999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

茶樹插穗萌芽與生根特性的相關(guān)性研究

2024-12-31 00:00:00吉慶勇周慧娟疏再發(fā)鄭生宏何衛(wèi)中
中國茶葉 2024年7期

摘要:以30份茶樹種質(zhì)資源為材料開展扦插繁育試驗(yàn),通過對(duì)茶樹種質(zhì)資源插穗4個(gè)萌芽特性、5個(gè)生根特性指標(biāo)觀察,分析研究茶樹種質(zhì)資源插穗萌芽與生根特性的相關(guān)性,探究茶樹種質(zhì)資源插穗腋芽萌芽特性對(duì)扦插生根繁育的影響。結(jié)果表明,30份茶樹種質(zhì)資源插穗萌芽與生根特性指標(biāo)間存在一定差異,9個(gè)萌芽與生根特性指標(biāo)的變異系數(shù)在0.73%~20.67%之間,研究材料具有多樣性。相關(guān)性分析表明,在茶樹種質(zhì)資源萌芽特性指標(biāo)間,插穗生長(zhǎng)速率與腋芽生物量增長(zhǎng)速率間相關(guān)系數(shù)最高,呈極強(qiáng)正相關(guān),其余為中等或極弱相關(guān)。茶樹種質(zhì)資源生根特性指標(biāo)間相關(guān)性更強(qiáng),除平均根系數(shù)量與平均根系長(zhǎng)度之間為中等正相關(guān)外,其余皆為強(qiáng)乃至極強(qiáng)正相關(guān)。在茶樹種質(zhì)資源萌芽與生根特性指標(biāo)之間,只有插穗生根率與腋芽生長(zhǎng)速率、腋芽生物量增長(zhǎng)速率之間呈強(qiáng)正相關(guān),此外為中等相關(guān)或更弱。依據(jù)載荷的高低,茶樹種質(zhì)資源插穗萌芽特性影響種質(zhì)生根繁育特性主要性狀順序?yàn)椋阂秆可锪吭鲩L(zhǎng)速率gt;腋芽生長(zhǎng)速率gt;插穗腋芽萌發(fā)率,即茶樹插穗腋芽生物量增長(zhǎng)越快、生長(zhǎng)速率越快、腋芽萌發(fā)率越高對(duì)茶樹生根影響越大。綜上所述,不同茶樹種質(zhì)資源扦插繁育插穗腋芽萌發(fā)率、腋芽生長(zhǎng)速率等指標(biāo)差異明顯,種質(zhì)資源萌芽特性能顯著影響種質(zhì)生根特性,研究結(jié)果可為茶樹優(yōu)良品種(系)的繁育與選育提供理論依據(jù)。

關(guān)鍵詞:茶樹;種質(zhì)資源;萌芽特性;根系生長(zhǎng)特性;扦插繁殖

中圖分類號(hào):S571.1" " " " " " " " " " " " " " " " " " " " " " 文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " " " " " " " " " " " " " " " " 文章編號(hào):1000-3150(2024)07-33-8

Study on the Correlation between Tea Cutting

Germination and Rooting Characteristics

JI Qingyong, ZHOU Huijuan*, SHU Zaifa, ZHENG Shenghong, HE Weizhong

Lishui Academy of Agriculture and Forestry Sciences, Lishui 323000, China

Abstract: The experiment was carried out with 30 tea resources as materials, and the correlation between axillary bud germination and rooting characteristics was studied by observing 4 germination characteristics and 5 rooting characteristics of cuttings from tea resources. Through genetic variation and correlation analysis, the relationship between cutting germination and rooting characteristics among tea resources was studied, and the effect of axillary bud germination characteristics on rooting and tea propagation was explored. The results show that there were some differences between germination and rooting characteristics of 30 tea resources, and the genetic variation coefficients of 9 bud germination and rooting traits ranged from 0.71% to 20.67%. Correlation analysis shows that among the indicators of germination characteristics of tea resources, the correlation coefficient between the growth rate of cuttings and the growth rate of axillary bud biomass was the highest, which shows a strong positive correlation, while the rest were moderately or weakly correlated. The correlations between the rooting characteristics of tea resources were even stronger. Except for a moderate positive correlation between the average number of roots and the average root length, all other indicators were significantly or even highly significantly correlated. Among the indicators of germination and rooting characteristics of tea resources, only the rooting rate was significantly and positively correlated with the axillary bud growth rate and axillary bud biomass growth rate. The rest were moderately correlated or weaker. According to the load, the germination characteristics of tea cuttings affected the rooting and propagating characteristics of tea germplasm resources in the order of axillary bud growth rate gt; biomass rate gt; germination rate, which suggests the faster the axillary bud germination growth rate, the larger the biomass and the higher the germination rate, the greater the effect on tea rooting. In summary, there were significant differences in axillary bud germination rate and germination growth rate of cuttings in different tea resources, and the germination characteristics of tea resources could significantly affect the rooting characteristics. The research results could provide a theoretical basis for the breeding and selection of excellent cultivars (lines) of tea plants.

