999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于單細胞測序技術(shù)探討動物骨骼肌衛(wèi)星細胞與生態(tài)位細胞之間的“對話”

2024-12-31 00:00:00曹官從馬露任靈芝李楊史新娥楊公社李曉
畜牧獸醫(yī)學報 2024年12期

摘" 要: 單細胞測序技術(shù)是在單個細胞水平上對基因組、轉(zhuǎn)錄組、表觀組進行高通量測序分析的一項前沿技術(shù)。它能夠揭示細胞群體差異和細胞發(fā)育譜系關系,反映細胞群體的異質(zhì)性及細胞間的相互作用,在腫瘤發(fā)生、干細胞生物學等多個領域發(fā)揮重要作用。動物骨骼肌組織是以肌纖維為主,包含肌衛(wèi)星細胞、成纖維-成脂祖細胞和巨噬細胞等多種細胞在內(nèi)的非均質(zhì)組織。受益于單細胞測序技術(shù)的迅速發(fā)展,人們對骨骼肌中細胞群體組成、不同群體之間互作的了解逐漸加深。本文圍繞骨骼肌中細胞群體組成及細胞間互作,聚焦肌衛(wèi)星細胞與生態(tài)位細胞的“交叉對話”在調(diào)控骨骼肌生長、代謝及再生等過程中的作用,對已有的研究成果進行簡單的綜述,以期為調(diào)控產(chǎn)肉動物生長及改善肉質(zhì)提供新思路。

關鍵詞: 骨骼肌;單細胞測序;肌衛(wèi)星細胞;細胞通訊

中圖分類號:S852.2

文獻標志碼:A

文章編號:0366-6964(2024)12-5340-09

doi: 10.11843/j.issn.0366-6964.2024.12.002

收稿日期:2024-05-27

基金項目:科技創(chuàng)新2030—重大項目(2023ZD0404702)

作者簡介:曹官從(2003-),男,滿族,山東德州人,本科生,主要從事豬肌肉生物學研究,E-mail:caoguancong@nwafu.edu.cn

*通信作者:李" 曉,主要從事豬肉品質(zhì)形成的調(diào)控機理研究,E-mail:nicelixiao@nwsuaf.edu.cn

Explore the \"Cross-talk\" between Skeletal Muscle Satellite Cells and the Niche Cells Based

on Single-cell Sequencing Technology

CAO" Guancong1, MA" Lu1, REN" Lingzhi2, LI" Yang1, SHI" Xin’e1, YANG" Gongshe1, LI" Xiao1*

(1.Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College

of Animal Science and Technology, Northwest Aamp;F University, Yangling 712100," China;

2.Gushi County Center for Animal Disease Control and Prevention, Gushi 465200," China)

Abstract:" Single-cell sequencing is a cutting-edge technology for high-throughput sequencing of genomes, transcriptomes, and epigenomes of individual cells, offering a powerful tool to characterize individual cells and elucidate interactions between cells, and has provided many new insights in tumorigenesis and stem cell biology. Mammalian skeletal muscle is a heterogeneous tissue dominated by myofibers, including various kinds of cells such as muscle satellite cells, fibro-adipogenic progenitors and macrophages, et al. Benefiting from the rapid development of single-cell sequencing technology, the understanding of the composition of cell populations and the interactions between different kinds of cells within skeletal muscle has gradually expanded. Here, the biological meanings of the interaction of muscle satellite cells with the niche cells on the growth, metabolism and regeneration of skeletal muscle has been reviewed, with the aim to provide new ideas to improve the growth rate and meat quality of meat-producing animals.

Key words: skeletal muscle; single-cell sequencing; muscle satellite cells; cell communication

*Corresponding author: LI Xiao, E-mail: nicelixiao@nwsuaf.edu.cn

骨骼肌是動物機體的重要組成部分,占產(chǎn)肉動物體重的40%左右[1],是人類膳食蛋白質(zhì)的主要來源。肌纖維是骨骼肌中最主要的細胞群體,占肌肉總體積的75%~90%[2],肌纖維的形成及肥大離不開肌肉祖細胞和肌衛(wèi)星細胞(muscle satellite cells,MuSCs),其中肌衛(wèi)星細胞在出生后肌肉生長及損傷后再生過程中發(fā)揮重要作用[3]。肌衛(wèi)星細胞作為一種成體干細胞,在生理穩(wěn)態(tài)下大多處于靜息狀態(tài),被激活后以對稱分裂[4]或不對稱分裂[5]的方式進行增殖以維持干細胞池的數(shù)量或進一步分化、融合以修復受損的肌纖維。此外,骨骼肌中還含有成纖維細胞、巨噬細胞和內(nèi)皮細胞等非肌源細胞,與肌纖維共同構(gòu)成肌衛(wèi)星細胞的“生態(tài)位”,調(diào)控肌衛(wèi)星細胞在靜息、激活和分化等不同狀態(tài)之間的轉(zhuǎn)變[6]。肌衛(wèi)星細胞與生態(tài)位細胞之間的“交叉對話”在骨骼肌生長、發(fā)育及損傷后再生等過程中發(fā)揮了重要作用[7]。然而,由于骨骼肌細胞群體組成的多樣性和復雜性,目前人們對肌衛(wèi)星細胞生理狀態(tài)轉(zhuǎn)變的調(diào)控機制及其與生態(tài)位細胞“交叉對話”的認識還十分有限。

