999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于全基因組重測序SNP分析寧蒗高原雞保種群的群體遺傳多樣性和群體遺傳結(jié)構(gòu)

2024-12-31 00:00:00徐擴衛(wèi)李卓輝冷堂健熊寶周杰瓏郭盤江王禹陳粉粉
畜牧獸醫(yī)學(xué)報 2024年12期

摘" 要: 旨在分析寧蒗高原雞保種群的群體遺傳多樣性和群體遺傳結(jié)構(gòu),以期更好的保護和利用寧蒗高原雞這一種質(zhì)資源。本研究利用全基因組重測序技術(shù)檢測寧蒗高原雞(n=57)、大圍山微型雞(n=20)、尼西雞(n=11)和獨龍雞(n=10)群體的單核苷酸多態(tài)性(single-nucleotide polymorphism, SNP),以群體觀測雜合度(Ho)、期望雜合度(He)、多態(tài)性標記比例(PN)、核苷酸多態(tài)性(Pi)、次等位基因頻率(Maf)以及連鎖不平衡(linkage disequilibrium, LD)衰減情況分析群體遺傳多樣性;使用主成分分析、系統(tǒng)發(fā)育樹、群體結(jié)構(gòu)分析探究不同品種的群體遺傳結(jié)構(gòu);以群體分化指數(shù)(Fst)評估品種間的分化程度,以狀態(tài)同源(identity by state, IBS)、G矩陣和群體近交系數(shù)(FROH)分析寧蒗高原雞保種群體的親緣關(guān)系。結(jié)果顯示,寧蒗高原雞群體的觀測雜合度(Ho)為0.212,小于其0.221的期望雜合度(He),而大圍山微型雞、獨龍雞和尼西雞的Ho均高于He,表明寧蒗高原雞群體遺傳多樣性較為豐富;LD衰減分析表明,4個品種的衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨龍雞,說明寧蒗高原雞群體遺傳多樣性最高,基因組受選擇程度最低;主成分分析和系統(tǒng)發(fā)育樹結(jié)果表明,寧蒗高原雞分為3個支系,大圍山微型雞與寧蒗高原雞、獨龍雞和尼西雞之間的遺傳背景差異較大;群體結(jié)構(gòu)分析顯示,當K=2時為最優(yōu)分群數(shù),寧蒗高原雞血統(tǒng)較為復(fù)雜,獨龍雞和尼西雞血統(tǒng)較為相似;群體遺傳分化結(jié)果發(fā)現(xiàn),寧蒗高原雞與大圍山微型雞、尼西雞、獨龍雞之間均出現(xiàn)中等程度的分化,而獨龍雞和尼西雞之間的遺傳分化指數(shù)較?。籌BS矩陣和G矩陣分析發(fā)現(xiàn),寧蒗高原雞保種群體間大部分個體親緣關(guān)系較遠,少數(shù)個體親緣關(guān)系較近。以上結(jié)果表明,寧蒗高原雞與大圍山微型雞、尼西雞、獨龍雞之間均存在中等程度的分化,寧蒗高原雞保種群體的遺傳多樣性較為豐富,但保種群體間存在一定的近交趨勢,應(yīng)建立有效的育種方案,加強保種,避免近交衰退。

關(guān)鍵詞: 全基因組;寧蒗高原雞;群體遺傳多樣性;群體遺傳結(jié)構(gòu)

中圖分類號:S831.2

文獻標志碼: A

文章編號:0366-6964(2024)12-5498-13

doi: 10.11843/j.issn.0366-6964.2024.12.016

開放科學(xué)(資源服務(wù))標識碼(OSID):

收稿日期:2024-05-22

基金項目:云南省農(nóng)業(yè)基礎(chǔ)研究聯(lián)合專項面上項目(202101BD070001-070)

作者簡介:徐擴衛(wèi)(1998-),男,云南曲靖人,碩士生,主要從事動物遺傳資源保護及利用研究,E-mail: xukuowei@foxmail.com ;李卓輝(1996-),男,甘肅天水人,碩士生,主要從事家畜遺傳育種與繁殖研究,E-mail: lizhuohui2021@nwafu.edu.cn。徐擴衛(wèi)和李卓輝為同等貢獻作者

*通信作者:王" 禹,主要從事反芻家畜復(fù)雜性狀遺傳基礎(chǔ)研究,E-mail: wang_yu@nwsuaf.edu.cn;陳粉粉,主要從事畜禽脂肪沉積機理研究,E-mail: ffchen03@sina.com

Analysis of Population Genetic Diversity and Population Genetic Structure of Conservation

Population in Ninglang Plateau Chickens Based on Whole-genome Resequencing SNP

XU" Kuowei1, LI" Zhuohui2, LENG" Tangjian1, XIONG" Bao3, ZHOU" Jielong1, GUO" Panjiang1, WANG" Yu2*, CHEN" Fenfen1*

(1.College of Biological Science and Food Engineering, Southwest Forestry University, Kunming

650224," China;

2.College of Animal Sciences and Technology, Northwest A amp; F University, Yangling 712100," China;

3.Ninglang Plateau Chickens Original Breed Conservation Farm, Labai Township, Ninglang Yi Autonomous County, Ninglang 674309," China)