Keywords: tea, germplasm resources, germination characteristics, rooting characteristics, cutting propagation

茶樹屬多年生木本經(jīng)濟(jì)作物,其良種選育耗時(shí)長(zhǎng),從優(yōu)良單株入選到大面積推廣,至少需要10年甚至更長(zhǎng)時(shí)間。茶樹品種選育的各個(gè)環(huán)節(jié),除了應(yīng)用科學(xué)的鑒定方法之外,對(duì)入選單株進(jìn)行早期繁殖能力鑒定十分必要[1],優(yōu)良茶樹單株通過扦插繁殖后進(jìn)入預(yù)選圃、品比試驗(yàn)、區(qū)域試驗(yàn)、生產(chǎn)試驗(yàn)等過程[2]。扦插是茶樹無性繁殖最主要的方法,研究發(fā)現(xiàn)不同茶樹種質(zhì)資源無性系生根特性存在較大差異[3],茶樹種質(zhì)資源無性繁殖能力早期鑒定能及早淘汰低劣材料,提高選育的準(zhǔn)確性,尤其是對(duì)珍貴稀有的茶樹育種材料或少量的優(yōu)良抗性種質(zhì),能構(gòu)建一個(gè)穩(wěn)定高效的珍貴、稀有茶樹種質(zhì)資源繁育體系,是保障茶樹優(yōu)良種質(zhì)安全及育種選育成果擴(kuò)繁利用、栽培推廣的基本要求。

植物腋芽發(fā)育是植物株型和形態(tài)建成的關(guān)鍵因素之一,其取決于植株葉腋處腋芽響應(yīng)內(nèi)源和外源刺激而產(chǎn)生新分枝的能力[4-5]。生長(zhǎng)素是調(diào)控植物腋芽發(fā)育的重要激素,近年來的研究表明,生長(zhǎng)素通過細(xì)胞分裂素、獨(dú)腳金內(nèi)酯等植物激素來調(diào)控植物腋芽發(fā)育[6]。腋芽發(fā)育在植物形態(tài)建成和提高植物對(duì)外界環(huán)境的適應(yīng)能力中扮演著重要角色。茶樹種質(zhì)資源扦插繁育過程中關(guān)于基質(zhì)、生根激素處理等扦插繁育技術(shù)方面的研究比較多[7-12],而對(duì)茶樹扦插繁育過程中插穗萌芽特性的研究相對(duì)較少,特別是有關(guān)茶樹種質(zhì)資源插穗萌芽特性對(duì)生根能力、生長(zhǎng)特性的影響的相關(guān)性研究更鮮有報(bào)道。

本研究以麗水市農(nóng)林科學(xué)研究院收集、保存的30份茶樹種質(zhì)資源進(jìn)行扦插繁育試驗(yàn),對(duì)插穗腋芽萌芽與生根能力、根系生長(zhǎng)特性進(jìn)行了評(píng)價(jià),揭示茶樹種質(zhì)資源扦插繁育中插穗萌芽與生根特性的關(guān)系,以期為茶樹優(yōu)質(zhì)新品種(系)的選育與農(nóng)藝生產(chǎn)管理提供早期鑒定材料及基礎(chǔ)理論提供依據(jù)。

1" 材料與方法

1.1" 試驗(yàn)地點(diǎn)

試驗(yàn)地點(diǎn)設(shè)在麗水市農(nóng)林科學(xué)研究院松陽農(nóng)科教基地(浙江省茶樹種質(zhì)資源圃內(nèi)),位于松陽縣赤壽鄉(xiāng)樓塘村(119.38763E,28.552235N),屬亞熱帶季風(fēng)氣候。