單細胞測序技術(shù)是在單個細胞水平上對基因組[8]、轉(zhuǎn)錄組[9]和表觀組[10]進行高通量測序的新技術(shù),是揭示細胞群體差異和細胞譜系分化的有力工具。近年來,人們利用單細胞測序技術(shù)對人、小鼠以及豬、牛等骨骼肌衛(wèi)星細胞的異質(zhì)性及其與其他細胞群體的互作進行了深入研究,獲得了許多有意義的成果。本文將對該領域的研究進行簡要論述,以期進一步完善骨骼肌生長發(fā)育的分子調(diào)控網(wǎng)絡,為提高家畜肌肉生長速度、改善肉品質(zhì)奠定理論基礎。

1" 單細胞測序技術(shù)

目前,應用較為廣泛的單細胞測序技術(shù)包括單細胞基因組測序(single-cell DNA sequencing,scDNA-seq)、單細胞轉(zhuǎn)錄組測序(single-cell RNA sequencing,scRNA-seq)、單細胞ATAC測序(single-cell assay for transposase-accessible chromatin with high throughput sequencing,scATAC-seq)與單細胞核轉(zhuǎn)錄組測序(single-nucleus RNA sequencing, snRNA-seq)等。以下將簡單介紹各類單細胞測序技術(shù)的特點及其在肌肉生物學領域的應用情況。

1.1" 單細胞基因組測序

單細胞基因組測序主要包括全基因組測序(whole genome sequencing, WGS)[11]、外顯子組測序(exome sequencing)[12]、單細胞限制性代表區(qū)域甲基化測序(single cell bisulfite sequencing, scBS-seq)[13]等。單細胞基因組測序廣泛應用于腫瘤等醫(yī)學領域,目前尚未見肌肉生物學領域的報道。

1.2" 單細胞轉(zhuǎn)錄組測序

單細胞轉(zhuǎn)錄組測序是在單細胞水平下對轉(zhuǎn)錄組進行擴增與測序的一項新技術(shù)。根據(jù)單細胞分離、標記及建庫的方法不同,單細胞轉(zhuǎn)錄組測序又可以細分為多種類型(表1),其中10×Genomics Chromium系統(tǒng)由于單細胞捕獲效率高(可達到65%)、檢測通量高、建庫周期短、成本較低等優(yōu)點[14],廣泛應用于家養(yǎng)動物的生物學研究[15]。Ma等[16]、Xu等[17]、Xiao等[18]利用10×Genomics分析了不同品種或不同發(fā)育階段豬骨骼肌駐留細胞的組成,Cai等[19]繪制了不同發(fā)育階段秦川牛骨骼肌的細胞圖譜,加深了人們對產(chǎn)肉動物骨骼肌生長發(fā)育規(guī)律的認識。

1.3" scATAC-seq 技術(shù)

ATAC-seq(assay for transposase accessible chromatin with high-throughput sequencing)是一種利用Tn5轉(zhuǎn)座酶研究染色質(zhì)可及性的高通量測序技術(shù)[27]。細胞核內(nèi)大分子能夠與染色質(zhì)DNA物理接觸的程度稱為染色質(zhì)可及性(chromatin accessibility)[28]。scATAC-seq是在ATAC-seq的基礎上,通過條形碼(barcode)識別單個的細胞核,從而獲得混合樣品測序無法得到的異質(zhì)性信息,實現(xiàn)對細胞群體的劃分與細胞群體間基因表達差異的檢測[29]。

scATAC-seq通常與scRNA-seq聯(lián)合使用,更好地在單細胞層面解析基因差異表達的調(diào)控機制。Cai等[19]利用10×Genomics、scRNA-seq和scATAC-seq對胚胎期豬體節(jié)和肌節(jié)測序,繪制出豬胚胎期肌源性細胞的分化軌跡,鑒定出豬胚胎期肌生成的關鍵因子—早期生長響應1(early growth response 1,EGR1)和Ras同源家族成員B(Ras homolog family member B,RHOB)。另一項研究利用scRNA-seq和scATAC-seq技術(shù)研究了胎兒期(60胚齡)、出生后4月齡及24月齡秦川牛骨骼肌,通過擬時序分析(pseudotime)揭示了肌源性細胞亞群的發(fā)育軌跡,預測了與肌肉發(fā)育密切相關的MSC(musculin)、MYF5(myogenic factor 5)、MYOD1(myogenic differentiation 1)、FOXP3(forkhead box P3)等特異性表達轉(zhuǎn)錄因子[30]。

1.4" snRNA-seq 技術(shù)