Abstract:" In order to better protect and utilize the Ninglang Plateau chickens, the population genetic diversity and population genetic structure of Ninglang Plateau chickens conserved population were explored in this study. Whole-genome resequencing technology was used to detect single-nucleotide polymorphism (SNP) in Ninglang Plateau chickens(n=57), Daweishan Mini chickens(n=20), Dulong chickens(n=10) and Nixi chickens(n=11) populations, and population genetic diversity was analyzed by observing heterozygosity (Ho), expected heterozygosity (He), polymorphic nucleotide ratio (PN), nucleotide diversity (Pi), and minor allele frequency (Maf) , and linkage disequilibrium (LD) decay. Principal component analysis, phylogenetic tree, and population structure analysis were employed to examine the population genetic structure of different breeds. The degree of differentiation between breeds was evaluated using the fixation index (Fst). Additionally, the genetic relatedness within the conservation population of Ninglang Plateau chickens were analyzed using identity by state (IBS), G matrix, and the coefficient of inbreeding (FROH). The results showed that the observed heterozygosity (Ho) of the Ninglang Plateau chickens population was 0.212, which was lower than its expected heterozygosity (He) of 0.221, while the Ho values of Daweishan Mini chickens, Dulong chickens, and Nixi chickens were higher than their respective He values, indicating that the genetic diversity of the Ninglang Plateau chickens population was relatively high; LD decay analysis showed that the decay rates of the 4 breeds from fastest to slowest was Ninglang Plateau chickens, Daweishan Mini chickens, Nixi chickens, and Dulong chickens, indicating that Ninglang Plateau chickens population had the highest genetic diversity and the lowest degree of genome selection. The results of principal component analysis and phylogenetic tree showed that Ninglang Plateau chickens were divided into 3 branches. Daweishan Mini chickens exhibited significant genetic divergence from Ninglang Plateau chickens, Dulong chickens, and Nixi chickens. Population structure analysis revealed that the optimal number of clusters was K=2, with Ninglang Plateau chickens exhibiting a complex genetic background, while Dulong chickens and Nixi chickens had relatively similar genetic backgrounds. Population genetic differentiation analysis found moderate levels of differentiation between Ninglang Plateau chickens and Daweishan Mini chickens, Nixi chickens, and Dulong chickens, whereas the genetic differentiation index between Dulong chickens and Nixi chickens was lower; IBS matrix and G matrix analysis revealed that most individuals within the conservation population of Ninglang Plateau chickens were distantly related, with a few individuals showing closer relationships. The results showed that there was a moderate differentiation between Ninglang Plateau chickens and Daweishan Mini chickens, Nixi chickens, and Dulong chickens. The genetic diversity of the Ninglang Plateau chickens breeding population was relatively rich, but there was a trend of inbreeding within the conservation population. Therefore, effective breeding programs should be established, and conservation efforts should be strengthened to avoid inbreeding depression.

Key words: whole genome; Ninglang Plateau chickens; population genetic diversity; population genetic structure

*Corresponding authors: WANG Yu, E-mail: wang_yu@nwsuaf.edu.cn; CHEN Fenfen, E-mail: ffchen03@sina.com

群體遺傳多樣性是物種適應(yīng)環(huán)境變化的基礎(chǔ)[1],可作為評估種質(zhì)資源現(xiàn)狀的重要參考指標,群體的遺傳多樣性越高表明群體對環(huán)境變化的適應(yīng)能力就越強[2]。群體遺傳結(jié)構(gòu)能夠反映群體的祖先來源和進化歷史[3],也代表著群體的遺傳特征,評估群體遺傳多樣性和群體遺傳結(jié)構(gòu)對物種種質(zhì)資源的保護和利用具有重要參考意義。群體遺傳多樣性和群體結(jié)構(gòu)分析的分子標記方法有限制性片段長度多態(tài)性(restriction fragment length polymorphism, RFLP)[4]、微衛(wèi)星DNA多態(tài)性[5]、線粒體DNA (mitochondral DNA, mtDNA)分子標記[6]和單核苷酸多態(tài)性(SNP)[7]標記。由于RFLP、微衛(wèi)星DNA多態(tài)性和mtDNA分子標記方法檢測密度低且精度不高[8,9],目前較少采用;而SNP在全基因組中具有標記密度高、代表性強、準確性高等優(yōu)勢,并隨著測序技術(shù)的不斷進步和測序成本的降低,基于全基因組重測序(whole genome resequencing, WGS)的SNP分析技術(shù)被廣泛應(yīng)用于馬[10]、牛[11]、羊[12]、豬[13]、雞[14]等家畜的群體遺傳多樣性和群體結(jié)構(gòu)研究中。Sun等[15]通過全基因組序列獲得 SNPs,分析廣西8個地方雞品種的群體遺傳多樣性和群體遺傳結(jié)構(gòu),同時挖掘到與經(jīng)濟性狀相關(guān)的候選基因;Shi等[16]對生長在不同溫度環(huán)境中的雞進行全基因組測序,發(fā)現(xiàn)了與雞適應(yīng)熱帶和寒冷環(huán)境相關(guān)的新基因;Rachman等[17]通過全基因組SNPs揭示尼日利亞地方雞種的群體遺傳多樣性較豐富。通過對群體基因組水平的研究,能夠定位到大量與經(jīng)濟性狀、環(huán)境適應(yīng)和表型特征相關(guān)的候選基因,促進人們對家養(yǎng)動物起源和馴化的了解,同時為家養(yǎng)動物的育種規(guī)劃制定和選種選配提供參考。

現(xiàn)代家雞的地方品種是由人類對原雞進行長期馴化進化而來,這些品種在自然選擇和人工選擇的壓力下積累了豐富的遺傳變異和表型變異[18],通過研究不同地方雞的群體遺傳多樣性和群體遺傳結(jié)構(gòu),有利于更好的保護和利用優(yōu)質(zhì)地方雞的遺傳資源[19,20]。云南省作為雞的起源和馴化中心之一[21],其復(fù)雜的氣候環(huán)境為云南地方雞品種的表型多樣性和遺傳特異性的形成提供了天然條件[22]。寧蒗高原雞、獨龍雞、尼西雞和大圍山微型雞作為云南優(yōu)質(zhì)地方雞種,均具有耐粗飼、抗逆性強、肉質(zhì)鮮嫩等特點[23],且均被列入國家畜禽遺傳資源品種名錄。寧蒗高原雞主要分布于云南省麗江市寧蒗彝族自治縣拉伯鄉(xiāng),其主要特征為腿脛較長,體型高大,經(jīng)普米族、彝族、摩梭人等當?shù)厣贁?shù)民族長期選育以及當?shù)仫L(fēng)土馴化而成[22],能適應(yīng)本地的民族風(fēng)俗和當?shù)氐母吆降丨h(huán)境,是一種肉蛋兼用型高原地方雞種[24]。目前,有關(guān)寧蒗高原雞的研究主要是基于線粒體DNA控制區(qū)序列分析其群體遺傳多樣性與起源分化,而有關(guān)全基因組SNP標記分析寧蒗高原雞群體遺傳多樣性和群體遺傳結(jié)構(gòu)的研究還未見報道。本研究基于全基因組SNP分析寧蒗高原雞、獨龍雞、尼西雞和大圍山微型雞的群體遺傳多樣性和群體遺傳結(jié)構(gòu),為寧蒗高原雞的保種選育及開發(fā)利用提供相應(yīng)參考。

