




















鉆井過程中,鉆井液對水合物地層產(chǎn)生熱交換作用,同時鉆井液侵入會影響水合物穩(wěn)定,兩者均引起井周應(yīng)力場變化,導致井壁坍塌等復雜情況,嚴重制約著天然氣水合物資源高效開發(fā)。基于線性熱彈性多孔介質(zhì)理論建立了熱流固耦合的水合物斜井井周應(yīng)力模型,引入歐拉變換考慮三維地應(yīng)力大小和方向的隨機性,采用D-P準則強化中間主應(yīng)力對水合物井壁穩(wěn)定的影響,并開展了井斜角/方位角、水合物飽和度、井壁滲透性以及鉆井液溫度等因素對水合物井壁穩(wěn)定的研究。研究結(jié)果表明:井斜角對井壁的穩(wěn)定性具有更大的影響,井斜角每增加30°坍塌壓力變化0.155 MPa,方位角每增加30°坍塌壓力變化0.112 MPa。水合物從高到低飽和度的分解過程,前期地層強度緩慢降低,后期快速降低。水合物地層的有效孔隙度增加使得鉆井液侵入量增加,致使地層有效應(yīng)力降低,導致地層的變形和破裂,增加井壁失穩(wěn)風險。水合物地層對高于相平衡溫度(285 K)的鉆井液較為敏感,每升高1 K坍塌壓力當量密度約增加0.006 9 g/cm3,相反則表現(xiàn)較為遲鈍。在進行鉆井作業(yè)時,選用合適的高抑制性、低溫鉆井液有助于控制水合物的分解以及減少鉆井液侵入,進而降低水合物井壁失穩(wěn)風險。研究結(jié)果可為天然氣水合物井壁穩(wěn)定性研究提供參考。
天然氣水合物;井壁穩(wěn)定;D-P準則;坍塌壓力;熱流固耦合
TE52
A
005
Research on Gas Hydrate Wellbore Stability Based on D-P Criterion
Sun Xiaofeng1,2 Zhao Yuanzhe1,2 Li Zhipeng3 Hu Qiaobo2 Tao Liang1,2 Yao Di2
(1.SANYA Offshore Oil amp; Gas Research Institute,Northeast Petroleum University;2.Key Laboratory of Enhanced Oil and Gas Recovery of Educational Ministry,Northeast Petroleum University;3.No.4 Drilling Engineering Company,CNPC Bohai Drilling Engineering Company Limited)
During drilling operations,drilling fluid generates heat exchange with hydrate formation,and the invasion of drilling fluid affects the stability of the hydrate.Both situations cause changes in the stress field around the well,leading to complexities such as wellbore collapse,which restrict the efficient development of gas hydrate resources.In the paper,a thermo-fluid-solid coupling circumferential stress model of deviated hydrate well was built according to the theory of linear thermoelastic porous media.Then,by introducing the Euler’s transformation and considering the random magnitudes and directions of 3D in-situ stress,the D-P criterion was used to strengthen the influence of intermediate principal stress on hydrate wellbore stability,and understand the influences of the factors such as borehole inclination/azimuth,hydrate saturation,sidewall permeability and drilling fluid temperature on hydrate wellbore stability.The results show that the inclination has a greater influence on the wellbore stability.For every 30° increase in inclination,the collapse pressure changes by 0.155 MPa;for every 30° increase in azimuth,the collapse pressure changes by 0.112 MPa.In the decomposition process of hydrate from high to low saturation,the formation strength slowly decreases in the early stage and rapidly decreases in the later stage.The increase in effective porosity of hydrate formation leads to an increase in drilling fluid invasion,resulting in a decrease in effective stress of the formation,which further leas to the deformation and fracturing of the formation and an increase in the risk of wellbore instability.Hydrate formation is more sensitive to drilling fluids above the phase equilibrium temperature (285 K).For every 1 K increase,the equivalent density of collapse pressure is increased by about 0.006 9 g/cm3;conversely,hydrate formation is rather dull to drilling fluids.At the time of drilling,the selection of appropriate high inhibitory and low-temperature drilling fluids can help control the decomposition of hydrates and reduce drilling fluid invasion,thereby reducing the risk of hydrate wellbore instability.The research results provide reference for investigating gas hydrate wellbore stability.