1.2" 試驗(yàn)材料

研究材料是近6年來從浙江省內(nèi)鳩坑群體種茶園中收集的30份地方品種、野生種單株或變異單株,編號(hào)為YH1~YH30。通過嫁接或扦插方法進(jìn)行擴(kuò)繁,擴(kuò)繁材料定植于麗水市農(nóng)林科學(xué)研究院松陽農(nóng)科教基地。

1.3" 試驗(yàn)方法

30份茶樹種質(zhì)資源于2020—2022年連續(xù)3年在茶樹萌芽旺盛的5月上旬進(jìn)行短穗扦插繁育試驗(yàn),插穗為上一年1年生枝條,長(zhǎng)度6~7 cm,保留1張葉片。每份種質(zhì)資源60個(gè)插穗。種質(zhì)資源扦插順序隨機(jī)排列,不使用任何促根藥劑,采用氣霧培扦插繁育方式[13],方便觀察記錄插穗萌芽、生根指標(biāo)。

1.4" 扦插調(diào)查指標(biāo)

茶樹種質(zhì)資源扦插20 d后,在每份種質(zhì)資源存活植株中隨機(jī)固定選20株插穗作為調(diào)查對(duì)象,在扦插60 d時(shí)開展插穗萌芽、生根特性的調(diào)查。

具體調(diào)查指標(biāo)包括插穗成活率、插穗腋芽萌發(fā)率、腋芽生長(zhǎng)速率、腋芽生物量增長(zhǎng)速率、插穗生根率、平均根系數(shù)量、平均根系長(zhǎng)度、根系總長(zhǎng)度、生根效果指數(shù)。每次測(cè)量均選在上午進(jìn)行,通過各項(xiàng)指標(biāo)對(duì)生根效果進(jìn)行綜合評(píng)價(jià)[14]。具體計(jì)算公式如下。

插穗成活率(%)=成活株數(shù)/60×100

插穗腋芽萌發(fā)率(%)= 發(fā)芽插穗單株數(shù)/20×100

腋芽生長(zhǎng)速率(cm/d)=(H1/20)/t1

腋芽生物量增長(zhǎng)速率(g/d)=[(Mt-Mo)/20]/t

插穗生根率(%)=生根株數(shù)/20×100

平均根系數(shù)量(條/株)=插穗根系總數(shù)量/20

平均根系長(zhǎng)度(cm)=插穗根系長(zhǎng)度總和/根系數(shù)量

平均單株根系總長(zhǎng)度(cm)= 平均根系數(shù)量×平均根系長(zhǎng)度

生根效果指數(shù)=(生根率×平均根系數(shù)量×平均根系長(zhǎng)度)/生根株數(shù)

上述公式中,H1為腋芽總長(zhǎng)度,t1為首個(gè)腋芽開始萌芽至扦插60 d間隔天數(shù),Mo為插穗腋芽萌發(fā)初期生物量,Mt為腋芽萌芽生長(zhǎng)至60 d時(shí)的終期總生物量,t為插穗腋芽萌發(fā)時(shí)至扦插60 d間隔時(shí)間。

1.5" 數(shù)據(jù)統(tǒng)計(jì)分析方法

數(shù)據(jù)處理用WPS2021和SPSS 20.0進(jìn)行,對(duì)扦插繁育的茶樹種質(zhì)資源間萌芽、生根特性指標(biāo)進(jìn)行統(tǒng)計(jì)、變異分析。參考Ljung[15]對(duì)相關(guān)性的分級(jí),0~0.2為極弱相關(guān)或不相關(guān),0.2~0.4為弱相關(guān),0.4~0.6為中等相關(guān),0.6~0.8為強(qiáng)相關(guān),0.8~1.0為極強(qiáng)相關(guān)。

2" 結(jié)果與分析

2.1" 茶樹種質(zhì)資源萌芽特性統(tǒng)計(jì)

30份茶樹種質(zhì)資源萌芽特性指標(biāo)見表1。從表1中可知,插穗成活率最高97.70%,最低95.16%,平均成活率為96.82%;插穗腋芽萌發(fā)率最高88.95%,最低41.59%,平均萌發(fā)率為69.35%;腋芽生長(zhǎng)速率最高27.55 cm/d,最低10.94 cm/d,平均生長(zhǎng)速率為20.53 cm/d;腋芽生物量增長(zhǎng)速率最高10.12 g/d,最低3.94 g/d,平均生物量增長(zhǎng)速率7.13 g/d。