1" 材料與方法

1.1" 試驗材料

寧蒗高原雞樣本均采自云南省麗江市拉伯鄉(xiāng)寧蒗高原雞原種保種場,對樣本翅下靜脈采血后保存于EDTA抗凝管,并立即置于低溫冰箱,用于提取DNA。本試驗選取57只健康的成年寧蒗高原雞(30只公雞、27只母雞)用于研究。尼西雞(Nixi chickens, n=11)和獨龍雞(Dulong chickens, n=10)的全基因組重測序數(shù)據(jù)為 NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov)下載(NCBI檢索號分別為 PRJNA782225和PRJNA559932);大圍山微型雞(Daweishan Mini chickens, n=20)的全基因組重測序數(shù)據(jù)為國家生物信息中心(https://ngdc.cncb.ac.cn/)下載(檢索號為PRJCA004668)。

1.2" 試驗方法

1.2.1" DNA提取及全基因組重測序

采用血液基因組DNA純化試劑盒(北京全式金生物技術(shù)股份有限公司)提取57只寧蒗高原雞的基因組DNA,使用Nanodrop 檢測基因組DNA的濃度,凝膠電泳檢測DNA完整性,檢測合格后送至武漢影子基因科技有限公司構(gòu)建文庫并進行雙末端測序。

1.2.2" 數(shù)據(jù)質(zhì)控及比對

為保證后續(xù)分析結(jié)果的準確性,使用Fastp(0.23.2)[25]軟件對原始測序數(shù)據(jù)(Raw Data)進行質(zhì)控;使用BWA(0.7.17)[25]將過濾質(zhì)控后的數(shù)據(jù)(Clean Data)比對到雞GRCg6a(NCBI登錄號:GCA_000002315.6)參考基因組,使用Samtools(1.10.2)[26]中的sort命令進行排序,使用Picard(http://broadinstitute.github.io/picard)去除PCR重復(fù),GATK(4.2.0)[27]用于全基因組變異檢測;群體SNPs過濾標準:去除最小等位基因頻率小于1%(Maflt;0.01)的位點和缺失率大于 10% 的位點(genogt;0.1)。使用ANNOVAR[28]軟件注釋SNPs,并統(tǒng)計不同類型SNPs在染色體上的分布及其發(fā)生的比例。

1.2.3" 群體遺傳多樣性分析

群體觀測雜合度(Ho)、期望雜合度(He)、多態(tài)標記比例(PN)和次等位基因頻率(Maf)參照王婷等[29]報道的方法使用PLINK v1.90軟件[30]計算,核苷酸多態(tài)性(Pi)參照張小鍵[31]報道的方法使用VCFtools軟件[32]計算。計算群體遺傳多樣性所用的數(shù)據(jù)集只保留雙等位基因位點,使用PopLDdecay(Version 3.40)軟件[33]分析群體的LD衰減情況,用r2表示LD系數(shù),以r2下降到最大值的一半對應(yīng)的距離為LD衰減距離[34]。

1.2.4" 群體遺傳結(jié)構(gòu)分析

使用PLINK v1.90進行主成分分析,PHYLIP(V3.696)[35]構(gòu)建系統(tǒng)發(fā)育樹,通過tvBOT[36]對構(gòu)建的發(fā)育樹進行可視化,使用ADMIXTURE(Version 1.3.0)[37]分析群體結(jié)構(gòu)。

1.2.5" 群體分化指數(shù)分析

Fst值越大表明群體間分化程度越高,其取值范圍為0~1,當Fst為0~0.05時,說明群體間分化程度較低,當Fst為0.05~0.15時,群體間存在中等程度的遺傳分化,當Fst為0.15~0.25時,群體間遺傳分化較大,當Fst為0.25以上則認為群體間有很大的遺傳分化[38]。本研究計算群體間Fst的滑動窗口為100 kb ,步長為10 kb。

1.2.6" 寧蒗高原雞保種群體親緣關(guān)系分析

使用PLINK v1.90構(gòu)建IBS矩陣,采用 GCTA(v1.94)軟件[39]計算個體間的親緣關(guān)系,構(gòu)建G 矩陣,并使用R腳本繪制矩陣熱圖。

1.2.7" 寧蒗高原雞保種群體近交系數(shù)分析

使用PLINK v1.90 -homozyg參數(shù)檢測每個群體中的連續(xù)純合性片段(runs of homozygosity, ROH),具體檢測參數(shù)為:50個SNPs的滑動窗口沿染色體滑動,ROH長度大于500 kb、每個ROH中至少包含50個SNPs,每個滑動窗口允許存在1個雜合子,同時包含 SNP 的所有掃描窗口的命中率(滑動窗口閾值)至少為 0.05,基于ROH計算近交系數(shù)(FROH)[40],計算公式如下:

FROH=∑LROHLauto

其中,∑LROH為常染色體上所有ROH片段長度之和,Lauto為SNP覆蓋常染色體的物理總長度,以上結(jié)果使用 GraphPadPrism 8.0進行可視化。

2" 結(jié)" 果

2.1" 基因組DNA質(zhì)量檢測

寧蒗高原雞基因組DNA的瓊脂糖凝膠檢測結(jié)果如圖1所示,DNA條帶清晰可見,無拖尾現(xiàn)象,表明DNA提取質(zhì)量較高,可用于后續(xù)試驗。