natural gas hydrate;wellbore stability;D-P criterion; collapse pressure;thermo-fluid-solid coupling
0 引 言
天然氣水合物是由天然氣和水合物在高壓低溫下形成的晶體狀化合物,廣泛分布于海洋深水地層中,儲量較大,燃燒效率高,被譽為新的、有前景的非常規(guī)替代能源[1]。中國、日本、加拿大和美國等國家均投入巨資進行水合物勘探和開采方面的研究[2],但水合物地層強度低、孔隙度高以及水合物狀態(tài)容易受到溫壓影響發(fā)生相變[3],這導致井壁坍塌等復雜情況頻發(fā),嚴重影響了鉆井效率。
在水合物井壁穩(wěn)定性研究方面,國內(nèi)外學者進行了大量的相關(guān)研究。李慶超等[4]分析水合物分解對井眼穩(wěn)定的影響。熊超等[5]分析鉆井液溫度對水合物地層的影響。SUN J.X.等[6]分析鉆井液性質(zhì)和初始儲層條件對井壁穩(wěn)定的影響。M.KURIHARA等[7]分析了溫度對井壁周圍應(yīng)力的影響。M.SALEHABADI等[8]研究了鉆井液侵入分解后的井筒穩(wěn)定性以及非均勻載荷作用下水合物井壁垮塌誘因。GUO Z.Y.等[9]研究了鉆井液性質(zhì)對水合物影響及水合物分解對地層強度的影響。以上研究工作多建立于Mohr-Coulomb準則的基礎(chǔ)上,而且未充分考慮中間應(yīng)力對水合物井壁穩(wěn)定性的影響。本文在前人研究的基礎(chǔ)上加入歐拉變換,充分考慮三維地應(yīng)力方向的隨機性,引入線性熱彈性多孔介質(zhì)理論,建立熱流固耦合的斜井井周應(yīng)力模型,采用Drucker Prager(D-P)準則強化中間主應(yīng)力對水合物井壁的影響,進一步分析井斜角/方位角、水合物飽和度、鉆井液溫度以及地層孔隙度等因素對水合物地層井壁的影響。研究結(jié)果可為天然氣水合物井壁穩(wěn)定性研究提供參考。
孫曉峰,等:基于D-P準則的天然氣水合物井壁穩(wěn)定性研究
1 模型建立及強度準則
1.1 天然氣水合物井周圍巖應(yīng)力模型
天然氣水合物的應(yīng)力狀態(tài)由巖體本身載荷狀態(tài)和其經(jīng)歷的地質(zhì)歷史應(yīng)力路徑?jīng)Q定,因此其大小、方向具有隨機性和區(qū)域差異性[10]。筆者引入歐拉變換實現(xiàn)地應(yīng)力坐標系與井眼坐標系的轉(zhuǎn)換,來描述天然氣水合物斜井井壁圍巖的應(yīng)力狀態(tài)及井壁穩(wěn)定性。
在圖1中,假設(shè)在水合物地層中主地應(yīng)力方向與圖中標注方向相同。圖1中:σH為水平最大地應(yīng)力,MPa;σh為水平最小地應(yīng)力,MPa;σv為上覆巖層壓力,MPa。根據(jù)歐拉變換,地應(yīng)力坐標系與為井眼坐標系轉(zhuǎn)換表達式如下:
式中:φ為井斜角,(°);ψ為井斜方位角,(°);[σxyz]為井眼坐標系下的地應(yīng)力張量,MPa;[σx]為地應(yīng)力,MPa;[M(φ,ψ)]為地應(yīng)力坐標系的地應(yīng)力張量,MPa;[MT(φ,ψ)]為[M(φ,ψ)]的轉(zhuǎn)置矩陣,MPa-1。
為構(gòu)建相對簡單易用的水合物井壁穩(wěn)定模型,對模型進行如下假設(shè):①假設(shè)水合物地層為多孔彈塑性地層,均質(zhì)、各向同性材料,同時井壁圍巖處于平面應(yīng)變狀態(tài);②鉆井過程中產(chǎn)生的氣體或者水相對較少,研究中忽略了水合物分解產(chǎn)生氣體或者水的影響。
基于上述假設(shè)并結(jié)合歐拉變換,得到水合物井壁圍巖應(yīng)力分布方程[11-12]:
式中:σr、σθ、σz分別為距離井眼r處地層所受的徑向應(yīng)力、周向應(yīng)力和垂向應(yīng)力,MPa;α為有效應(yīng)力系數(shù);p(r)為水合物井壁周圍地層的實時地層孔隙壓力,MPa;p0為地層初始孔隙壓力,MPa;pi為液柱壓力,MPa;R為井眼半徑,m;r為與井軸的距離,m;θ為方位角,(°);ν為泊松比,無量綱;τrθ為井壁上的剪切應(yīng)力,MPa。
