





〔摘要〕 目的 利用鹵代芳烴的親核取代反應(yīng)在芳環(huán)中引入二甲氨基,探討反應(yīng)條件對硝基取代的芳香鹵代烴胺化反應(yīng)的影響。方法 以2-溴-1-氟-4-硝基苯作為模型探究最佳反應(yīng)條件,并用不同位置、不同鹵原子取代的硝基苯探究反應(yīng)底物的范圍。結(jié)果 反應(yīng)最佳反應(yīng)條件為使用1.00 mL的N,N-二甲基甲酰胺(N,N-dimethylformamide, DMF)為胺化劑,1.5倍當(dāng)量KOH提供堿性環(huán)境,5.00 mL的低共熔溶劑(deep eutectic solvents, DESs)(氯化膽堿∶甘油=1∶2)為溶劑,在80 ℃下反應(yīng)24 h。在底物范圍擴(kuò)展中有效得到一系列4-二甲氨基硝基苯化合物及其衍生物,經(jīng)1H-NMR、13C-NMR確證其結(jié)構(gòu)。結(jié)論 DMF在DESs中可以有效充當(dāng)二甲氨基化試劑,DESs溶劑選擇性提高硝基對位上的鹵原子的親核取代反應(yīng)活性,且不活化鄰位鹵原子,在優(yōu)化后的最佳條件下反應(yīng),最高產(chǎn)率可達(dá)84%。這種特殊的區(qū)域選擇性是其他溶劑中不具備的優(yōu)勢,同時(shí)該方法具有綠色環(huán)保、簡單方便、產(chǎn)率適中的特點(diǎn)。
〔關(guān)鍵詞〕 低共熔溶劑;親核取代反應(yīng);區(qū)域選擇;N,N-二甲基-4-硝基苯胺;N,N-二甲基甲酰胺
〔中圖分類號〕R284" " " " "〔文獻(xiàn)標(biāo)志碼〕A" " " " " 〔文章編號〕doi:10.3969/j.issn.1674-070X.2024.07.009
Dimethylamination of nitro-substituted aromatic halides in deep
eutectic solvents
WANG Jie, LI Zhenzhen, PAN Tong, RAO Lihang, HUANG Jiaxiang, JIANG Qi, SHENG Wenbing*
School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
〔Abstract〕 Objective To investigate the effects of reaction conditions on the amination of nitro-substituted aromatic halogenated hydrocarbons using the nucleophilic substitution reaction of halogenated aromatic hydrocarbons to introduce dimethylamine into the aromatic ring. Methods The optimal reaction conditions were explored using 2-bromo-1-fluoro-4-nitrobenzene as a model, and the range of reaction substrates was explored with nitrobenzene substituted at different positions and different halogen atoms. Results The optimal reaction conditions were as follows: 1.00 mL of N, N-dimethylformamide (DMF) was used as aminating agent, 1.5 equivalents of KOH was used to provide alkaline environment, 5.00 mL of deep eutectic solvents (DESs) (choline chloride:glycerol=1:2) was used as solvent, and the reaction was carried out at 80 ℃ for 24 h. A series of 4-dimethylamino nitrobenzene compounds and their derivatives were effectively obtained in the expansion of the substrates, and their structures were confirmed by 1H-NMR and 13C-NMR. Conclusion DMF can effectively act as a dimethyl amination reagent in DESs, which selectively improves the reactivity of nucleophilic substitution of halogen atoms at the para position of the nitro group while not activating the halogen atoms at the ortho position. Under optimized conditions, the highest yield can reach 84%. This unique regioselectivity is an advantage not found in other solvents. At the same time, this method is environmentally friendly, simple and convenient, and has a moderate yield.