2.2" 茶樹種質(zhì)資源生根特性統(tǒng)計(jì)

30份茶樹種質(zhì)資源生根特性指標(biāo)見表2。從表中可知,中插穗生根率最高97.06%,最低80.96%,平均91.75%;平均根系數(shù)量最高23.93條/株,最低15.33條/株,平均20.71條/株;平均根系長(zhǎng)度最高6.37 cm,最低4.16 cm,平均5.64 cm;平均單株根系總長(zhǎng)度最高146.89 cm,最低63.77 cm,平均117.74 cm;生根效果指數(shù)最高1.57,最低0.64,平均1.16。

2.3" 茶樹種質(zhì)資源萌芽特性與生根特性指標(biāo)統(tǒng)計(jì)分析

30份茶樹種質(zhì)資源的4個(gè)插穗萌芽特性與5個(gè)生根特性指標(biāo)的統(tǒng)計(jì)分析見表3。從表中可知,種質(zhì)資源變異系數(shù)在0.73%~20.67%之間,指標(biāo)的變異系數(shù)差異較大,主要性狀表型變異豐富。其中插穗成活率的變異系數(shù)最小,為0.73%,說明插穗成活率受種質(zhì)因素影響小,對(duì)插穗腋芽萌發(fā)、生根影響小;變異系數(shù)最大的是生根效果指數(shù),為20.67%,說明生根效果指數(shù)可以通過品種選育獲得較大程度的改善,各種質(zhì)資源插穗的特性指標(biāo)變異系數(shù)由大到小依次為生根效果指數(shù)gt;平均單株根系總長(zhǎng)度gt;插穗腋芽萌發(fā)率gt;腋芽生物量增長(zhǎng)速率gt;腋芽生長(zhǎng)速率gt;平均根系數(shù)量gt;平均根系長(zhǎng)度gt;插穗生根率gt;插穗成活率。由偏度與峰度值可知,各性狀呈正態(tài)或偏正態(tài)分布,是典型的數(shù)量性狀特征。因此,本研究可進(jìn)行進(jìn)一步分析。

2.4" 茶樹種質(zhì)資源萌芽特性與生根特性相關(guān)性分析

2.4.1 茶樹種質(zhì)資源萌芽特性指標(biāo)間相關(guān)性分析

茶樹種質(zhì)資源萌芽特性指標(biāo)間相關(guān)性分析結(jié)果(表4)顯示,插穗成活率與插穗腋芽萌發(fā)率呈正相關(guān),與腋芽生物量增長(zhǎng)速率、腋芽生長(zhǎng)速率呈負(fù)相關(guān)且相關(guān)系數(shù)絕對(duì)值都小于0.2,說明插穗成活率與這3個(gè)性狀為極弱相關(guān)或不相關(guān);插穗腋芽萌發(fā)率與腋芽生物量增長(zhǎng)速率、腋芽生長(zhǎng)速率呈中等正相關(guān),相關(guān)系數(shù)分別為0.471和0.451,說明插穗腋芽萌發(fā)率越高,插穗腋芽生長(zhǎng)速度、腋芽生物量增長(zhǎng)速率也越高;插穗生長(zhǎng)速率與腋芽生物量增長(zhǎng)速率呈極強(qiáng)正相關(guān),相關(guān)系數(shù)為0.978,說明插穗腋芽增長(zhǎng)速率越快,腋芽生物量增長(zhǎng)速率也越快。所以,提高茶樹種質(zhì)資源插穗腋芽萌發(fā)率、腋芽生長(zhǎng)速率可有效提高茶樹插穗萌芽特性。