在鉆井過程中,鉆井液在正壓差作用下向地層發(fā)生徑向流動,造成巖石內(nèi)部裂縫擴展延伸,流體滲流空間變大,產(chǎn)生滲流應(yīng)力變化。基于孔隙彈性力學原理[13],其相關(guān)表達式如下:
式中:σrp、σθp、σzp分別為地層滲流在井壁周圍產(chǎn)生的徑向應(yīng)力、周向應(yīng)力和垂向應(yīng)力,MPa;pf(r)為地層孔隙壓力,MPa;γ為水合物地層孔隙度。
在鉆井過程中,鉆井液傳熱、鉆頭切削地層巖石及井底鉆具與水合物井壁摩擦都會產(chǎn)生熱,從而導致水合物發(fā)生分解,進而影響水合物地層的膠結(jié)及骨架,使得井壁發(fā)生坍塌。基于熱彈性理論井周熱應(yīng)力的表達式如下[14]:
式中:σTr、σTθ、σTz分別為地層溫度變化在井壁周圍產(chǎn)生的徑向應(yīng)力、周向應(yīng)力和垂向應(yīng)力,MPa;E為彈性模量,MPa;αT為水合物地層熱膨脹系數(shù),K-1;T(r)為水合物井壁周圍地層的實時地層溫度,K;T0為水合物地層原始溫度,K。
聯(lián)立式(3)~式(5),建立熱流固耦合的水合物斜井井周應(yīng)力模型如下:
根據(jù)天然氣水合物井周應(yīng)力模型,得到井壁主應(yīng)力為:
式中:δ為滲透系數(shù),當井壁滲透時δ=1,井壁不滲透時δ=0;σi、σj、σk分別為井壁上的3個主應(yīng)力,MPa;σθz為周向應(yīng)力在垂向應(yīng)力上的投影,MPa。
1.2 強度準則
L.VERNIK等[15]研究發(fā)現(xiàn),Mohr Coulomb(M-C)準則預(yù)測的井壁破壞區(qū)域與實際不相符,建議使用考慮中間主應(yīng)力影響的破壞準則。筆者采用Drucker Prager(D-P)準則[16]強化中間應(yīng)力對水合物圍巖強度的影響。D-P準則不僅考慮巖石的剪切破壞,而且考慮了中間主應(yīng)力以及靜水壓力的作用,同時具有較好的收斂性,廣泛應(yīng)用在數(shù)值模擬分析軟件中。D-P準則的通用表達式如下[17]:
其中:
式中:I1為應(yīng)力第一不變量,MPa;J2為偏應(yīng)力張量的第二應(yīng)力不變量,MPa2;R、Kf為關(guān)于內(nèi)摩擦角和內(nèi)聚力的常數(shù);C為內(nèi)聚力,MPa。
2 水合物儲層物性參數(shù)
G.P.HOLLAND等[18]針對水合物的微觀結(jié)構(gòu)研究發(fā)現(xiàn),成藏的水合物沉積物具有很高的滲透性,主要是因為天然氣以水合物的形態(tài)存在于地層孔隙中,故地層的實際滲透率和有效孔隙度受到水合物的影響,其相關(guān)表達式如下[19]:
式中:k為水合物沉積物有效滲透率,μm2;k0為水合物沉積物初始滲透率,μm2;γ0為水合物地層初始孔隙度,%;Sh為水合物飽和度,%。
鉆進水合物地層之前,地層處于穩(wěn)定狀態(tài),同時各點壓力等于原始地層孔隙壓力。隨著不斷鉆進,水合物地層被打開,水合物狀態(tài)發(fā)生改變,從而導致地層孔隙壓力發(fā)生變化,其相關(guān)表達式如下[20]:
式中:r∞為距離井眼無限遠處,m。
在鉆井過程中,鉆井液溫度一般高于水合物地層溫度,與地層形成溫度差,從而產(chǎn)生熱量交換,水合物地層溫度發(fā)生改變。為簡化模型計算,不考慮摩擦熱同時假設(shè)套管導熱系數(shù)無限大,相關(guān)表達式如下:
式中:Ti為鉆井液溫度,K;λ為地層相對導熱系數(shù)。
水合物地層彈性模量隨水合物飽和度呈線性變化,其相關(guān)表達式如下[21]:
E=E0+aSh(20)
式中:E為水合物地層彈性模量,MPa;E0為初始水合物地層彈性模量,MPa;a為材料參數(shù),取值0.001 91 MPa。