〔Keywords〕 deep eutectic solvents; nucleophilic substitution reaction; regioselectivity; N, N-dimethyl-4-nitroaniline; N, N-dimethylformamide
N,N-二甲基芳胺類化合物是一類重要的生物活性分子,具有抗菌[1]、抗癌[2]、抗人類免疫缺陷病毒[3]等多種藥理活性,廣泛地存在藥物分子中,如米諾環(huán)素(Minocycline)[4]、替加環(huán)素(Tigecycline)[5]和原甲霉素(Orthoformimycin)等[1],詳見圖1。近年有許多學(xué)者對于此類生物活性分子進(jìn)行了合成研究,GARCIA等[6]在堿性條件下改進(jìn)了缺電子的芳香化合物與N,N-二甲基芳胺(N,N-dimethylformamide, DMF)的反應(yīng)方法,該反應(yīng)條件溫和、底物適應(yīng)性廣,克服了芳香鹵代烴親核取代反應(yīng)條件嚴(yán)苛的這一缺陷。
為了響應(yīng)綠色化學(xué)原則,經(jīng)濟(jì)安全、無毒環(huán)保的綠色溶劑引起了化學(xué)工作者的關(guān)注[7]。低共熔溶劑(deep eutectic solvents, DESs)被稱為21世紀(jì)最有前景的有機(jī)反應(yīng)介質(zhì),由氫鍵受體(hydrogen bond acceptor, HBA)和氫鍵供體(hydrogen bond donor, HBD)相互作用而形成的穩(wěn)定混溶體[8-11]。常見的HBA有氯化膽堿(ChCl)、氯化鋅(ZnCl2)、四丁基溴化銨(TBAC)等;常見的HBD有氨基酸、尿素(urea)和甘油(gly)等。DESs具有廉價(jià)易得、綠色環(huán)保、可循環(huán)多次使用、可回收降解等優(yōu)點(diǎn),其良好特性使其成為有機(jī)溶劑的替代品[12-13]。因此,DESs被許多學(xué)者用于優(yōu)化反應(yīng)[10,14-16]。例如:SINGH等[17]利用DESs對芳香伯胺進(jìn)行選擇性N-烷基化,避免了極性有機(jī)溶劑和高反應(yīng)溫度下產(chǎn)生多重烷基化的復(fù)雜性;SONAWANE等[18]在DESs(ChCl/urea)中進(jìn)行克腦文蓋爾縮合反應(yīng);VALVI等[19]在以DESs為溶劑的條件下研究鹵苯與嗎啉的取代反應(yīng)中的溶劑控制區(qū)域選擇性。本文研究在DESs中優(yōu)化硝基鹵代苯與DMF的取代反應(yīng),該反應(yīng)在順利反應(yīng)的前提下,同時(shí)能提高對位鹵原子的區(qū)域選擇性,且不活化鄰位鹵原子,這種特殊的區(qū)域選擇性是其他溶劑所不具備的優(yōu)勢。
1 材料和方法
1.1" 主要儀器及試劑
600兆核磁共振波譜儀測定(德國布魯克公司);RE-2000B型旋轉(zhuǎn)蒸發(fā)儀(鞏義市予華儀器有限公司)。實(shí)驗(yàn)所用化學(xué)試劑均為分析純,使用前均未進(jìn)一步純化。
1.2" 實(shí)驗(yàn)方法
稱取0.50 mmol芳香鹵代物、5.00 mL DESs置于25 mL茄形瓶中,室溫?cái)嚢柚聋u代物完全溶解,然后加入1.00 mL DMF,42.00 mg(1.5 eq)KOH,搭建回流攪拌裝置,升溫至80 ℃。反應(yīng)24 h后,用薄層色譜法(thin layer chromatography,TLC)監(jiān)測反應(yīng),待反應(yīng)原料基本消失后,停止反應(yīng)。待反應(yīng)液冷卻至室溫,依次加入15.00 mL DMSO、5.00 mL水稀釋,再用乙酸乙酯萃取至有機(jī)層為無色,合并有機(jī)層,用飽和食鹽水洗滌3次,無水Na2SO4干燥后過濾,在低真空條件下旋干溶劑。最后使用硅膠柱層析法純化得到目標(biāo)產(chǎn)物,淋洗劑為乙酸乙酯/石油醚(體積比為1∶20)。
2 結(jié)果