2.2" 寧蒗高原雞群體SNP檢測及注釋

本研究中57只寧蒗高原雞平均測序深度為24.54×,4個云南地方雞品種中共檢測到24 253 880個常染色體SNPs,經(jīng)過質(zhì)控過濾后共保留16 362 811個有效SNPs用于后續(xù)分析。為研究寧蒗高原雞群體SNPs的分布和變異類型,保留57只寧蒗高原雞群體中10 666 468個常染色體的SNPs用于分析。結(jié)果表明,寧蒗高原雞群體SNPs在染色體上的分布相對均勻,1號染色體密度最高,16號染色體密度最低(圖2A);寧蒗高原雞群體SNPs注釋結(jié)果顯示,大多數(shù)SNPs位于內(nèi)含子(56.12%)和基因間區(qū)(33.77%),其余位于外顯子(1.68%)、基因上游(2.47%)、基因下游(2.59%)和剪切位點區(qū)域(0.004%);位于外顯子的SNPs同義突變占67.14%,非同義突變占31.88%(圖2B)。

2.3" 群體遺傳多樣性分析

4個品種的群體遺傳多樣性參數(shù)見表1,其中寧蒗高原雞群體的觀測雜合度(Ho)小于期望雜合度(He),而大圍山微型雞、獨龍雞和尼西雞的觀測雜合度(Ho)均高于期望雜合度(He),尼西雞的多態(tài)性標記比例(PN)、核苷酸多態(tài)性(Pi)和次等位基因頻率(Maf)均為最低。LD衰減分析結(jié)果如圖3所示,4個品種的r2隨著位點距離的增加而降低,r2

A.SNPs密度圖;B.SNPs變異類型統(tǒng)計

A.SNPs density map; B.SNPs variation type statistics

由高到低依次為獨龍雞、尼西雞、大圍山微型雞和寧蒗高原雞,衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨龍雞。

2.4" 群體遺傳結(jié)構(gòu)分析

主成分分析(principal component analysis, PCA)結(jié)果顯示,PC1和PC2的解釋度分別為31.82%和16.28%,4個群體間分層較明顯,其中大

橫坐標是物理距離(kb),縱坐標是LD系數(shù)(r2)

The horizontal axis is the physical distance (kb), and the vertical axis is the LD coefficient (r2)

圍山微型雞、獨龍雞和尼西雞群體相對集中,而寧蒗高原雞群體相對分散(圖4A),根據(jù)PC1可將大圍山微型雞、獨龍雞、寧蒗高原雞和尼西雞群體明顯區(qū)分開。系統(tǒng)發(fā)育樹分析發(fā)現(xiàn),寧蒗高原雞、尼西雞、獨龍雞和大圍山微型雞均單獨聚在不同的分支上,其中大圍山微型雞分支較遠,尼西雞和獨龍雞的分支較近,寧蒗高原雞群體中存在3個小分支(圖4B)。

針對研究群體,設(shè)定亞群數(shù)目(K值)為1~6后進行聚類,將最小交叉驗證誤差值確定為最優(yōu)分群數(shù)。如圖5A所示,當K=2時交叉驗證錯誤值最低,說明4個云南地方雞群體最大概率來源于2個原始祖先。由圖5B可知,當K=2時,大圍山微型雞出現(xiàn)分離,獨龍雞和尼西雞血統(tǒng)較為相似,寧蒗高原雞群體中出現(xiàn)了血統(tǒng)混雜的個體;當K=5時,獨龍雞群體和尼西雞群體才出現(xiàn)分離。

2.5" 群體間遺傳分化指數(shù)

為了更好的分析4個地方雞群體間的遺傳分化程度,基于全基因組SNP分型數(shù)據(jù)計算群體間的遺傳分化指數(shù),本研究群體成對遺傳分化指數(shù)見圖6,寧蒗高原雞與大圍山微型雞、尼西雞、獨龍雞的遺傳分化指數(shù)分別為0.10、0.08、0.09,說明寧蒗高原雞與大圍山微型雞、尼西雞、獨龍雞之間均出現(xiàn)中等程度的分化,獨龍雞和尼西雞之間的遺傳分化值最?。?.06)。

2.6" 寧蒗高原雞IBS分析

基于IBS值計算寧蒗高原雞個體間的遺傳距離,構(gòu)建遺傳距離矩陣并進行可視化(圖7)。結(jié)果顯示寧蒗高原雞群體的IBS值在0.131 1~0.308 5之間,其平均遺傳距離為0.270 8±0.026 8,表明寧蒗高原雞群體中大部分個體遺傳差異較大(圖7中紅色較深的方格),且群體間存在較遠的遺傳距離,但也出現(xiàn)少數(shù)個體間的遺傳距離較近(圖7中顏色較淺的方格)。

2.7" 寧蒗高原雞G矩陣分析

基于所檢測的SNPs位點構(gòu)建親緣關(guān)系G矩陣進一步分析寧蒗高原雞群體的親緣關(guān)系,G矩陣結(jié)果如圖8所示,其中每一個小方格代表第一個到最后一個樣本兩兩之間的親緣關(guān)系值,該值越大越接近紅色,即兩個體親緣關(guān)系越近。由G矩陣分析結(jié)果顯示,寧蒗高原雞群體大部分個體間近交程度較低(圖8中顏色偏綠的方格),少部分個體之間親緣關(guān)系較近(圖8中顏色偏紅的方格)。親緣關(guān)系矩陣結(jié)果與 IBS 距離矩陣分析結(jié)果一致,表明寧蒗高

原雞群體存在近交趨勢。

2.8" 寧蒗高原雞ROH檢測

在57個寧蒗高原雞個體中,共檢測到2 541個ROH片段,0.50~1.00 Mb長度的ROH數(shù)量最多,占89.33%;長度為1~2 Mb的ROH數(shù)量共259個,占10.19%;大于2 Mb的ROH占0.47%。其中最短的ROH長度為0.50 Mb,位于11號染色體;最長的ROH長度為2.76 Mb,位于15號染色體。寧蒗高原雞基因組上ROH數(shù)量分布及所占染色體長度百分比如圖9A所示,其中位于3號染色體上的ROH數(shù)量最多,共有269個;在第16、25、30、31、32、33號染色體上均未檢測出長度大于0.5 Mb的ROH。ROH總長度所占常染色體長度比例表明(圖9A),22號染色體上ROH的覆蓋度最高,占到37.70%;單個個體的ROH總長度從