在水合物開采過程中,鉆井液對地層的侵入打破了水合物儲層的平衡,水合物發(fā)生分解,導致地層膠結(jié)性變差,內(nèi)聚力改變。其相關(guān)表達式如下[22-23]:
式中:C0為初始水合物儲層內(nèi)聚力,MPa;?為內(nèi)摩擦角,(°);b為材料參數(shù),取值1.8。
WANG L.等[24]研究發(fā)現(xiàn),含水合物沉積物的強度和彈性模量隨著水合物飽和度的增加而增加,但泊松比影響較小。K.MIYAZAKI等[25]通過三軸試驗發(fā)現(xiàn),含水合物巖石的內(nèi)摩擦角不受水合物飽和度的影響。因此在計算過程假設(shè)內(nèi)摩擦角以及泊松比不變。
3 水合物井壁穩(wěn)定性分析
通過文獻調(diào)研[13,22]得到了地層力學參數(shù)與水合物力學參數(shù),該數(shù)值接近墨西哥灣的地層條件,具體數(shù)值見表1。
3.1 井斜角/方位角
采用D-P準則結(jié)合表1數(shù)據(jù),得水合物井周坍塌壓力云圖及井壁上最大主應(yīng)力與最小主應(yīng)力的應(yīng)力差值隨方位角的變化規(guī)律,如圖2和圖3所示。坍塌壓力當量云圖隨著方位角呈周期性變化,故取1/2周期進行分析,即方位角范圍在0°~180°內(nèi)。
由圖2和圖3得,在相同方位角鉆進時,水合物井壁處應(yīng)力差隨著井斜角的增加不斷增加。水合物井壁坍塌壓力不斷增加,故在鉆進過程中,保持水平井段水合物井壁穩(wěn)定,即可保證直井段和斜井段不發(fā)生坍塌。在相同方位下井斜角每變化30°,坍塌壓力當量密度變化0.01 g/cm3,即坍塌壓力變化0.155 MPa。在相同井斜段,水合物坍塌壓力當量密度云圖隨著方位角的增加呈現(xiàn)“紅-黃-紅”的變化規(guī)律。90°方位角井壁處應(yīng)力差值最低,即朝著水平最小地應(yīng)力的方向鉆進較為安全;180° 方位角應(yīng)力差值最高,即朝著水平最大地應(yīng)力的方向鉆進會增加井壁失穩(wěn)風險。當井斜角相同時,方位角每變化30°,坍塌壓力當量密度變化0.006 g/cm3,即坍塌壓力變化0.112 MPa。研究發(fā)現(xiàn),相對于方位角,井斜角對水合物井壁穩(wěn)定具有更大的影響。因此,在鉆井過程中,為了降低井壁坍塌的風險,建議選擇朝著最小水平主應(yīng)力的方向進行鉆進,并且保持井斜角在一定范圍內(nèi)變化。
3.2 水合物飽和度
結(jié)合方位角與井斜角研究結(jié)果,采用90°方位角的直井段和水平段的數(shù)據(jù),得到不同水合物飽和度下水合物坍塌壓力變化規(guī)律,如圖4所示。
由圖4可知,隨著水合物飽和度的不斷增加,水合物井壁的坍塌壓力不斷減小。主要是水合物在地層中起到支撐和膠結(jié)的作用[26],隨著水合物飽和度的增加,地層逐漸從松散變得牢固,進而地層強度不斷增加。水合物飽和度從80%降低到60%,坍塌壓力當量密度約增加了0.01 g/cm3,即坍塌壓力增加0.076 MPa。但是水合物飽和度從40%降低到20%,坍塌壓力當量密度約增加了0.03 g/cm3,即坍塌壓力增加0.228 MPa。該趨勢表明,在水合物從高飽和度分解到低飽和的過程中,前期地層強度緩慢降低,后期地層強度快速降低,因此鉆井過程中應(yīng)時刻注意水合物分解情況,減少對水合物地層的擾動,以降低井壁坍塌風險。
3.3 井壁滲透性
當水合物地層井眼鉆開后,鉆井液首先與井壁發(fā)生復雜的物理化學反應(yīng),使井壁逐漸松散直至貫通,使得井周的孔隙壓力發(fā)生改變,同時在井壁上產(chǎn)生附加的滲流應(yīng)力,進而改變井周應(yīng)力場。研究水合物井壁的滲透性與穩(wěn)定性之間的關(guān)系,可以有效降低水合物井壁失穩(wěn)的潛在風險。水合物井壁滲透性對水合物坍塌壓力的影響規(guī)律如圖5所示。