2.4.2" 茶樹種質(zhì)資源生根特性指標(biāo)間相關(guān)性分析

由茶樹種質(zhì)資源插穗生根特性指標(biāo)間相關(guān)性分析結(jié)果(表5)可見,插穗生根率與平均根系數(shù)量、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度、生根效果指數(shù)相關(guān)系數(shù)分別為0.823、0.604、0.791、0.821,相關(guān)系數(shù)均大于0.6,說明茶樹種質(zhì)資源的生根率與平均根系數(shù)量、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度、生根效果指數(shù)呈均呈強(qiáng)或極強(qiáng)正相關(guān),即種質(zhì)資源生根率越高的種質(zhì)對(duì)于茶樹種質(zhì)生根特性具有顯著的促進(jìn)作用;插穗平均根系數(shù)量、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度與生根效果指數(shù)相關(guān)系數(shù)分別為0.903、0.831、0.978,均大于0.8,呈極強(qiáng)正相關(guān),說明插穗平均根系數(shù)量越多、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度越長(zhǎng),茶樹插穗的生根特性效果指數(shù)也越高。

2.4.3" 茶樹種質(zhì)資源萌芽與生根特性相關(guān)性分析

對(duì)茶樹種質(zhì)資源插穗腋芽萌芽特性與根系特性進(jìn)行相關(guān)性分析可見(表6),其中種質(zhì)資源插穗成活率與插穗生根率、平均根系數(shù)量的相關(guān)系數(shù)在0.2~0.4之間,呈弱正相關(guān);與平均單株根系總長(zhǎng)度、生根效果指數(shù)呈極弱相關(guān);與平均根系長(zhǎng)度不相關(guān),說明種質(zhì)資源插穗成活率對(duì)插穗生根特性影響較小。種質(zhì)資源插穗腋芽萌發(fā)率與根系特性指標(biāo)的插穗生根率、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度、生根效果指數(shù)的相關(guān)系數(shù)在0.4~0.6之間,呈中等正相關(guān);與平均根系數(shù)量的相關(guān)系數(shù)在0.2~0.4之間,呈弱正相關(guān),說明種質(zhì)資源插穗腋芽萌發(fā)率對(duì)提高茶樹生根指標(biāo)具有促進(jìn)作用。茶樹種質(zhì)資源插穗腋芽生長(zhǎng)速率、腋芽生物量增長(zhǎng)速率與平均根系長(zhǎng)度相關(guān)系數(shù)分別為0.311、0.349,呈弱正相關(guān);與平均根系數(shù)量、單株根系總長(zhǎng)度、生根效果指數(shù)相關(guān)系數(shù)均在0.4~0.6之間,呈中等正相關(guān);與插穗生根率的相關(guān)系數(shù)分別為0.635、0.657,呈強(qiáng)正相關(guān),說明茶樹種質(zhì)插穗腋芽生長(zhǎng)速率及腋芽生物量增長(zhǎng)速率對(duì)生根特征均具有明顯促進(jìn)作用。

3" 小結(jié)與討論

3.1" 茶樹種質(zhì)資源腋芽萌發(fā)特性與生根特性的關(guān)系

植物腋芽發(fā)育是植物株型和形態(tài)建成的關(guān)鍵因素之一,其取決于植株葉腋處的腋芽響應(yīng)內(nèi)源和外源刺激而產(chǎn)生新分枝的能力。本研究發(fā)現(xiàn)茶樹種質(zhì)資源插穗腋芽萌發(fā)率與插穗生根率、平均根系長(zhǎng)度、平均單株根系總長(zhǎng)度、生根效果指數(shù)均為中等正相關(guān),說明種質(zhì)資源插穗腋芽萌發(fā)率高有利于根系的萌發(fā)、生長(zhǎng)。因此,進(jìn)行茶樹新品種(系)選育初期,可首先關(guān)注茶樹種質(zhì)資源的萌芽率,選育萌芽率高的種質(zhì)資源。