橫、縱坐標為寧蒗高原雞個體,每一個小方格代表兩個個體間的遺傳距離值,顏色越接近紅色表明兩個個體間的遺傳距離越大,反之亦然

The horizontal and vertical coordinates represent the Ninglang Plateau chickens individuals in this study. Each small square represents the genetic distance value between two individuals. The closer the color is to red, the greater the genetic distance between the two individuals, and vice versa

6.54 Mb到95.82 Mb不等,平均長度為31.99 Mb,ROH總長度在20~40 Mb內(nèi)的個體數(shù)量最多。

不同個體檢測到的ROH數(shù)量變化較大(圖9B),寧蒗高原雞群體中最少的ROH數(shù)量為10個,最多的ROH數(shù)量為124個,平均每個個體中檢測的ROH數(shù)量為44.58個。通過對群體中各樣本的ROH統(tǒng)計,獲得每個個體基于ROH的近交系數(shù)值(圖9C),寧蒗高原雞群體的平均近交系數(shù)(FROH)為0.013 2±0.002 9。

3" 討" 論

畜禽遺傳多樣性與人類生產(chǎn)生活緊密相關(guān),保護畜禽遺傳多樣性就是保護人類所擁有的全部可遺傳變異材料,有助于人類挖掘畜禽優(yōu)良基因,實現(xiàn)畜牧業(yè)可持續(xù)發(fā)展[41]。Sartika等[42]利用微衛(wèi)星標記研究印度尼西亞地方雞的群體多樣性和群體遺傳結(jié)構(gòu),發(fā)現(xiàn)印度尼西亞地方雞與阿拉伯雞的遺傳差異較大,同時發(fā)現(xiàn)8個印度尼西亞地方雞群體均沒有出現(xiàn)近親繁殖。Tian等[43] 通過全基因組重測序數(shù)據(jù)分析文昌雞的群體遺傳多樣性,結(jié)果發(fā)現(xiàn)文昌雞相對于中國其他8個地方雞品種具有較高的群體遺傳多樣性,且與其他幾個地方雞品種均出現(xiàn)較大程度的分化。Xu等[44]利用全基因組重測序研究8個貴州地方雞品種的群體遺傳多樣性和群體遺傳結(jié)構(gòu),結(jié)果表明貴州地方雞品種相對于商業(yè)雞品種具有較高的核苷酸多態(tài)性,同時發(fā)現(xiàn)貴州地方雞品種內(nèi)部存在基因漸滲。隨著測序技術(shù)的不斷完善,全基因組重測序技術(shù)逐漸取代微衛(wèi)星標記技術(shù)[45],該技術(shù)能精確地評估群體遺傳多樣性和群體遺傳結(jié)構(gòu),對制定家畜動物育種計劃以及科學(xué)留種選配具有重要意義。

本研究基于所檢測的SNPs數(shù)據(jù)評估群體遺傳多樣性指數(shù),雜合度是反映群體遺傳變異的指標之一,當期望雜合度高于觀測雜合度時,表明該群體可

橫、縱坐標為57只寧蒗高原雞個體,每一個小方格代表兩個個體間的親緣關(guān)系,顏色越接近紅色表明兩個個體間的親緣關(guān)系越近,反之亦然

The horizontal and vertical coordinates are 57 Ninglang Plateau chickens individuals. Each small square represents the genetic relationship between two individuals. The closer the color is to red, the closer the genetic relationship between the two individuals, and vice versa

能存在近交或雜合子缺失,而當期望雜合度低于觀測雜合度時,表明該群體歷史上可能出現(xiàn)了分化或者有外來個體補充,群體遺傳多樣性較豐富[46]。Bortoluzzi等[47]通過60K SNP芯片分析育種偏好對荷蘭地方雞基因組多樣性的影響,發(fā)現(xiàn)大部分荷蘭地方雞的觀測雜合度均低于期望雜合度,而這些品種的近交系數(shù)估計值均較高,表明荷蘭地方雞的近交程度較高。Zhang等[34]通過全基因組SNP分析白耳黃雞、北京油雞和狼山雞保種群的基因組多樣性,發(fā)現(xiàn)3個保種群體的觀測雜合度均高于期望雜合度,表明白耳黃雞、北京油雞和狼山雞保種群體具有較豐富的群體遺傳多樣性。本研究發(fā)現(xiàn),寧蒗高原雞群體的觀測雜合度略低于期望雜合度,而尼西雞、獨龍雞和大圍山微型雞的觀測雜合度均高于期望雜合度,表明寧蒗高原雞群體雖存在近交趨勢,但具有較豐富的遺傳多樣性。核苷酸多樣性(Pi)是衡量特定群體多態(tài)性高低的參數(shù),是指在同一群體中隨機挑選的兩條DNA序列在各個核酸位點上核苷酸差異的均值[48]。本研究中,寧蒗高原雞、大圍山微型雞、尼西雞和獨龍雞的核苷酸多態(tài)性水平較高(Pigt;0.003),均高于貴州地方雞的核苷酸多態(tài)性[44],而與廣西地方雞的核苷酸多態(tài)性水平相近[15]。多態(tài)性標記比例(PN)值越高說明群體的遺傳信息越豐富[49]。本研究發(fā)現(xiàn),寧蒗高原雞群體的多態(tài)性標記比例為0.868 3,均高于大圍山微型雞(0.819 0)、尼西雞(0.730 6)、獨龍雞(0.736 7)、新浦東雞(0.780 0)[50]、絲雨烏骨雞(0.800 3)[51]、太行雞(0.844 5)[52]和北京油雞(0.789 1)[53],說明寧蒗高原雞的群體遺傳變異信息相對豐富。LD衰減可以用于判斷群體的多樣性差異,LD 衰減越快,說明群體受選擇程度越低,基因組多樣性越高[54]。本研究群體中衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨龍雞,說明寧蒗高原雞群體遺傳多樣性較高,基因組受選擇程度較低,該結(jié)果與多態(tài)性標記比例結(jié)果一致。

