

名師原創
【方法探究】
(1) 如圖1,在△ABC中,∠B = 2∠C,AC = 9,AB = 6.求BC的長.
[A][B][C] [A][B][C] [D] [A][B][C] [D] [E]
圖1 圖2 圖3
小軍同學通過思考發現,可以通過“將二倍角轉化為一倍角”或“將一倍角轉化為二倍角”兩種方法解決問題.
方法1:如圖2,作BD平分∠ABC交AC于點D,由∠A為公共角,∠ABD = ∠C,可以證明△ABD [∽] △ACB,進而求出BC的長.
方法2:如圖3,過點A作AD ⊥ BC于點D,在DC上截取DE = DB,連接AE,得到等腰三角形,再利用勾股定理可求出BC的長.
請你選擇其中一種方法的解題思路,寫出證明過程.
【遷移應用】
(2)如圖4,在△ABC中,D是BC上一點,∠B = 2∠C,AD ⊥ BC于點D,探究BD,AB,CD之間的數量關系,并證明.
【拓展延伸】
(3)如圖5,在Rt△ABC中,∠BAC = 90°,∠ABC = 2∠ACD,BD = 2AD = 4.求S△ABC.
[A][B][C] [D] [A][B][C] [D]
圖4 圖5
思路點撥
解:(1)(方法1)∵BD平分∠ABC,∴∠ABC = 2∠ABD = 2∠CBD.
∵∠ABC = 2∠C,∴∠ABD = ∠C = ∠CBD,∴BD = DC.
又∵∠BAD = ∠CAD,∴△ABD [∽] △ACB,∴[ADAB=ABAC=BDBC].
∵AB = 6,AC = 9,∴[9-DC6=69=DCBC],∴BC = 7.5.
(方法2)∵BD = DE,AD ⊥ BC,∴AB = AE = 6,∴∠ABC = ∠AED.
∵∠ABC = 2∠C,∴∠AED3LF/tH062D70lpVSGmhWZ9hjOo4UeIWUVP+tXlwniqo= = 2∠C = ∠EAC + ∠C,
∴∠EAC = ∠C,∴EC = AE = 6.
∵在Rt△ADC和Rt△ADE中,AC2 - DC2 = AD2 = AE2 - DE2,
∴92 - (DE + 6)2 = 62 - DE2,∴DE = 0.75,
∴BC = 2DE + EC = 7.5.
(2)CD = BD + AB. 理由如下:
如圖6,在DC上截取DE = DB,連接AE.
∵BD = DE,AD ⊥ BC,∴AB = AE,∴∠ABC = ∠AED.
∵∠ABC = 2∠C,∴∠AED = 2∠C = ∠EAC + ∠C,
∴∠EAC = ∠C,∴EC = AE,
∴CD = DE + EC = BD + AB.
(3)如圖7,延長DA至點E,使AE = AD,連接CE.
∵∠BAC = 90°,∴AC ⊥ DE.
又∵AE = AD,∴CD = CE,∴∠E = ∠CDA,
∴∠DCA = ∠ECA,∴∠ECD = 2∠ACD.
∵∠ABC = 2∠ACD,∴∠ECD = ∠ABC.
∵∠DEC = ∠CEB,∴△EDC [∽] △ECB,
∴[DEEC=ECBE=DCBC].
∵BD = 2AD = 4,∴AE = AD = 2,∴DE = 4,
∴[4DC=DC8=DCBC],∴BC = 8,DC = 4[2].
∵AD = 2,∴AC = 2[7],AB = 6,
∴S△ABC = [12]AC[?]AB = [12] × 2[7] × 6 = 6[7].
(作者單位:開原市民主教育集團里仁學校)