3.2" 茶樹種質(zhì)資源腋芽生長(zhǎng)特性與生根特性的關(guān)系

植物體內(nèi)生長(zhǎng)素主要產(chǎn)生于幼葉、莖尖、根尖等生長(zhǎng)旺盛部分,并在維管束中通過極性運(yùn)輸方式轉(zhuǎn)運(yùn)[16-17]。植物腋芽萌發(fā)后會(huì)進(jìn)一步生長(zhǎng)形成幼嫩芽葉,幼嫩芽葉是生長(zhǎng)素等物質(zhì)的主要合成部位,生長(zhǎng)素是一種極性運(yùn)輸激素,可通過極性運(yùn)輸被運(yùn)送到生根部位,對(duì)根原基的誘導(dǎo)和不定根的形成有著重要的影響[18-19]。插穗的幼嫩葉片發(fā)育為成熟功能葉,從而提高插穗的光合速率,制造更多的養(yǎng)分用于插穗根系及地上部生長(zhǎng)。植物激素是產(chǎn)生于植物體內(nèi)的調(diào)節(jié)自身各種生理過程的物質(zhì),參與植物發(fā)芽、生根、開花、結(jié)實(shí)、休眠、衰老等各個(gè)時(shí)期的幾乎所有生理過程[20]。調(diào)控植物腋芽發(fā)育的關(guān)鍵激素包含生長(zhǎng)素、細(xì)胞分裂素、獨(dú)腳金內(nèi)酯、脫落酸等[21],其中生長(zhǎng)素是最早報(bào)道的參與植物腋芽發(fā)育的植物激素[22]。生長(zhǎng)素主要分布于植物根尖和芽的分生組織、受精后的子房、幼嫩種子等生長(zhǎng)旺盛部分,參與調(diào)控植物的胚胎發(fā)育、器官發(fā)生、種子和果實(shí)生長(zhǎng)、向性運(yùn)動(dòng)、側(cè)芽生長(zhǎng)發(fā)育等重要生理過程[23-26]。

茶樹種質(zhì)資源插穗腋芽生長(zhǎng)速率、腋芽生物量增長(zhǎng)速率與插穗生根率呈強(qiáng)相關(guān),與平均根系數(shù)量、平均單株根系總長(zhǎng)度、生根效果指數(shù)呈中等相關(guān),說明茶樹種質(zhì)資源插穗腋芽生長(zhǎng)狀況直接影響根系的形成與生長(zhǎng),總體表現(xiàn)為腋芽生長(zhǎng)速度越快,形成功能葉越早,插穗生根率越高、根系數(shù)量越多、單株根系總長(zhǎng)越長(zhǎng)、生根效果指數(shù)越強(qiáng)。

植物對(duì)腋芽生長(zhǎng)發(fā)育的調(diào)控是一個(gè)復(fù)雜過程,涉及到細(xì)胞代謝、環(huán)境變化、信號(hào)轉(zhuǎn)導(dǎo)等諸多因素,此外光照、溫度、水分等植物所處的外界環(huán)境因素對(duì)腋芽發(fā)育也有重要影響[27-29]。植物芽葉和根系生長(zhǎng)是相互促進(jìn)、相互制約、相互交替的關(guān)系,芽葉為根系生長(zhǎng)提供光合產(chǎn)物,根系為芽葉生長(zhǎng)提供水分和礦質(zhì)營(yíng)養(yǎng)[30]。茶樹種質(zhì)資源繁育能力通過自身構(gòu)成因子的直接作用與其他性狀的間接作用綜合實(shí)現(xiàn),性狀間相互作用、相互影響。茶樹扦插繁育能力及生根茶苗的生長(zhǎng)勢(shì)主要決定于品種(系)遺傳特性,同時(shí)也受氣候和扦插過程中農(nóng)技操作諸因素的影響[31]。

茶樹種質(zhì)資源插穗腋芽萌芽特性能顯著影響種質(zhì)生根繁育能力及根系生長(zhǎng),插穗腋芽萌發(fā)率越高、生長(zhǎng)越快、生物量越大,對(duì)應(yīng)茶樹生根能力越強(qiáng)。茶樹品種(系)選育初期,可通過初期的扦插繁育試驗(yàn),對(duì)茶樹種質(zhì)資源腋芽萌發(fā)、生根繁育能力性狀間的關(guān)系進(jìn)行研究,并充分加以利用,進(jìn)一步優(yōu)化扦插繁育條件,進(jìn)而建立一套有效、簡(jiǎn)便的茶樹繁育技術(shù)體系,為后續(xù)優(yōu)質(zhì)茶樹品種(系)的選育提供參考。

參考文獻(xiàn)

[1] 梁月榮, 劉祖生. 茶樹扦插繁殖能力間接鑒定指標(biāo)的探討[J]. 茶葉, 1985(4): 3-7.

[2] 成浩, 曾建明, 周健, 等. 茶樹種苗工廠化快速繁育技術(shù)[J]. 茶葉科學(xué), 2007, 27(3): 231-235.