單細胞核轉(zhuǎn)錄組測序是一種首先提取樣本中單個細胞的核,進一步分離、標記細胞核,在單個細胞核水平檢測基因表達水平的技術(shù)。相比于傳統(tǒng)的單細胞RNA測序,snRNA-Seq很好地解決了目前商業(yè)化的單細胞平臺對測序細胞大小限制的難題[31] 。例如牛骨骼肌中單個肌纖維的直徑約100 μm[32],遠超出10×Genomics的測序限制(細胞長度lt;40 μm[33]),因此snRNA-seq在肌肉生物學領域發(fā)揮著越來越重要的作用。

snRNA-seq成功揭示出許多新的骨骼肌肌源細胞的分子特征。Jiang等[34]對面肩肱型肌營養(yǎng)不良癥2型(facioscapulohumeral muscular dystrophy 2,F(xiàn)SHD2)患者原代成肌細胞及其分化后的肌管細胞進行了scRNA-seq和snRNA-Seq測序,劃分出FSHD-Lo和FSHD-Hi兩個肌管群體,發(fā)現(xiàn)DUX4(double homeobox protein 4)靶基因及細胞周期相關基因在FSHD-Hi肌管核中表達上調(diào)。Lin等[35]通過snRNA-seq和單核ATAC測序(snATAC-seq)構(gòu)建了12周齡雄性C57BL6小鼠正常骨骼肌和去神經(jīng)支配的萎縮肌肉的染色質(zhì)開放區(qū)域(accessible chromatin regions)圖譜,發(fā)現(xiàn)ETS轉(zhuǎn)錄因子4(ETS transcription factor 4,ELK4)作為關鍵轉(zhuǎn)錄因子通過促進轉(zhuǎn)化生長因子β1(transform growth factor β1,TGF-β1)表達引起肌肉萎縮。

2" 骨骼肌組織的細胞群體組成

骨骼肌是一種復雜的異質(zhì)組織,由各種細胞類型組成。Giordani等[36]和Dell'Orso等[37] 利用Droplet單細胞轉(zhuǎn)錄組測序技術(shù)在小鼠骨骼肌中鑒定出肌衛(wèi)星細胞(ITGA7+/VCAM1+)、成纖維-成脂祖細胞(PDGFRA+)、腱細胞(SCX+)、神經(jīng)膠質(zhì)細胞(PLP1+)、內(nèi)皮細胞(PECAM1+)、平滑肌間充質(zhì)細胞(ITGA7+/VCAM1-)、B細胞(CD22+)、T細胞(CD3+)、巨噬細胞(CD11B+)和嗜中性粒細胞(LY6G+)共10種細胞類型。Xi[38]等利用Drop-seq繪制出不同發(fā)育時期人類骨骼肌的發(fā)育圖譜,發(fā)現(xiàn)人骨骼肌中除肌源細胞外,也含有數(shù)量眾多的非肌源細胞。Xiao等[18] 利用10×Genomics在新生蘇淮豬背最長肌中鑒定到內(nèi)皮細胞、肌管、成纖維成脂祖細胞、肌衛(wèi)星細胞、成肌細胞、肌細胞、雪旺氏細胞、平滑肌細胞、樹突狀細胞、周細胞和嗜中性粒細胞共11種細胞類型。Cai等[19]通過10×Genomics在胚胎期豬體節(jié)(somite)和肌節(jié)(myotome)中還鑒定出神經(jīng)元、成骨細胞、軟骨細胞等多種非肌源細胞。以上研究結(jié)果充分說明了骨骼肌細胞群體組成的復雜性。

肌衛(wèi)星細胞是出生后的主要肌肉干細胞,是一個異質(zhì)性的細胞群體[39]。對小鼠和人的研究表明,肌衛(wèi)星細胞主要分為靜息態(tài)和激活態(tài)兩種類型,前者高表達Pax7,后者高表達MYF5等成肌分化基因[37,40]。Cho等[41]利用單細胞轉(zhuǎn)錄組測序?qū)?~4月齡小鼠Pax7+細胞進一步細分為不同亞群。Barruet等[42]利用10×Genomics技術(shù)還在人CXCR4+/CD29+/CD56+肌衛(wèi)星細胞檢測到CXCR4+/CD29+/CD56+/CAV1+亞群(CAV1+ HuMuSC),與CAV1- HuMuSC相比,CAV1+ HuMuSC不易被激活,移植后能夠更大程度地保持細胞干性。Lyu等[43]利用10×Genomics分析顯示,不同階段的牛肌衛(wèi)星細胞簇表達不同的肌源性細胞標記,靜息期肌衛(wèi)星細胞表達較低水平的MYF5和ACTA2(actin alpha 2),活化增殖的肌衛(wèi)星細胞表達高水平的MYF5等基因,分化起始時高表達MYOD1及MT3(metallothionein 3),分化后不同時期則高表達MYOG、MYMK(myomaker, myoblast fusion factor)和ACTC1等成肌分化標記分子。Ma等[16]利用10×Genomics將體外分離的豬肌衛(wèi)星細胞細分為間充質(zhì)干細胞樣RCN3+ SC、間充質(zhì)干細胞樣S100A4+ SC、靜息期ID3+ SC、 MYF6+SC(兼具多種信號通路的特征)、 增殖期Cycling SC(Ki67+)和分化中MYMK+ SC,基本反映了肌衛(wèi)星細胞靜息、激活、增殖以及定向分化的不同狀態(tài),與Xu等[17]的報道相吻合。