2.1" 反應(yīng)條件優(yōu)化
使用以上實(shí)驗(yàn)方法,用化合物2-溴-1-氟-4-硝基苯(化合物1)作為實(shí)驗(yàn)?zāi)P瓦M(jìn)行最優(yōu)反應(yīng)條件摸索,反應(yīng)方式詳見圖2。通過探索不同實(shí)驗(yàn)條件,找出最優(yōu)實(shí)驗(yàn)條件,詳見表1。
以ChCl/urea組成的DESs為溶劑,DMF為胺化劑,KOH提供堿性環(huán)境,在80 ℃下反應(yīng)12 h后,能以51%的產(chǎn)率得到圖2反應(yīng)方程式中的化合物2(表1,編號1)。采用常用的三種低共熔溶劑:ChCl/gly、TBAC/gly、ChCl/urea,通過改變HBA、HBD及其比例,篩選出最優(yōu)溶劑,最終發(fā)現(xiàn)用ChCl/gly(1∶2)為溶劑能以67%的產(chǎn)率得到目標(biāo)產(chǎn)物(表1,編號1~4)。隨后對溶劑的用量進(jìn)行考察,實(shí)驗(yàn)表明在ChCl/gly(1∶2)的用量達(dá)到5.00 mL后,溶劑用量的增加并不能使目標(biāo)產(chǎn)物的產(chǎn)率增加(表1,編號4~6),所以ChCl/gly(1∶2)的最佳用量為5.00 mL。接著,對堿進(jìn)行篩選。根據(jù)已知資料,在氫氧化物輔助DMF的熱分解中,KOH對于反應(yīng)產(chǎn)率具有提高作用,并且在實(shí)驗(yàn)中沒有發(fā)現(xiàn)羥基取代的副產(chǎn)物[6]。因此,本實(shí)驗(yàn)采用了常見的氫氧化物進(jìn)行探究實(shí)驗(yàn)(表1,編號7~8)。實(shí)驗(yàn)結(jié)果表明,反應(yīng)最佳的堿仍為KOH(表1,編號6)。隨后,考察其用量對反應(yīng)的影響(表1,編號9~11),發(fā)現(xiàn)1.5倍當(dāng)量的KOH能使目標(biāo)產(chǎn)物的產(chǎn)率達(dá)到75%(表1,編號10),增加堿的用量到2倍時(shí),產(chǎn)率略有降低(表1,編號11)。
在硝基鹵代芳烴與DMF反應(yīng)中,DMF既是反應(yīng)物也是反應(yīng)溶劑[20],但本實(shí)驗(yàn)進(jìn)行了創(chuàng)新,用DESs作為反應(yīng)溶劑,進(jìn)而探究DMF作為反應(yīng)物的適宜用量(表1,編號12~13)。實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),減少DMF的用量至0.50 mL,目標(biāo)產(chǎn)物的產(chǎn)率反而下降(表1,編號12)。然而,增加DMF的用量至3.00 mL,產(chǎn)率沒有明顯提高(表1,編號13)。因此,DMF的最佳用量為1.00 mL(表1,編號12~13)。最后,分別對溫度和反應(yīng)時(shí)間進(jìn)行考察。將該反應(yīng)分別放置于50 ℃和100 ℃條件下進(jìn)行,目標(biāo)產(chǎn)物的產(chǎn)率均有所下降(表1,編號14~15)。進(jìn)一步延長反應(yīng)時(shí)間(表1,編號16~17),實(shí)驗(yàn)發(fā)現(xiàn)當(dāng)反應(yīng)時(shí)間為24 h,目標(biāo)產(chǎn)物的產(chǎn)率達(dá)到80%(表1,編號16)。綜上所述,反應(yīng)的最佳條件為使用5.00 mL ChCl/gly(1∶2)為反應(yīng)溶劑,1.00 mL DMF為胺化劑,1.5倍當(dāng)量KOH提供堿性環(huán)境,在80 ℃下反應(yīng)24 h,可以得到最理想的反應(yīng)效果。
2.2" 反應(yīng)底物拓展