由圖5可知,水合物井壁的坍塌壓力與地層的有效孔隙度呈正相關(guān)。隨著地層有效孔隙度的增加,水合物的坍塌壓力當量密度也會增加。水合物井壁的有效孔隙度增加,意味著存在著更多的孔隙和裂縫空間,這會促使鉆井液更容易進入地層中。鉆井液的侵入不僅降低地層的強度和穩(wěn)定性,還可能與地層中的水合物反應(yīng)引起地層結(jié)構(gòu)的改變。同時有效孔隙度增高會導致井周附近的地層孔隙壓力升高,使得有效應(yīng)力減小,導致地層的變形和破裂。建議選用具有高度抑制作用的鉆井液[27],這樣不僅能有效降低其對巖石強度的影響,還能保護儲層并提高水合物井壁的穩(wěn)定性。
3.4 鉆井液溫度
在鉆進以及循環(huán)過程中,鉆井液在壓力的作用下侵入地層,同時鉆井液與地層存在溫度差,會與地層產(chǎn)生熱交換,使得水合物地層井壁溫度場發(fā)生變化,導致水合物狀態(tài)不穩(wěn)定,進而影響水合物井周的應(yīng)力場分布,應(yīng)力集中發(fā)生區(qū)域,地層發(fā)生塑性變形。不同鉆井液溫度下水合物坍塌壓力變化規(guī)律如圖6所示。
由圖6可知:當鉆井液溫度逐漸從275 K升高到285 K(相平衡溫度)時,水合物井壁坍塌壓力當量密度緩慢增加,每升高1 K坍塌壓力當量密度約增加0.001 5 g/cm3,相當于坍塌壓力增加了0.022 MPa,其增加量可忽略不計;當鉆井液溫度逐漸高于285 K時,水合物井壁坍塌壓力當量密度快速增加,每升高1 K坍塌壓力當量密度約增加0.006 9 g/cm3,相當于坍塌壓力增加了0.105 MPa,其增加量為低溫(低于285 K)的4倍。其原因是當鉆井液溫度高于地層溫度時,地層中固體水合物受到溫度影響向流體轉(zhuǎn)化[28],使得井壁穩(wěn)定性急劇下降。在壓力作用下進入地層的鉆井液會逐漸增加,干擾的水合物區(qū)域會逐漸增加,井壁失穩(wěn)的區(qū)域也隨著增加。故在鉆進過程中,根據(jù)地層溫度選擇合適的鉆井液能有效降低井壁失穩(wěn)的風險,減小井壁失穩(wěn)區(qū)域。
4 結(jié) 論
(1)基于線性熱彈性多孔介質(zhì)理論以及歐拉變換,建立了水合物斜井井壁的熱流固耦合模型,分析了井斜/方位角、水合物飽和度、溫度以及井壁滲透性對水合物井壁穩(wěn)定性的影響。
(2)研究發(fā)現(xiàn),相對于方位角,井斜角對水合物井壁穩(wěn)定具有更大的影響,井斜角每變化30°,坍塌壓力變化0.155 MPa,方位角每增加30°,坍塌壓力變化0.112 MPa。水合物分解前期對地層強度的影響可忽略不計,但隨著水合物分解的不斷進行,地層強度快速降低,當水合物分解至40%以下,水合物每減少20%,坍塌壓力當量密度約增加了0.03 g/cm3,即坍塌壓力增加0.228 MPa。水合物地層的有效孔隙度增加使得鉆井液侵入量增加,致使地層有效應(yīng)力降低,導致地層的變形和破裂,進而增加井壁失穩(wěn)風險。當鉆井液溫度逐漸高于相平衡溫度(285 K)時,水合物井壁坍塌壓力當量密度快速增加,每升高1 K坍塌壓力當量密度約增加0.006 9 g/cm3,相當于坍塌壓力增加了0.105 MPa,其增加量為低溫(低于285 K)的4倍。
(3)在水合物地層鉆井過程中,應(yīng)選用合適的低溫、高抑制性鉆井液,防止地層中固體水合物受到溫度影響向流體轉(zhuǎn)化以及減少對鉆井液侵入對井周應(yīng)力場的影響,降低水合物井壁坍塌的風險。
[1] XU C G,LI X S,YAN K F,et al.Research progress in hydrate-based technologies and processes in China:a review[J].Chinese Journal of Chemical Engineering,2019,27(9):1998-2013.
[2] LIU L P,SUN Z L,ZHANG L,et al.Progress in global gas hydrate development and production as a new energy resource[J].Acta Geologica Sinica-English Edition,2019,93(3):731-755.