[3] 吉慶勇, 疏再發(fā), 鄭生宏, 等. 29份茶樹種質(zhì)資源繁殖能力早期鑒定[J]. 貴州農(nóng)業(yè)科學(xué), 2023, 51(8): 1-7.

[4] SHINOHARA N, TAYLOR C, LEYSER O. Strigolactone can promote orinhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane[J/OL]. PLoS Biology, 2013, 11(1): e1001474. https://doi.org/10.1371/journal.pbio.1001474.

[5] RAMEAU C, BERTHELOOT J, LEDUC N, et al. Multiple pathways regulate shoot branching[J/OL]. Frontiers in Plant Science, 2015, 5: 741. https://doi.org/10.3389/fpls.2014.00741.

[6] 王銘, 焦其慶, 徐海成, 等. 生長(zhǎng)素調(diào)控植物腋芽發(fā)育的研究進(jìn)展[J]. 山東農(nóng)業(yè)科學(xué), 2022, 54(11): 158-164.

[7] 鄭乃輝. 茶樹短穗扦插繁育技術(shù)[J]. 福建農(nóng)業(yè)科技, 2008(5): 42-43.

[8] 吳瓊, 王文杰, 雷攀登, 等. 茶樹短穗扦插技術(shù)研究進(jìn)展[J]. 茶業(yè)通報(bào), 2012, 34(4): 162-165.

[9] 張珊珊, 楊志新, 劉炳光, 等. 茶樹良種短穗扦插育苗技術(shù)[J]. 中國園藝文摘, 2014, 30(11): 221-222.

[10] 王雪萍, 龔自明, 高士偉, 等. 不同處理對(duì)茶樹穴盤扦插生根的影響[J]. 浙江農(nóng)業(yè)科學(xué), 2016, 57(7): 1052-1054, 1060.

[11] 肖輝, 袁彥文, 薛耀, 等. 不同處理對(duì)茶樹穴盤扦插插穗存活率與發(fā)芽率及3種氧化酶活性的影響[J]. 茶葉通訊, 2023, 50(2): 176-183.

[12] 任恒澤. 茶樹全光照彌霧嫩枝扦插育苗技術(shù)研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2018.

[13] 婁艷華, 疏再發(fā), 劉瑜, 等. 氣霧栽培改善茶樹生長(zhǎng)勢(shì)和根系吸收能力[J]. 熱帶作物學(xué)報(bào), 2019, 40(12): 2341-2346.

[14] SRIKANTH A, SCHMID M. Regulation of flowering time: Allroads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2013-2037.

[15] LJUNG K, BHALERAO R P, SANDBERG G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth[J]. The Plant Journal, 2001, 28(4): 465-474.

[16] WULF K E, REID J B, FOO E. Auxin transport and stem vascularreconnection—has our thinking become canalized[J]. Annal of Botany, 2019, 123(3): 429-439.

[17] SANTNER A, CALDERON-VILLALOBOS L I A, ESTELLE M. Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 2009, 5(5): 301-307.

[18] DA COSTA C T, DE ALMEIDA M R, RUEDELL C M, et al. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings[J/OL]. Frontiers in Plant Science, 2013, 4: 133. https://doi.org/10.3389/fpls.2013.00133.

[19] BLAZQUEZ M A, NELSON D C, WEIJERS D. Evolution of plant hormone response pathways[J]. Annual Review of Plant Biology, 2020, 71: 327-353.

[20] ONGARO V, LEYSER O. Hormonal control of shoot branching[J]. Journal of Experimental Botany, 2008, 59(1): 67-74.

[21] THIMANN K V, SKOOG F, WILLIAM G. On the inhibition of bud developmentand other functions of growth substance in vicia faba[J]. Proceedings of the Royal Society B, 1934, 114(789): 317-339.

[22] ENDERS T A, STRADER L C. Auxin activity: Past, present, and future[J]. American Journal of Botany, 2015, 10(2): 180-196.

[23] ZHAO Y. Auxin biosynthesis and its role in plant development[J]. Annual Review of Plant Biology, 2010, 61: 49-64.

[24] TEALE W D, PAPONOV I A, PALME K. Auxin in action: Signalling, transport and the control of plant growth and development[J]. Nature Reviews Molecular Cell Biolog, 2006, 7: 847-859.

[25] WOODWARD A W, BARTEL B. Auxin: Regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5): 707-735.