研究不同品種之間的群體遺傳結(jié)構(gòu)對了解品種間的親緣關(guān)系和遺傳演化歷史具有重要意義[55]。本研究中,PCA和系統(tǒng)發(fā)育樹分析表明,大圍山微型雞與其他3個品種的遺傳背景差異較大,寧蒗高原雞群體相對分散,被聚為3個不同的群體,該結(jié)果與王欣等[22]研究結(jié)果高度一致,其利用線粒體DNA D-loop序列構(gòu)建系統(tǒng)進化樹將寧蒗高原雞聚為3大支,表明寧蒗高原雞可能存在多個世系。Fst值越大表明群體間分化程度越高,本研究發(fā)現(xiàn)寧蒗高原雞與大圍山微型雞、尼西雞、獨龍雞之間均出現(xiàn)中等程度的分化,而獨龍雞和尼西雞之間的遺傳分化指數(shù)最小,該結(jié)果與群體結(jié)構(gòu)分析結(jié)果一致,當K=2以及更高時,尼西雞和獨龍雞的血統(tǒng)均表現(xiàn)出較高的相似性,表明獨龍雞和尼西雞可能在近期由1個共同祖先分化而來。IBS值可用于評估群體中個體間的遺傳距離[56],研究結(jié)果顯示寧蒗高原雞保種群體的IBS值在0.131 1~0.308 5之間,其平均遺傳距離為0.270 8±0.026 8,表明寧蒗高原雞群體中大部分個體遺傳距離較遠,只有少部分個體間遺傳距離較近。通過構(gòu)建G矩陣分析寧蒗高原雞群體間個體的親緣關(guān)系,結(jié)果顯示寧蒗高原雞群體中少部分個體親緣關(guān)系較近。基于ROH計算寧蒗高原雞群體的近交系數(shù)(FROH)為0.013 2±0.002 9,近交系數(shù)偏低。以上結(jié)果表明,獨龍雞和尼西雞之間的親緣關(guān)系較近,寧蒗高原雞保種群的群體遺傳多樣性較豐富,但存在一定的近交趨勢,應(yīng)建立合理有效的育種方案,避免因群體近交引起群體遺傳多樣性減少[57],導(dǎo)致寧蒗高原雞的優(yōu)良性狀丟失。

4" 結(jié)" 論

本研究基于全基因組重測序數(shù)據(jù)分析寧蒗高原雞保種群的群體遺傳多樣性、親緣關(guān)系和近交系數(shù),發(fā)現(xiàn)寧蒗高原雞群體遺傳多樣性較豐富,且與大圍山微型雞、尼西雞、獨龍雞之間均出現(xiàn)中等程度的分化;同時發(fā)現(xiàn)寧蒗高原雞保種群體間少數(shù)個體存在近交風(fēng)險,應(yīng)建立有效的育種方案,加強保種,避免近交衰退。研究結(jié)果為寧蒗高原雞保種群體的保種和選育工作提供一定的科學(xué)依據(jù)。

參考文獻(References):

[1]" TAO W K,ANIWAR L,ZULIPICAR A,et al.Analysis of genetic diversity and population structure of Tarim and Junggar Bactrian camels based on simplified GBS genome sequencing[J].Animals (Basel),2023,13(14):2349.

[2]" CHEN J,ZHANG L L,GAO L T,et al.Population structure and genetic diversity of Yunling cattle determined by whole-genome resequencing[J].Genes (Basel),2023,14(12):2141.

[3]" SUN Q X,WANG M G,LU T,et al.Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations[J].BMC Biol,2024,22(1):55.

[4]" DEMENTIEVA N V,SHCHERBAKOV Y S,TYSHCHENKO V I,et al.Comparative analysis of molecular RFLP and SNP markers in assessing and understanding the genetic diversity of various chicken breeds[J].Genes (Basel),2022,13(10):1876.

[5]" HUO J L,WU G S,CHEN T,et al.Genetic diversity of local Yunnan chicken breeds and their relationships with Red Junglefowl[J].Genet Mol Res,2014,13(2):3371-3383.

[6]" ISLAM M A,OSMAN S A M,NISHIBORI M.Genetic diversity of Bangladeshi native chickens based on complete sequence of mitochondrial DNA D-loop region[J].Br Poult Sci,2019,60(6):628-637.

[7]" WANG M S,THAKUR M,PENG M S,et al.863 genomes reveal the origin and domestication of chicken[J].Cell Res,2020,30(8):693-701.

[8]" ISHENGOMA D S,MANDARA C I,MADEBE R A,et al.Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania[J].Malar J,2024,23(1):79.

[9]" NEALE D B,KREMER A.Forest tree genomics:growing resources and applications[J].Nat Rev Genet,2011,12(2):111-122.

[10]" GU J J,LI S,ZHU B,et al.Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing[J].Mol Ecol Resour,2023,23(7):1656-1672.

[11]" TEREFE E,BELAY G,TIJJANI A,et al.Whole genome resequencing reveals genetic diversity and selection signatures of Ethiopian indigenous cattle adapted to local environments[J].Diversity,2023,15(4):540.

[12]" XIONG J K,BAO J J,HU W P,et al.Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat[J].Front Genet,2022,13:1044017.

[13]" WANG F F,ZHA Z L,HE Y Z,et al.Genome-wide re-sequencing data reveals the population structure and selection signatures of Tunchang pigs in China[J].Animals (Basel),2023,13(11):1835.

[14]" CHO Y,KIM J Y,KIM N.Comparative genomics and selection analysis of Yeonsan Ogye black chicken with whole-genome sequencing[J].Genomics,2022,114(2):110298.

[15]" SUN J L,CHEN T,ZHU M,et al.Whole-genome sequencing revealed genetic diversity and selection of Guangxi indigenous chickens[J].PLoS One,2022,17(3):e0250392.

[16]" SHI S R,SHAO D,YANG L Y,et al.Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments[J].J Adv Res,2023,47:13-25.