[3] GUO X W,XU L,WANG B,et al.Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation[J].Applied Energy,2020,276:115438.
[4] 李慶超,王威,王義頃,等.水合物儲層鉆井水合物分解及井眼坍塌分析[J].石油機械,2021,49(6):43-50.
LI Q C,WANG W,WANG Y Q,et al.et al hydrate dissociation and wellbore collapse analysis in hydrate reservoir drilling[J].China Petroleum Machinery,2021,49(6):43-50.
[5] 熊超,劉力,徐小龍,等.隔熱套管抑制水合物地層分解規(guī)律研究[J].石油機械,2021,49(3):65-71.
XIONG C,LIU L,XU X L,et al.Research on insulation casing inhibiting the decomposition of hydrate formation[J].China Petroleum Machinery,2021,49(3):65-71.
[6] SUN J X,NING F L,LEI H W,et al.Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area:a case study[J].Journal of Petroleum Science and Engineering,2018,170:345-367.
[7] KURIHARA M,SATO A,F(xiàn)UNATSU K,et al.Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]∥International Oil and Gas Conference and Exhibition in China.Beijing,China:SPE.2010:SPE 132155-MS.
[8] SALEHABADI M,JIN M,YANG J H,et al.Finite element modeling of casing in Gas-Hydrate-Bearing sediments[J].SPE Drilling amp; Completion,2009,24(4):545-552.
[9] GUO Z Y,WANG H N,JIANG M J.Elastoplastic analytical investigation of wellbore stability for drilling in methane hydrate-bearing sediments[J].Journal of Natural Gas Science and Engineering,2020,79:103344.
[10] 丁立欽,王志喬,呂建國,等.基于圍巖本體Mogi-Coulomb強度準則的層理性巖層斜井井壁穩(wěn)定模型[J].巖石力學與工程學報,2017,36(3):622-632.
DING L Q,WANG Z Q,LYU J G,et al.A model for inclined borehole stability in bedding rocks based on Mogi-Coulomb criterion of rock matrix[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(3):622-632.
[11] MA T S,CHEN P,YANG C H,et al.Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion[J].Journal of Petroleum Science and Engineering,2015,135:678-701.