2.2.1" 底物范圍擴(kuò)展" 在上述最優(yōu)反應(yīng)條件下,采用不同鹵原子取代的硝基苯對反應(yīng)底物的適用范圍進(jìn)行考察,反應(yīng)方程式詳見圖3,實(shí)驗(yàn)結(jié)果詳見圖4。實(shí)驗(yàn)表明:當(dāng)硝基的對位上有鹵原子取代時(shí),具體結(jié)構(gòu)見原料1a-1d,可以得到產(chǎn)率較高的目標(biāo)產(chǎn)物2a-2d,并且二甲氨基只取代了硝基對位上的鹵原子。當(dāng)硝基對位上沒有鹵原子取代時(shí)(1e-1h),沒有檢測到胺化產(chǎn)物,可能是產(chǎn)率過低以致于無法分離獲得。硝基的鄰位上是氟原子這種電負(fù)性較大的取代基,反應(yīng)產(chǎn)物的產(chǎn)率依舊很低甚至沒有產(chǎn)物,在硝基鄰對位均存在鹵原子時(shí),DMF優(yōu)先選擇取代對位上的鹵原子,生成對二甲氨基硝基苯產(chǎn)物。這是DESs溶劑的特殊選擇性的體現(xiàn),而在DMF溶劑中,硝基可以活化鄰對位的鹵原子,從而使得鄰對位均可發(fā)生氨基化反應(yīng)[20-21]。
2.2.2" 目標(biāo)產(chǎn)物的核磁數(shù)據(jù)" 2-氟-N,N-二甲基-4-硝基苯胺(2a,2b):1H-NMR (600 MHz, CDCl3) δ 7.94 (dd, J = 9.2, 2.6 Hz, 1H), 7.88 (dd, J = 14.1, 2.6 Hz, 1H), 6.72 (t, J = 9.0 Hz, 1H), 3.10 (d, J = 2.1 Hz, 6H);13C NMR (151 MHz, CDCl3) δ 151.86, 150.22, 145.55, 145.50, 121.48, 121.46, 114.86, 114.83, 113.07, 112.89, 42.35, 42.30。
3-溴-N,N-二甲基-4-硝基苯胺(2c):1H NMR (600 MHz, CDCl3) δ 8.04 (d, J = 9.4 Hz, 1H), 6.86 (d, J = 2.8 Hz, 1H), 6.55 (dd, J = 9.3, 2.8 Hz, 1H), 3.08 (s, 6H);13C-NMR (151 MHz, CDCl3) δ 136.90, 128.81, 118.17, 109.74, 40.33。
2-二甲基氨基-5-硝基苯氰(2d):1H-NMR (600 MHz, CDCl3) δ 8.42 (d, J = 2.7 Hz, 1H), 8.18 (dd, J = 9.6, 2.8 Hz, 1H), 6.79 (d, J = 9.6 Hz, 1H), 3.33 (s, 6H);13C-NMR (151 MHz, CDCl3) δ 156.37, 137.58, 133.02, 128.75, 118.54, 114.91, 95.90, 42.89, 29.85。
3 反應(yīng)機(jī)制討論
根據(jù)文獻(xiàn)報(bào)道以及鹵代硝基苯的取代反應(yīng)的研究,鹵原子取代的硝基苯與DMF進(jìn)行雙分子親核取代反應(yīng)的機(jī)制詳見圖5,一種是芳香族親核取代反應(yīng)(nucleophilic aromatic substitution reaction, SNAr),另一種是替代親核取代(vicarious nucleophilic substitution, VNS)反應(yīng)。SNAr機(jī)制是指鹵代硝基苯和親核試劑的反應(yīng)分兩步,首先生成σ-絡(luò)合物,然后離去基團(tuán)帶電子離去,形成取代產(chǎn)物[22-23]。該反應(yīng)速度取決于親核試劑的親核性,也取決于芳香化合物的親電性。若硝基的鄰位或?qū)ξ簧嫌形娮踊瑒t可通過硝基-C效應(yīng)使絡(luò)合物的負(fù)電荷分散而穩(wěn)定,從而使親核取代反應(yīng)容易進(jìn)行。并且,鹵原子電負(fù)性越大,碳鹵鍵的極性越大,越容易受到親核試劑的進(jìn)攻,同時(shí)也越能形成穩(wěn)定的絡(luò)合物,所以氟化物的反應(yīng)速度比其他鹵化物快[24-26]。VNS反應(yīng)是指反應(yīng)先進(jìn)行1,4-加成或1,6-加成,再脫去一分子水,最后在堿的作用下發(fā)生分子內(nèi)親核取代反應(yīng)[24-27]。綜上可知,鹵代硝基苯進(jìn)行親核取代反應(yīng)時(shí),生成鄰位或?qū)ξ蝗〈a(chǎn)物。
