抗壓強度技術規程: JGJ T23-2011 [S].北京:中國建筑工業出版社,2011.
[8]解平.混凝土超聲-回彈檢測法運用探討[J].云南大學學報(自然科學版),2000(增刊1):128-129.
[9]李娜卿.基于SPSS多元回歸分析的城市地下水用水量預測[J].河北水利,2021(8):42-43.