[17]" RACHMAN M P,BAMIDELE O,DESSIE T,et al.Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress[J].Sci Rep,2024,14(1):2209.

[18]" WU S W,DOU T F,WANG K,et al.Artificial selection footprints in indigenous and commercial chicken genomes[J].BMC Genomics,2024,25(1):428.

[19]" WILKINSON S,WIENER P,TEVERSON D,et al.Characterization of the genetic diversity,structure and admixture of British chicken breeds[J].Anim Genet,2012,43(5):552-563.

[20]" ZHU W Q,LI H F,WANG J Y,et al.Molecular genetic diversity and maternal origin of Chinese black-bone chicken breeds[J].Genet Mol Res,2014,13(2):3275-3282.

[21]" PENG M S,HAN J L,ZHANG Y P.Missing puzzle piece for the origins of domestic chickens[J].Proc Natl Acad Sci U S A,2022,119(44):e2210996119.

[22]" 王" 欣,羅成峰,陶清海,等.拉伯高腳雞線粒體DNA D-loop序列變異與起源分化研究[J].中國家禽,2016,38(11):14-18.

WANG X,LUO C F,TAO Q H,et al.Sequence variation of mtDNA D-loop and origin of Labai high-leg chicken[J].China Poultry,2016,38(11):14-18.(in Chinese)

[23]" 許文坤,劉藝端,孫利民,等.云南省地方家禽遺傳資源介紹[J].云南農(nóng)業(yè),2021(4):87-89.

XU W K,LIU Y D,SUN L M,et al.Introduction to local poultry genetic resources in Yunnan Province[J].Yunnan Agriculture,2021(4):87-89.(in Chinese)

[24]" 鄧紹志.拉伯高腳雞簡介與展望[J].中國畜禽種業(yè),2017,13(3):133-135.

DENG S Z.Introduction and prospects of Labai high-leg chicken[J].The Chinese Livestock and Poultry Breeding,2017,13(3):133-135.(in Chinese)

[25]" LI H,DURBIN R.Fast and accurate long-read alignment with Burrows-Wheeler transform[J].Bioinformatics,2010,26(5):589-595.

[26]" LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.

[27]" MCKENNA A,HANNA M,BANKS E,et al.The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Res,2010,20(9):1297-1303.

[28]" WANG K,LI M,HAKONARSON H.ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.

[29]" 王" 婷,張元慶,閆益波,等.“特藏寒羊”群體遺傳結(jié)構(gòu)分析與選擇信號的對比分析[J].畜牧獸醫(yī)學(xué)報,2024,55(7):2913-2926.

WANG T,ZHANG Y Q,YAN Y B,et al.The genetic structure analysis and the comparative analysis of selection signals in ‘Tezanghan’ sheep[J].Acta Veterinaria et Zootechnica Sinica,2024,55(7):2913-2926.(in Chinese)

[30]" PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.

[31]" 張小鍵.五個湖北地方雞品種遺傳多樣性評估及重要經(jīng)濟性狀選擇信號鑒定[D].武漢:華中農(nóng)業(yè)大學(xué),2022.

ZHANG X J.Evaluation of genetic diversity of five Hubei native chicken breeds and identification of selective signals for important economic traits[D].Wuhan:Huazhong Agricultural University,2022.(in Chinese)

[32]" DANECEK P,AUTON A,ABECASIS G,et al.The variant call format and VCFtools[J].Bioinformatics,2011,27(15):2156-2158.

[33]" ZHANG C,DONG S S,XU J Y,et al.PopLDdecay:a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J].Bioinformatics,2019,35(10):1786-1788.

[34]" ZHANG M M,HAN W,TANG H,et al.Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs[J].BMC Genomics,2018,19(1):598.

[35]" LEE T H,GUO H,WANG X Y,et al.SNPhylo:a pipeline to construct a phylogenetic tree from huge SNP data[J].BMC Genomics,2014,15:162.

[36]" XIE J M,CHEN Y R,CAI G J,et al.Tree Visualization By One Table (tvBOT):a web application for visualizing,modifying and annotating phylogenetic trees[J].Nucleic Acids Res,2023,51(W1):W587-W592.

[37]" ALEXANDER D H,NOVEMBRE J,LANGE K.Fast model-based estimation of ancestry in unrelated individuals[J].Genome Res,2009,19(9):1655-1664.

[38]" MAGLO K N,MERSHA T B,MARTIN L J.Population genomics and the statistical values of race:an interdisciplinary perspective on the biological classification of human populations and implications for clinical genetic epidemiological research[J].Front Genet,2016,7:22.

[39]" YANG J,LEE S H,GODDARD M E,et al.GCTA:a tool for genome-wide complex trait analysis[J].Am J Hum Genet,2011,88(1):76-82.

[40]" MCQUILLAN R,LEUTENEGGER A L,ABDEL-RAHMAN R,et al.Runs of homozygosity in European populations[J].Am J Hum Genet,2008,83(3):359-372.

[41]" 宋科林,閆尊強,王鵬飛,等.基于SNP芯片分析徽縣青泥黑豬遺傳多樣性和遺傳結(jié)構(gòu)[J].畜牧獸醫(yī)學(xué)報,2024,55(3):995-1006.

SONG K L,YAN Z Q,WANG P F,et al.Analysis on genetic diversity and genetic structure based on SNP chips of Huixian Qingni Black pig[J].Acta Veterinaria et Zootechnica Sinica,2024,55(3):995-1006.(in Chinese)

[42]" SARTIKA T,SAPUTRA F,TAKAHASHI H.Genetic diversity of eight native indonesian chicken breeds on microsatellite markers[J].HAYATI J Biosci,2022,30(1):122-130.

[43]" TIAN S S,LI W,ZHONG Z Q,et al.Genome-wide re-sequencing data reveals the genetic diversity and population structure of Wenchang chicken in China[J].Anim Genet,2023,54(3):328-337.

[44]" XU D,ZHU W,WU Y H,et al.Whole-genome sequencing revealed genetic diversity,structure and patterns of selection in Guizhou indigenous chickens[J].BMC Genomics,2023,24(1):570.