根據(jù)本文的實(shí)驗(yàn)結(jié)果,在DESs溶劑中,產(chǎn)物均以對位取代反應(yīng)為主,由此可推測出DESs可以提高該反應(yīng)對位取代的選擇性。DES對硝基對位鹵原子的選擇性取代機(jī)制目前沒有明確的解釋,還需要進(jìn)一步實(shí)驗(yàn)探索。
4 結(jié)語
利用DESs作為反應(yīng)溶劑制備了芳香型對二甲氨基硝基苯胺及其衍生物,結(jié)果表明,使用5.00 mL的ChCl/gly(1:2)為反應(yīng)溶劑,1.00 mL的DMF為胺化劑,1.5倍當(dāng)量的KOH提供堿性環(huán)境,在80 ℃下反應(yīng)24 h,主產(chǎn)物分離產(chǎn)率達(dá)到80%。在最優(yōu)條件下研究了不同鹵原子取代的硝基苯原料與DMF的反應(yīng),發(fā)現(xiàn)產(chǎn)物均以N,N-二甲基-4-硝基苯胺為主。該方法能選擇性提高對位鹵原子取代的效率,具有綠色環(huán)保、操作簡便、產(chǎn)率中等的優(yōu)點(diǎn),為后續(xù)在制備二甲氨基類藥物提供一種新方法。
參考文獻(xiàn)
[1] LVAREZ-MARTNEZ F J, BARRAJN-CATALN E, MICOL V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review[J]. Biomedicines, 2020, 8(10): 405.
[2] MACHIREDDY B, SULLIVAN H J, WU C. Binding of BRACO19 to a telomeric G-quadruplex DNA probed by all-atom molecular dynamics simulations with explicit solvent[J]. Molecules, 2019, 24(6): 1010.
[3] NADAI M, DORIA F, FRASSON I, et al. Naphthalene diimide-tetraazacycloalkane conjugates are G-quadruplex-based HIV-1 inhibitors with a dual mode of action[J]. ACS Infectious Diseases, 2024, 10(2): 489-499.
[4] STRICKLAND B A, BAKHSHESHIAN J, EMMANUEL B, et al. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review[J]. Journal of Clinical Neuroscience, 2021, 86: 50-57.
[5] YAGHOUBI S, ZEKIY A O, KRUTOVA M, et al. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review[J]. European Journal of Clinical Microbiology amp; Infectious Diseases, 2022, 41(7): 1003-1022.
[6] GARCIA J, SORRENTINO J, DILLER E J, et al. A General Method for Nucleophilic Aromatic Substitution of Aryl Fluorides and Chlorides with Dimethylamine using Hydroxide-Assisted Decomposition of N, N-Dimethylforamide[J]. Synthetic Communications, 2016, 46(5): 475-481.