成纖維-成脂祖細胞(fibro-adipogenic progenitor,F(xiàn)APs)是一類兼具成纖維分化潛能與成脂分化潛能的間充質(zhì)干細胞,是肌肉組織中一類重要的非肌源細胞[44]。Xiao等[18]將1日齡新生蘇態(tài)豬肌肉FAPs劃分為NR2F2+ FAPs、LPL+ FAPs和TNMD+ FAPs三種類型。近期,Wang等[45]對肌內(nèi)脂肪含量豐富的萊蕪豬骨骼肌進行snRNA-seq分析,并與年老人群骨骼肌測序數(shù)據(jù)進行對比,鑒定出3個FAPs亞群,包括PDGFRA+ FAPs、COL1A1+成纖維細胞和PDE4D+/PDE7B+亞群。Xu等[17] 通過對杜洛克豬、萊蕪豬和野豬的背最長肌進行分析,鑒定出2個新的FAPs亞群,即富含線粒體的FAPs(mitochondria-rich FAPs)和肌樣FAPs(myocyte-like FAPs)。

3" 肌衛(wèi)星細胞與肌肉中其他細胞群體的“交叉對話”

肌細胞與其他細胞群體之間存在廣泛的互作,對于骨骼肌發(fā)育再生發(fā)揮重要作用。人們利用細胞生物學技術(shù)和細胞特異性基因敲除等手段對細胞間的相互作用進行了一定程度的解析,而單細胞測序技術(shù)的應用大大提升了對這些互作事件的解析廣度與深度。

3.1" 肌衛(wèi)星細胞對其他細胞群體的影響

肌衛(wèi)星細胞在骨骼肌組織中扮演著多種角色,不僅參與肌肉再生和修復,還可通過釋放細胞外囊泡(extracellular vesicles, EVs)[46]、分泌細胞因子[47]等多種途徑對肌肉微環(huán)境中其他細胞種群(如肌纖維細胞、FAPs、血管內(nèi)皮細胞以及免疫細胞等)產(chǎn)生影響。

EVs是骨骼肌駐留細胞相互作用的重要方式之一[46]。Murach等[48]制備了Pax7CreER/+和R26tdTomato+/-報告小鼠,利用tdTomato(tdT)標記Pax7+肌肉祖細胞分泌的EVs,小鼠機械負重14 d后scRNA-seq在許多非肌源細胞中檢測到tdT表達,其中肌衛(wèi)星細胞分泌的EVs中含有miR-206,能夠抑制成纖維細胞中Wnt誘導信號蛋白1(Wnt1-inducible signaling pathway protein 1, WISP1)的表達,重塑胞外基質(zhì),促進肌纖維肥大。Yu等[46]最新研究也表明,氯化鋇導致的肌肉急性損傷后期,肌衛(wèi)星細胞分泌的EVs富含miR-206-3p和miR-27a/b-3p,其中miR-27a/b-3p通過抑制Pparg(peroxisome proliferative activated receptor, gamma)表達抑制FAPs分化成脂,預防損傷后肌肉發(fā)生脂肪浸潤。過氧化氫(H2O2)刺激成肌細胞釋放含有TGF-β的EVs,抑制內(nèi)皮細胞增殖,加速細胞衰老[49]。

肌衛(wèi)星細胞還能夠分泌生長因子影響其他細胞群體。Verma等[50]利用scRNA-seq發(fā)現(xiàn)肌衛(wèi)星細胞產(chǎn)生血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF),募集附近的內(nèi)皮細胞,這些內(nèi)皮細胞反過來又通過分泌Notch的配體—Dll4,促進肌源干細胞進入靜息狀態(tài)。肌衛(wèi)星細胞自分泌肝細胞生長因子(hepatocyte growth factor,HGF)促進自身活化和增殖[51],HGF能夠調(diào)節(jié)巨噬細胞向M2表型的轉(zhuǎn)變,促進肌肉再生[52]。在肌肉修復過程中,已啟動成肌分化的肌衛(wèi)星細胞分泌配體Dll1,作用于表達受體Notch2的肌衛(wèi)星細胞,以維持 Pax7 表達以及肌衛(wèi)星細胞的自我更新[53]。

3.2" 其他細胞群體對肌衛(wèi)星細胞的影響

肌纖維細胞、FAPs和巨噬細胞等細胞群體通過分泌生長因子、細胞因子以及與信號傳導通路的交互作用等方式,調(diào)節(jié)肌衛(wèi)星細胞的增殖、分化和再生。

肌纖維是骨骼肌中數(shù)量最多的細胞,對肌衛(wèi)星細胞的生命活動產(chǎn)生重要影響[2]。肌纖維釋放EVs到細胞外環(huán)境中,調(diào)節(jié)肌肉新陳代謝以及肌肉萎縮等疾病的發(fā)生[54]。Shao等[55]發(fā)現(xiàn),肌內(nèi)注射萎縮肌管分泌的EVs后,小鼠肌肉中Pax7+ MyoD+細胞數(shù)量明顯減少,說明萎縮肌管的EVs在體內(nèi)直接抑制衛(wèi)星細胞的分化。衰老個體的肌纖維分泌含有miR-690的EVs,抑制肌衛(wèi)星細胞MEF2(myocyte enhancer factor 2)表達,抑制成肌分化[55]。衰老肌纖維中Notch配體Delta表達量減少,抑制Notch信號通路激活,導致衛(wèi)星細胞增殖減少和肌肉再生能力下降,而適當上調(diào)Notch信號能顯著改善衰老肌肉的再生[56]。除此之外,肌纖維還能夠分泌抑瘤素M(oncostatin M,OSM)誘導肌衛(wèi)星細胞退出細胞周期,維持靜息狀態(tài)[47]。Eliazer等[57]發(fā)現(xiàn),肌纖維分泌Wnt4上調(diào)靜止期肌衛(wèi)星細胞中肌動蛋白細胞骨架調(diào)控因子RhoA(Ras homolog family member A)的表達,引起肌衛(wèi)星細胞機械硬化,并通過激活Rho-GTP酶抑制肌衛(wèi)星細胞YAP(Yes-associated protein)的表達以維持肌衛(wèi)星細胞的休眠狀態(tài)。