[45]" KON T,PEI L Y,ICHIKAWA R,et al.Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation[J].Sci Rep,2021,11(1):11235.

[46]" SCHMIDT T L,JASPER M E,WEEKS A R,et al.Unbiased population heterozygosity estimates from genome-wide sequence data[J].Methods Ecol Evol,2021,12(10):1888-1898.

[47]" BORTOLUZZI C,CROOIJMANS R P M A,BOSSE M,et al.The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity[J].Heredity (Edinb),2018,121(6):564-578.

[48]" LIU J J,XIAO Y,REN P W,et al.Integrating genomics and transcriptomics to identify candidate genes for high egg production in Wulong geese (Anser cygnoides orientalis)[J].BMC Genomics,2023,24(1):481.

[49]" 肖" 倩.浦東白豬種質(zhì)特性及其保護與利用研究[D].上海:上海交通大學(xué),2017.

XIAO Q.Study on breed characters,conservation and utilization of Pudong White pigs[D].Shanghai:Shanghai Jiao Tong University,2017.(in Chinese)

[50]" 李凱航,趙樂樂,陸雪林,等.基于SNP芯片的浦東雞保種分析[J].中國家禽,2020,42(6):31-36.

LI K H,ZHAO L L,LU X L,et al.Analysis of conservation effect in Pudong chicken based on SNP chip[J].China Poultry,2020,42(6):31-36.(in Chinese)

[51]" 周明芳.三個不同地理分布絲羽烏骨雞群體遺傳多樣性、遺傳結(jié)構(gòu)及選擇信號分析[D].南昌:江西農(nóng)業(yè)大學(xué),2022.

ZHOU M F.Genetic diversity,genetic structure and selection signal analysis of three different regional Silkies (Gallus gallus domesticus Brisson)[D].Nanchang:Jiangxi Agricultural University,2022.(in Chinese)

[52]" 李德娟,朱" 迪,張" 浩,等.基于全基因組SNPs對太行雞保種群保種效果的評價[J].中國畜牧雜志, 2024,60(3):118-126.

LI D J,ZHU D,ZHANG H,et al.Evaluation of the conservation effect of Taihang chicken conservation population based on whole genome SNPs[J].Chinese Journal of Animal Science,2024,60(3):118-126.(in Chinese)

[53]" ZHANG M M,WANG S W,XU R,et al.Managing genomic diversity in conservation programs of Chinese domestic chickens[J].Genet Sel Evol,2023,55(1):92.

[54]" GAO C Q,DU W P,TIAN K T,et al.Analysis of conservation priorities and runs of homozygosity patterns for Chinese indigenous chicken breeds[J].Animals (Basel),2023,13(4):599.

[55]" ZHANG J X,NIE C S,LI X H,et al.Genome-wide population genetic analysis of commercial,indigenous,game,and wild chickens using 600K SNP microarray data[J].Front Genet,2020,11:543294.

[56]" TOLONE M,SARDINA M T,CRISCIONE A,et al.High-density single nucleotide polymorphism markers reveal the population structure of 2 local chicken genetic resources[J].Poult Sci,2023,102(7):102692.

[57]" KARDOS M,ARMSTRONG E E,F(xiàn)ITZPATRICK S W,et al.The crucial role of genome-wide genetic variation in conservation[J].Proc Natl Acad Sci U S A,2021,118(48):e2104642118.

(編輯" 郭云雁)

主站蜘蛛池模板: 亚洲男人的天堂久久香蕉网| 麻豆AV网站免费进入| 亚洲国产精品人久久电影| 婷婷色婷婷| 亚洲AV人人澡人人双人| 国产男人的天堂| 91久久性奴调教国产免费| 免费一级毛片在线播放傲雪网| 婷婷五月在线| 国产网站一区二区三区| 免费一级毛片在线观看| 国产青榴视频| 国产精品永久不卡免费视频| 尤物视频一区| 亚洲人成影视在线观看| 亚洲色图欧美在线| 色网站在线视频| 波多野结衣一区二区三区88| 国产一区二区三区在线观看视频 | 国产凹凸视频在线观看| 青青国产成人免费精品视频| 国产大片喷水在线在线视频| 亚洲欧美日韩另类在线一| 亚洲第一网站男人都懂| 色综合成人| 中文字幕在线日本| 天天躁夜夜躁狠狠躁躁88| 国产毛片不卡| 亚洲视频无码| 国产永久无码观看在线| 久久永久视频| 性色生活片在线观看| AV无码国产在线看岛国岛| 国产黑丝视频在线观看| 狼友视频国产精品首页| 国产乱码精品一区二区三区中文| 色综合热无码热国产| 亚洲高清中文字幕在线看不卡| 婷婷99视频精品全部在线观看| 久久国产亚洲偷自| 精品综合久久久久久97| 亚洲国产无码有码| 国产精品美人久久久久久AV| 99热这里只有精品免费国产| 18黑白丝水手服自慰喷水网站| 国产欧美日本在线观看| 久久精品中文字幕免费| 国内丰满少妇猛烈精品播| 国产v精品成人免费视频71pao| 日韩精品中文字幕一区三区| 最新日本中文字幕| 国产女人在线| 亚洲91精品视频| 国产精品视频3p| 国产高清精品在线91| 欧美亚洲国产日韩电影在线| 久青草网站| 狠狠色丁香婷婷| 国产在线拍偷自揄拍精品| 国产无人区一区二区三区| 在线另类稀缺国产呦| 最新国产网站| 2021最新国产精品网站| 亚洲欧美成人| 国产成人免费高清AⅤ| 国产jizzjizz视频| 欧美一区二区人人喊爽| 欧美亚洲欧美区| 欧美成人午夜在线全部免费| 午夜在线不卡| 精品福利视频网| 欧美国产日产一区二区| 欧美亚洲激情| 自偷自拍三级全三级视频| 美女免费精品高清毛片在线视| 亚洲性一区| 亚洲中文字幕无码mv| 国产日韩精品一区在线不卡| 99一级毛片| 伊人久久婷婷| 九色在线观看视频| 久久夜色撩人精品国产|