[7] REN S H, MU T C, WU W Z. Advances in deep eutectic solvents: New green solvents[J]. Processes, 2023, 11(7): 1920.
[8] 劉艷霞, 胡建華, 李永麗, 等. 低共熔溶劑的研究進(jìn)展[J]. 現(xiàn)代化工, 2022, 42(10): 51-55.
[9] 丁" 陽, 劉夢格, 卜健行, 等. 低共熔溶劑催化有機(jī)合成反應(yīng)的研究進(jìn)展[J]. 化學(xué)通報(bào), 2022, 85(9): 1070-1076, 1061.
[10] HOOSHMAND S E, AFSHARI R, RAMóN D J, et al. Deep eutectic solvents: Cutting-edge applications in cross-coupling reactions[J]. Green Chemistry, 2020, 22(12): 3668-3692.
[11] SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082.
[12] PERNA F M, VITALE P, CAPRIATI V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 27-33.
[13] JIANG Q, WU C, ZHONG H, et al. Application of deep eutectic solvents in formation of carbon-carbon and carbon-heteroatom bond by cross-coupling reactions[J]. Chemistry Select, 2023, 8(47): e202303728.
[14] HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents: A review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3): 1232-1285.
[15] MISHRA D K, PUGAZHENTHI G, BANERJEE T. Ionic liquid-based deep eutectic solvent as reaction media for the thermal dehydrogenation of ethylene diamine-bis-borane[J]. ACS Sustainable Chemistry amp; Engineering, 2020, 8(12): 4910-4919.
[16] TAM M K C, MEIER M A R, ZHANG L N, et al. Expectations for papers on sustainable materials in ACS sustainable chemistry amp; engineering[J]. ACS Sustainable Chemistry amp; Engineering, 2020, 8(4): 1703-1704.
[17] SINGH B, LOBO H, SHANKARLING G. Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent[J]. Catalysis Letters, 2011, 141(1): 178-182.
[18] SONAWANE Y A, PHADTARE S B, BORSE B N, et al. Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent[J]. Organic Letters, 2010, 12(7): 1456-1459.
[19] VALVI A, TIWARI S. Solvent-controlled regioselectivity in nucleophilic substitution reactions of 1-X-2, 4-difluorobenzenes with morpholine using deep eutectic solvents[J]. Chemistry Select, 2021, 6(2): 249-254.
[20] YANG C, ZHANG F, DENG G J, et al. Amination of aromatic halides and exploration of the reactivity sequence of aromatic halides[J]. The Journal of Organic Chemistry, 2019, 84(1): 181-190.
[21] LI J P, HUANG C Y, WEN D H, et al. Nickel-catalyzed amination of aryl chlorides with amides[J]. Organic Letters, 2021, 23(3): 687-691.
[22] BAZIAK K, DANIKIEWICZ W, MKOSZA M. How do aromatic nitro compounds react with nucleophiles? Theoretical description using aromaticity, nucleophilicity and electrophilicity indices[J]. Molecules, 2020, 25(20): 4819.
[23] KWAN E E, ZENG Y W, BESSER H A, et al. Concerted nucleophilic aromatic substitutions[J]. Nature Chemistry, 2018, 10(9): 917-923.
[24] LOSKA R, MKOSZA M. Introduction of carbon substituents into nitroarenes via nucleophilic substitution of hydrogen: New developments[J]. Synthesis, 2020, 52(21): 3095-3110.
[25] 李" 娜. 缺電子苯環(huán)的親核加成與親核取代反應(yīng)[D]. 延吉: 延邊大學(xué), 2004.
[26] STENLID J H, BRINCK T. Nucleophilic aromatic substitution reactions described by the local electron attachment energy[J]. The Journal of Organic Chemistry, 2017, 82(6): 3072-3083.
[27] ZOU D, HAN G. The coupling of carbon and nitrogen substituents with nitroarenes: Vicarious Nucleophilic substitution of hydrogen in nitroarenes[J]. Current Organic Chemistry, 2022, 26(9): 822-833.