[26] WANG M, LEMOIGNE M A, BERTHELOOT J, et al. BRANCHED1: A key hub of shoot branching[J/OL]. Frontiers in Plant Science, 2019, 10: 430480. https://doi.org/10.3389/fpls.2019.00076.

[27] LEYSER O. The control of shoot branching: An example of plant information processing[J]. Plant Cell amp; Environment, 2009, 32(6): 694-703.

[28] DJENNANE S, HIBRAND-SAINT OYANT L, KAWAMURA K, et al. Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose[J]. Plant Cell amp; Environment, 2014, 37(3): 742-757.

[29] 鄭天漢, 張志才, 李勇, 等. 基質(zhì)與激素對(duì)茵芋扦插苗萌芽效應(yīng)研究[J]. 山東林業(yè)科技, 2016, 46(5): 23-28.

[30] 任恒澤, 向勤锃, 趙秀秀, 等. 頂梢和功能葉對(duì)茶樹全光照彌霧扦插快繁的影響研究[J]. 茶葉科學(xué), 2018, 38(5): 469-479.

[31] 谷美儀, 宋發(fā)如, 田娜, 等. 茶樹插穗生根率的影響因素及優(yōu)化研究[J]. 茶葉通訊, 2020, 48(2): 232-239.

基金項(xiàng)目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-19)、浙江省農(nóng)業(yè)(茶樹)新品種選育重大科技專項(xiàng)(2021C02067-4-1、2021C02067-7-1)、麗水市公益性項(xiàng)目(2022GYX14)、2022年市級(jí)農(nóng)科院聯(lián)盟區(qū)域示范性項(xiàng)目(2022SJLM20)

作者簡(jiǎn)介:吉慶勇,男,副研究員,主要從事茶樹栽培、繁育及推廣研究。*通信作者,E-mail:llszhj1020@163.com

主站蜘蛛池模板: 国产免费羞羞视频| 国产91无码福利在线| 日韩国产精品无码一区二区三区 | 久久精品波多野结衣| 国产亚洲精久久久久久久91| 欧美日本激情| 黄色免费在线网址| 国产免费怡红院视频| 欧美视频在线观看第一页| 首页亚洲国产丝袜长腿综合| 暴力调教一区二区三区| 国产在线自乱拍播放| 色综合中文| 午夜福利无码一区二区| 91色爱欧美精品www| 香蕉综合在线视频91| 久久久精品久久久久三级| 国产在线精品美女观看| 欧美福利在线| 99视频在线免费| 中文字幕资源站| 亚洲综合日韩精品| 国产在线拍偷自揄观看视频网站| 精品国产Av电影无码久久久| 欧美区国产区| 国产毛片不卡| 国产大片黄在线观看| 亚洲h视频在线| 国产在线自揄拍揄视频网站| 四虎永久在线精品影院| 视频一区亚洲| 欧美日韩动态图| 免费可以看的无遮挡av无码| 无码国产伊人| 在线人成精品免费视频| 一个色综合久久| 青青青视频91在线 | 夜夜操天天摸| 精品欧美一区二区三区在线| 成人国产精品网站在线看| 青青操视频在线| 55夜色66夜色国产精品视频| 欧美69视频在线| 91亚洲精品第一| 91亚洲国产视频| 88av在线看| 在线一级毛片| 日韩无码黄色| 1级黄色毛片| 91无码人妻精品一区二区蜜桃| 日本不卡视频在线| 久久免费视频播放| 国内精品自在自线视频香蕉| 欧美激情福利| 91精品国产情侣高潮露脸| 无码久看视频| 熟女视频91| 国产靠逼视频| 国产精品九九视频| 国产浮力第一页永久地址| 熟女日韩精品2区| 欧美一区二区自偷自拍视频| 日韩免费无码人妻系列| 国产极品粉嫩小泬免费看| 精品无码专区亚洲| 久久国产热| 色综合日本| 伊人精品视频免费在线| 色综合中文字幕| 成年女人18毛片毛片免费| 美女被操91视频| 成人精品亚洲| 中文字幕在线免费看| 极品尤物av美乳在线观看| 思思热在线视频精品| 国产精品嫩草影院av| 26uuu国产精品视频| 中文字幕亚洲精品2页| 久草性视频| 成年看免费观看视频拍拍| 91精品人妻一区二区| 性欧美在线|