FAPs通過直接或間接作用調(diào)控肌衛(wèi)星細胞的激活,對于肌肉穩(wěn)態(tài)和再生至關重要[58]。體外研究顯示,F(xiàn)APs是正常骨骼肌修復過程中MuSCs增殖和分化所必需的[59]。最新研究顯示,小鼠急性肌肉損傷早期,F(xiàn)APs分泌富含miR-127-3p的EVs,下調(diào)肌衛(wèi)星細胞中S1pr3(sphingosine-1-phosphate receptor)的表達,促進成肌分化[46]。Lukjanenko等[60]研究表明,F(xiàn)APs通過分泌IL-6(interleukin 6)和IGF-1(insulin-like growth factor 1)等細胞因子,直接作用于肌衛(wèi)星細胞,促進成肌分化。FAPs通過分泌WISP1激活肌衛(wèi)星細胞Akt信號通路,促進細胞不對稱分裂,維持干細胞池的穩(wěn)定,衰老FAPs分泌WISP1的能力下降,導致肌衛(wèi)星細胞耗竭[60]。此外,衰老肌肉中FAPs分泌的SMOC2(SPARC-related modular calcium binding 2)通過整合素Integrin beta 1/MAPK通路降低肌衛(wèi)星細胞活性[61]。Wosczyna等[62]利用10×Genomics測序表明,F(xiàn)APs耗竭會導致受損后MuSCs和CD45+造血細胞增殖速度減慢,妨礙肌肉損傷后修復。Wang等[63]利用scRNA-seq技術(shù)揭示了FAPs通過肌營養(yǎng)不良蛋白1(dystroglycan 1,DAG1)和層粘連蛋白作用于肌衛(wèi)星細胞,促進成肌分化和肌肉修復。本實驗室近期研究表明,3日齡仔豬比目魚肌衛(wèi)星細胞的增殖能力強于背最長肌,利用10×Genomics測序發(fā)現(xiàn),比目魚肌FAPs表達和分泌較多的成纖維生長因子7(fibroblast growth factor 7,F(xiàn)GF7),通過肌衛(wèi)星細胞表面的FGFR2促進肌衛(wèi)星細胞的分裂、增殖[16]。

巨噬細胞作為免疫系統(tǒng)中的重要成員,在骨骼肌內(nèi)也扮演著重要的角色。骨骼肌內(nèi)的巨噬細胞分泌PDGF、bFGF、TGF-β等生長因子影響衛(wèi)星細胞的增殖和分化[64]以及肌肉的再生[17]。CD8+T細胞分泌γ-干擾素,刺激巨噬細胞分泌趨化因子CXCL10(CXC chemokine ligand-10),CXCL10進而通過C-C趨化因子受體3(CXCR3)促進肌衛(wèi)星細胞增殖及分化[65]。高表達錨定蛋白Ly6C的巨噬細胞釋放促炎癥細胞因子TNF-α、IL-6、PGE2(prostaglandin E2),促進肌源性細胞增殖并抑制肌衛(wèi)星細胞的分化和融合,而在肌肉愈合與再生過程中,低表達Ly6C的巨噬細胞釋放抗炎癥細胞因子IL-4和IL-13,促進肌衛(wèi)星細胞的分化和融合,并抑制其增殖[66]。Ratnayake等[67]通過scRNA-seq分析了損傷后不同時期肌肉中的巨噬細胞,發(fā)現(xiàn)巨噬細胞分泌的細胞因子煙酰胺磷酸核糖轉(zhuǎn)移酶(nicotinamide phosphoribosyltransferase, NAMPT)能夠通過CCR5激活肌衛(wèi)星細胞,促進肌肉損傷后的再生。巨噬細胞分泌谷氨酰胺,通過SLC1A5(solute carrier family 1 member 5)-mTOR途徑促進肌衛(wèi)星細胞增殖及分化[68]。巨噬細胞不僅通過旁分泌信號影響肌原前體細胞,還通過血管細胞粘附分子1(vascular cell adhesion molecule-1, VCAM1)、血小板內(nèi)皮細胞粘附分子1(platelet endothelial cell adhesion molecule 1, PECAM1)和細胞間粘附分子1(intercellular adhesion molecule 1, ICAM1)以細胞間接觸依賴性通訊的方式抑制肌衛(wèi)星細胞的凋亡[69]。

4" 展 "望

綜上所述,單細胞測序技術(shù)極大地推動了人們對動物骨骼肌衛(wèi)星細胞的異質(zhì)性及其與生態(tài)位細胞間“交叉對話”(圖1)的認識。隨著測序技術(shù)的發(fā)展和生信分析流程的優(yōu)化,未來單細胞測序技術(shù)將會更加廣泛地應用于畜牧學研究,進一步在單細胞水平揭示骨骼肌衛(wèi)星細胞狀態(tài)轉(zhuǎn)化的分子調(diào)控網(wǎng)絡,挖掘骨骼肌細胞間“交叉對話”的重要信號分子,鑒定調(diào)控畜禽肌肉生長及肉品質(zhì)形成的關鍵基因,為畜牧產(chǎn)肉量和改善肉品質(zhì)提供新的育種靶點,推動產(chǎn)肉動物生長及肉質(zhì)性狀的遺傳改良進程。

參考文獻(References):

[1]" SCHMIDT M,SCHLER S C,HTTNER S S,et al.Adult stem cells at work:regenerating skeletal muscle[J].Cell Mol Life Sci,2019,76(13):2559-2570.