[12] AL-AJMI A M,ZIMMERMAN R W.A new well path optimization model for increased mechanical borehole stability[J].Journal of Petroleum Science and Engineering,2009,69(1/2):53-62.
[13] CHENG W,NING F L,SUN J X,et al.A porothermoelastic wellbore stability model for riserless drilling through gas hydrate-bearing sediments in the Shenhu area of the South China Sea[J].Journal of Natural Gas Science and Engineering,2019,72:103036.
[14] GHASSEMI A,TAO Q,DIEK A.Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J].Journal of Petroleum Science and Engineering,2009,67(1/2):57-64.
[15] VERNIK L,ZOBACK M D.Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon pass scientific research borehole[J].Journal of Geophysical Research,1992,97(B4):5109-5119.
[16] SP?TH M,HERRMANN C,PRAJAPATI N,et al.Multiphase-field modelling of crack propagation in geological materials and porous media with drucker-prager plasticity[J].Computational Geosciences,2021,25(1):325-343.
[17] CHEN Y,SUN T,ZHANG Y D,et al.The suitable strength criterion to determine the collapse of hydrate reservoirs with different saturation[C]∥The 29th International Ocean and Polar Engineering Conference.Honolulu,Hawaii,USA:ISOPE,2019:36.
[18] HOLLAND G P,JENKINS J E,CREAGER M S,et al.Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states[J].Biomacromolecules,2008,9(2):651-657.
[19] GAO Q,CHENG Y,HAN S,et al.Numerical modeling of hydraulic fracture propagation behaviors influenced by pre-existing injection and production wells[J].Journal of Petroleum Science and Engineering,2019,172:976-987.
[20] WANG H N,CHEN X P,JIANG M J,et al.Analytical investigation of wellbore stability during drilling in marine methane hydrate-bearing sediments[J].Journal of Natural Gas Science and Engineering,2019,68:102885.
[21] YONEDA J,MASUI A,KONNO Y,et al.Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern nankai trough[J].Marine and Petroleum Geology,2015,66,Part 2:471-486.
[22] FREIJ-AYOUB R,TAN C E,CLENNELL B,et al.A wellbore stability model for hydrate bearing sediments[J].Journal of Petroleum Science and Engineering,2007,57(1/2):209-220.
[23] TAN T,ZHANG H,LI J,et al.Analysis on collapse pressure and fracture pressure of a borehole in natural gas hydrate formation[C]∥53rd U.S.Rock Mechanics/Geomechanics Symposium.New York:ARMA,2019:ARMA-2019.
[24] WANG L,LI Y,SHEN S,et al.Mechanical behaviours of gas-hydrate-bearing clayey sediments of the South China Sea[J].Environmental Geotechnics,2022,9(4):210-222.
[25] MIYAZAKI K,TENMA N,AOKI K,et al.Effects of confining pressure on mechanical properties of artificial methane-hydrate-bearing sediment in triaxial compression test[J].International Journal of Offshore and Polar Engineering,2011,21(2):ISOPE-11-21-2-148.
[26] HYODO M,YONEDA J,YOSHIMOTO N,et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J].Soils and Foundations,2013,53(2):299-314.
[27] 明瑞卿,張時中,王越之.塔中西部二疊系井壁失穩(wěn)原因分析及對策[J].特種油氣藏,2015,22(3):138-140.
MING R Q,ZHANG S Z,WANG Y Z.Borehole lnstability in permian system in the west of central" Tarim basin-reasons and solutions[J].Special Oil amp; Gas Reservoirs,2015,22(3):138-140.
[28] LIAO Y Q,WANG Z Y,CHAO M Z,et al.Coupled wellbore-reservoir heat and mass transfer model for horizontal drilling through hydrate reservoir and application in wellbore stability analysis[J].Journal of Natural Gas Science and Engineering,2021,95:104216.第一
孫曉峰,教授,博士生導師,生于1980年,2014年畢業(yè)于東北石油大學天然氣工程專業(yè),獲博士學位,現(xiàn)從事油氣井流體力學與井眼清潔的研究工作。地址:(163318)黑龍江省大慶市。電話:(0459)6503521。email:suneye@126.com。
2024-02-25
劉 鋒