[2]" 侯任達,張" 潤,侯欣華,等.畜禽肌纖維發(fā)育規(guī)律及相關基因研究進展[J].畜牧獸醫(yī)學報,2022,53(10):3279-3286.

HOU R D,ZHANG R,HOU X H,et al.Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J].Acta Veterinaria et Zootechnica Sinica,2022,53(10):3279-3286.(in Chinese)

[3]" SOUSA-VICTOR P,GARCA-PRAT L,MUOZ-CNOVES P.Control of satellite cell function in muscle regeneration and its disruption in ageing[J].Nat Rev Mol Cell Biol,2022,23(3):204-226.

[4]" ARPKE R W,SHAMS A S,COLLINS B C,et al.Preservation of satellite cell number and regenerative potential with age reveals locomotory muscle bias[J].Skelet Muscle,2021,11(1):22.

[5]" ZHAO Y,CHEN M M,LIAN D,et al.Non-Coding RNA regulates the myogenesis of skeletal muscle satellite cells,injury repair and diseases[J].Cells,2019,8(9):988.

[6]" HICKS M R,PYLE A D.The emergence of the stem cell niche[J].Trends Cell Biol,2023,33(2):112-123.

[7]" HONG X T,CAMPANARIO S,RAMREZ-PARDO I,et al.Stem cell aging in the skeletal muscle:the importance of communication[J].Ageing Res Rev,2022,73:101528.

[8]" ZHANG L,LEE M,MASLOV A Y,et al.Analyzing somatic mutations by single-cell whole-genome sequencing[J].Nat Protoc,2024,19(2):487-516.

[9]" JOVIC D,LIANG X,ZENG H,et al.Single-cell RNA sequencing technologies and applications:a brief overview[J].Clin Transl Med,2022,12(3):e694.

[10]" WEN L,TANG F C.Recent advances in single-cell sequencing technologies[J].Precis Clin Med,2022,5(1):pbac002.

[11]" DANILENKO M,ZAKA M,KEELING C,et al.Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development[J].Acta Neuropathol,2022;144(3):565-578.

[12]" UDUPA P,GHOSH D K.Implementation of exome sequencing to identify rare genetic diseases[J].Methods Mol Biol,2024,2719:79-98.

[13]" AHN J,HEO S,LEE J,et al.Introduction to single-cell DNA methylation profiling methods[J].Biomolecules,2021,11(7):1013.

[14]" WANG X L,HE Y,ZHANG Q M,et al.Direct comparative analyses of 10×genomics chromium and smart-seq2[J].Genomics Proteomics Bioinf,2021,19(2):253-266.

[15]" 張肖旭,李" 昊,馮平捷,等.單細胞轉(zhuǎn)錄組測序技術(shù)在家養(yǎng)動物中的應用[J].畜牧獸醫(yī)學報.2024,55(8):3276-3287.

ZHANG X X,LI H,F(xiàn)ENG P J,et al.Application of single-cell transcriptome sequencing technology in domesticated animals[J].Acta Veterinaria et Zootechnica Sinica,2024,55(8):3276-3287.(in Chinese)

[16]" MA L,MENG Y Y,AN Y L,et al.Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling[J].J Cachexia Sarcopenia Muscle,2024,15(4):1388-1403.

[17]" XU D D,WAN B Y,QIU K,et al.Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J].Adv Sci (Weinh),2023,10(35):2305080.

[18]" XIAO W,JIANG N J,JI Z Y,et al.Single-cell RNA sequencing reveals the cellular landscape of longissimus dorsi in a newborn suhuai pig[J].Int J Mol Sci,2024,25(2):1204.

[19]" CAI S F,HU B,WANG X Y,et al.Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J].BMC Biol,2023,21(1):19.

[20]" RAMSKLD D,LUO S J,WANG Y C,et al.Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J].Nat Biotechnol,2012,30(8):777-782.

[21]" PICELLI S,BJRKLUND K,F(xiàn)ARIDANI O R,et al.Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J].Nat Methods,2013,10:1096-1098.

[22]" HASHIMSHONY T,WAGNER F,SHER N,et al.CEL-Seq:single-cell RNA-Seq by multiplexed linear amplification[J].Cell Rep,2012,2(3):666-673.

[23]" HASHIMSHONY T,SENDEROVICH N,AVITAl G,et al.CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J].Genome Biol,2016,17:77.

[24]" MACOSKO E Z,BASU A,SATIJA R,et al.Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J].Cell,2015,161(5):1202-1214.

[25]" KLEIN A M,MAZUTIS L,AKARTUNA I,et al.Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J].Cell,2015,161(5):1187-1201.

[26]" ZHENG G X Y,TERRY J M,BELGRADER P,et al.Massively parallel digital transcriptional profiling of single cells[J].Nat Commun,2017,8:14049.

[27]" BUENROSTRO J D,WU B J,LITZENBURGER U M,et al.Single-cell chromatin accessibility reveals principles of regulatory variation[J].Nature,2015,523(7561):486-490.

[28]" KLEMM S L,SHIPONY Z,GREENLEAF W J.Chromatin accessibility and the regulatory epigenome[J].Nat Rev Genet,2019,20(4):207-220.

[29]" BEREST I,TANGHERLONI A.Integration of scATAC-Seq with scRNA-Seq data[J].Methods Mol Biol,2023,2584:293-310.

[30]" CAI C C,WAN P,WANG H,et al.Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J].Cell Prolif,2023,56(9):e13430.

[31]" SLYPER M,PORTER C B M,ASHENBERG O,et al.A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors[J].Nat Med,2020,26(5):792-802.

[32]" SYLOW L,TOKARZ V L,RICHTER E A,et al.The many actions of insulin in skeletal muscle,the paramount tissue determining glycemia[J].Cell Metab,2021,33(4):758-780.

[33]" KASHIMA Y,SAKAMOTO Y,KANEKO K,et al.Single-cell sequencing techniques from individual to multiomics analyses[J].Exp Mol Med,2020,52(9):1419-1427.

[34]" JIANG S,WILLIAMS K,KONG X D,et al.Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei[J].PLoS Genet,2020,16(5):e1008754.

[35]" LIN H C,PENG H,SUN Y X,et al.Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice[J].Nat Commun,2023,14(1):6581.

[36]" GIORDANI L,HE G J,NEGRONI E,et al.High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J].Mol Cell,2019,74(3):609-621.e6.

[37]" DELL’ORSO S,JUAN A H,KO K D,et al.Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions[J].Development,2019,146(12):dev174177.

[38]" XI H B,LANGERMAN J,SABRI S,et al.A human skeletal muscle atlas identifies the trajectories of stem and progenitor cells across development and from human pluripotent stem cells[J].Cell Stem Cell,2020,27(1):158-176.e10.

[39]" YIN H,PRICE F,RUDNICKI M A.Satellite cells and the muscle stem cell niche[J].Physiol Rev,2013,93(1):23-67.

[40]" DE MICHELI A J,SPECTOR J A,ELEMENTO O,et al.A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations[J].Skelet Muscle,2020,10(1):19.

[41]" CHO D S,DOLES J D.Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity[J].Gene,2017,636:54-63.

[42]" BARRUET E,GARCIA S M,STRIEDINGER K,et al.Functionally heterogeneous human satellite cells identified by single cell RNA sequencing[J].Elife,2020,9:e51576.

[43]" LYU P,QI Y M,TU Z J,et al.Single-cell RNA sequencing reveals heterogeneity of cultured bovine satellite cells[J].Front Genet,2021,12:742077.

[44]" 姜正飛.抗阻訓練調(diào)控SPARC對高脂膳食小鼠骨骼肌質(zhì)量的影響[D].上海:華東師范大學,2023.

JIANG Z F.The effect of resistance training regulating SPARC on skeletal muscle mass in high-fat diet mice[D].Shanghai:East China Normal University,2023.(in Chinese)

[45]" WANG L Y,ZHOU Y B,WANG Y Z,et al.Integrative cross-species analysis reveals conserved and unique signatures in fatty skeletal muscles[J].Sci Data,2024,11(1):290.

[46]" YU Y Y,SU Y,WANG G X,et al.Reciprocal communication between FAPs and muscle cells via distinct extracellular vesicle miRNAs in muscle regeneration[J].Proc Natl Acad Sci U S A,2024,121(11):e1978423175.

[47]" SAMPATH S C,SAMPATH S C,HO A T V,et al.Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M[J].Nat Commun,2018,9(1):1531.

[48]" MURACH K A,PECK B D,POLICASTRO R A,et al.Early satellite cell communication creates a permissive environment for long-term muscle growth[J].iScience,2021,24(4):102372.

[49]" HETTINGER Z R,KARGL C K,SHANNAHAN J H,et al.Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation[J].Exp Physiol,2021,106(10):2083-2095.

[50]" VERMA M,ASAKURA Y,MURAKONDA B S R,et al.Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling[J].Cell Stem Cell,2018,23(4):530-543.e9.

[51]" SHEEHAN S M,TATSUMI R,TEMM-GROVE C J,et al.HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro[J].Muscle Nerve,2000,23(2):239-245.

[52]" CHOI W,LEE J,LEE J,et al.Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration[J].Front Physiol,2019,10:914.

[53]" YARTSEVA V,GOLDSTEIN L D,RODMAN J,et al.Heterogeneity of satellite cells implicates DELTA1/NOTCH2 signaling in self-renewal[J].Cell Rep,2020,30(5):1491-1503.e6.

[54]" MURPHY C,WITHROW J,HUNTER M,et al.Emerging role of extracellular vesicles in musculoskeletal diseases[J].Mol Aspects Med,2018,60:123-128.

[55]" SHAO X Y,GONG W,WANG Q J,et al.Atrophic skeletal muscle fibre-derived small extracellular vesicle miR-690 inhibits satellite cell differentiation during ageing[J].J Cachexia Sarcopenia Muscle,2022,13(6):3163-3180.

[56]" CONBOY I M,CONBOY M J,SMYTHE G M,et al.Notch-mediated restoration of regenerative potential to aged muscle[J].Science,2003,302(5650):1575-1577.

[57]" ELIAZER S,MUNCIE J M,CHRISTENSEN J,et al.Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells[J].Cell Stem Cell,2019,25(5):654-665.e4.

[58]" 謝" 芳,羅君誼,陳" 婷,等.非編碼RNA調(diào)控豬肌間脂肪沉積的研究進展[J].中國畜牧獸醫(yī),2023,50(10):4133-4140.

XIE F,LUO J Y,CHEN T,et al.Research progress on non-coding RNA regulating intermuscular fat deposition in pig[J].China Animal Husbandry amp; Veterinary Medicine,2023,50(10):4133-4140.(in Chinese)

[59]" STANLEY A,TICHY E D,KOCAN J,et al.Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva[J].NPJ Regen Med,2022,7(1):5.

[60]" LUKJANENKO L,KARAZ S,STUELSATZ P,et al.Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors[J].Cell Stem Cell,2019,24(3):433-446.e7.

[61]" SCHLER S C,KIRKPATRICK J M,SCHMIDT M,et al.Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality[J].Cell Rep,2021,35(10):109223.

[62]" WOSCZYNA M N,KONISHI C T,PEREZ CARBAJAL E E,et al.Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J].Cell Rep,2019,27(7):2029-2035.e5.

[63]" WANG L S,GAO P D,LI C Y,et al.A single-cell atlas of bovine skeletal muscle reveals mechanisms regulating intramuscular adipogenesis and fibrogenesis[J].J Cachexia Sarcopenia Muscle,2023,14(5):2152-2167.

[64]" ROBERTSON T A,MALEY M A L,GROUNDS M D,et al.The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis[J].Exp Cell Res,1993,207(2):321-331.

[65]" ZHANG C C,CHENG N X,QIAO B K,et al.Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration[J].J Cachexia Sarcopenia Muscle,2020,11(5):1291-1305.

[66]" ARNOLD L,HENRY A,PORON F,et al.Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J].J Exp Med,2007,204(5):1057-1069.

[67]" RATNAYAKE D,NGUYEN P D,ROSSELLO F J,et al.Macrophages provide a transient muscle stem cell niche via NAMPT secretion[J].Nature,2021,591(7849):281-287.

[68]" SHANG M,CAPPELLESSO F,AMORIM R,et al.Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J].Nature,2020,587(7835):626-631.

[69]" DORT J,F(xiàn)ABRE P,MOLINA T,et al.Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases[J].Stem Cells Int,2019,2019:4761427.

(編輯" 郭云雁)

主站蜘蛛池模板: 久无码久无码av无码| 国产精品自拍合集| 一区二区三区四区精品视频 | 国产97视频在线| 国产精品视频久| 在线欧美日韩| 天天激情综合| 国产白浆视频| 中文字幕av一区二区三区欲色| 国产免费观看av大片的网站| 日韩精品中文字幕一区三区| 97久久免费视频| 中国成人在线视频| 狠狠躁天天躁夜夜躁婷婷| 9啪在线视频| 99re在线观看视频| 九色在线观看视频| 伊人久久青草青青综合| 91热爆在线| 蜜臀AVWWW国产天堂| 欧美日韩国产在线观看一区二区三区| 在线无码九区| 中文字幕首页系列人妻| 国产一级无码不卡视频| 亚洲美女一级毛片| 免费a级毛片视频| 国产成人无码Av在线播放无广告| a毛片基地免费大全| 国产成人无码Av在线播放无广告| 人妻一本久道久久综合久久鬼色| 国产在线观看成人91| 亚洲青涩在线| 亚洲愉拍一区二区精品| 国产成人久久777777| 在线观看的黄网| 久久人人爽人人爽人人片aV东京热| 国产精品极品美女自在线网站| 亚洲色图欧美视频| 国产精品露脸视频| 成人午夜福利视频| 欧美国产成人在线| 青草娱乐极品免费视频| 欧美一级专区免费大片| 在线看免费无码av天堂的| 嫩草影院在线观看精品视频| 国产一区二区福利| 亚洲区第一页| 青青国产视频| 最新国语自产精品视频在| 在线视频一区二区三区不卡| 国产91丝袜| 国产探花在线视频| 91香蕉国产亚洲一二三区| 国产成人免费手机在线观看视频| 日韩成人在线视频| 精品亚洲麻豆1区2区3区| 国产真实乱子伦视频播放| 日韩精品久久久久久久电影蜜臀| 免费观看成人久久网免费观看| 亚洲V日韩V无码一区二区| 丁香六月综合网| 国产真实乱子伦精品视手机观看 | 亚洲欧洲一区二区三区| 天天躁狠狠躁| 思思热精品在线8| 国产精品中文免费福利| 在线国产三级| 色综合激情网| 欧美日本在线播放| 久久精品66| 波多野吉衣一区二区三区av| 国产成人一区免费观看| 国产视频一区二区在线观看 | 日韩精品欧美国产在线| 欧美精品1区| 婷五月综合| 国产成人高清在线精品| 欧美日韩另类在线| 成人综合网址| 日韩精品无码一级毛片免费| 亚洲成人动漫在线| 成人蜜桃网|