摘要: 我國正逐步進入老齡化社會,老年人口的數量持續增加。規律的體育運動能有效防止衰老引起的學習記憶等認知功能的衰退,提高老年人的生活質量。本文將主要對運動干預改善老年人腦學習記憶能力、延緩衰老可能的幾種內在生物學機制進行綜述,旨在為制定提高老年人認知能力、防治老年癡呆和維持終身腦健康的運動干預方案提供參考。
關鍵詞:運動干預;衰老;學習記憶能力;認知功能
Research Progress on the Mechanism of Exercise Intervention to Improve Cerebral Learning and Memory Capacity in the Elderly
Zhang Chenyue
(Physical Education Department,Soochow University,Suzhou Jiangsu,215000)
Abstract:Our country is gradually entering an aging society, and the number of old population continues to increase.Regular physical exercise can effectively prevent the decline of cognitive functions such as learning and memory caused by aging, and improve the quality of life of the elderly. This paper reviewed several possible internal biological mechanisms of exercise intervention to improve the learning and memory ability of the elderly and delay aging, aiming to provide a reference for the development of exercise intervention programs to improve the cognitive ability of the elderly, prevent and treat senile dementia and maintain lifelong brain health.
Keywords:exercise intervention;aging;learning and memory ability;cognitive function
開放科學(資源服務)標識碼(OSID):
張辰越 蘇州大學體育學院江蘇省 蘇州市 215000
zhangchenyue suzhou jiangsu Province 215000 China
中圖分類號:G804.2
DOI:10.16655/j.cnki.2095-2813.2024.19.000
備注:1
作者簡介:張辰越(2000—),女,碩士在讀,無職稱; 研究方向為運動人體科學。
普通作者:1
作者簡介:張辰越(2000-),女,碩士在讀,研究方向:運動人體科學。
衰老導致人體的各項生理功能逐漸退化,其中腦衰老主要表現為學習記憶等認知功能的衰退。現代社會,人均壽命大幅度提高,人口老齡化現象也日益嚴重, 與認知功能障礙有關的疾病發病率不斷上升。據2014年國際阿爾茲海默病協會(ADI)發布的數據顯示,全球范圍內的AD患者數量已達4000萬,并在逐年增加[1],預計到2050年將達到1億5000萬[2]。這不僅嚴重影響了老年人的生活質量,也給家庭及社會帶來巨大壓力。因此,如何有效地預防老年人認知功能的衰退,延緩腦衰老,維持腦健康,讓老年人安享幸福的老年生活變得尤為重要。
大量研究顯示,規律的體育運動不僅能起到強身健體的作用,而且能夠提高學習記憶能力[3-6],延緩一系列神經退行性疾病的發生發展[7]。運動對老年人腦健康和學習記憶能力的有益作用的證據也越來越多[8-12]。早期進行有規律的體育鍛煉是預防和延遲老年癡呆的最有效的策略。目前關于運動延緩腦衰老所致學習記憶能力下降的確切分子機制尚無定論。為此,本文針對國內外研究現狀,探討了運動干預改善老年人腦學習記憶能力可能的幾種內在生物學機制,以期為運動促進腦健康及改善老年人腦認知功能的研究提供理論依據及實驗參考。
1 運動增加腦源性神經營養因子表達
神經營養因子由神經所支配的組織(如肌肉)和神經膠質細胞產生,促進神經元的生長與存活,在調節軸突生長、海馬神經發生、突觸蛋白表達、突觸可塑性及神經傳遞等方面都發揮著重要作用。
腦源性神經營養因子(BDNF)是大腦中含量最多的一種神經營養因子,在維持海馬功能與促進學習記憶能力中起關鍵作用。衰老過程中腦內BDNF mRNA和蛋白表達顯著降低[13, 14]。運動與BDNF和學習記憶能力之間的關系已得到了廣泛的研究[5, 15-18]。運動可通過增加BDNF的表達改善老年人腦的學習記憶功能,延緩阿爾茲海默癥、帕金森等神經退行性疾病的發生。付燕等[16]人的研究表明,有氧運動能夠提高衰老大鼠的學習記憶能力,其分子機制與上調衰老大鼠海馬BDNF的表達有關。此外,運動可通過提高腦內BDNF水平發揮神經保護作用,防止AD模型小鼠學習記憶能力下降[18]。
運動可通過多種途徑調節腦內BDNF表達。一方面,運動可誘導骨骼肌分泌鳶尾素(Irisin)、組織蛋白酶B(Cathepsin B)和胰島素樣生長因子1(IGF-1)等多種骨骼肌因子,這些肌因子可穿過血腦屏障進入大腦,調控腦內BDNF的表達,促進學習記憶能力的提高。另一方面,在運動過程中,機體產生的能量代謝產物增多,這些物質可以通過血液從外周進入腦中,提高腦內BDNF水平,進而改善大腦的學習和記憶能力,延緩腦衰老。
1.1 PGC-1α-FNDC5/Irisin-BDNF通路
鳶尾素(Irisin)是2012年新發現的一種骨骼肌因子。研究發現,運動時肌肉會分泌一種叫做過氧化物酶體增殖物激活受體 γ 輔助激活因子1α(PGC-1α)的蛋白,在該蛋白的調控下,其下游蛋白III 型纖連蛋白結構域蛋白5(FNDC5)可通過剪切修飾形成鳶尾素釋放入血[19]。研究表明,鳶尾素可誘導脂肪組織中解偶聯蛋白1(UCP1)表達上調,加速白色脂肪組織發生“棕色化”,從而加快新陳代謝,治療肥胖[20, 21]。此外,鳶尾素還可通過血腦屏障,誘導大腦中BDNF的表達,從而在促進學習和記憶中發揮關鍵作用。2013年Wrann等[22]人的研究結果將腦內BDNF的表達與耐力運動和關鍵代謝介質PGC-1α和FNDC5聯系起來,明確了PGC-1α/FNDC5/BDNF信號通路。類似地,Azimi等人的研究結果表明,4周中等強度的跑臺運動可通過增加AMPK活性和上調海馬PGC-1α/FNDC5/BDNF通路,改善海馬內注射Aβ1-42 導致的大鼠學習記憶障礙[23]。Belviranli等[24]人發現,90天的自主跑輪運動可顯著增加衰老大鼠海馬PGC-1α、FNDC5和BDNF等認知相關的基因和蛋白表達,改善衰老所致的認知功能障礙。由此可見,運動可通過PGC-1α-FNDC5/Irisin-BDNF通路改善衰老引起的學習記憶能力下降。
1.2 Cathepsin B-BDNF通路
Cathepsin B屬于組織蛋白酶家族,是在所有人體組織中表達最豐富的半胱氨酸蛋白酶[25]。Cathepsin B被認為是神經元存活的關鍵,具有顯著的抗淀粉樣蛋白生成的活性[26, 27]。2016年Moon等[28]人研究發現,Cathepsin B是骨骼肌細胞分泌的一個肌因子,小鼠運動時,血液中的Cathepsin B水平升高,Cathepsin B隨血液循環通過血腦屏障誘導海馬回中BDNF表達,并促進小鼠海馬神經元再生,提高了小鼠的空間記憶能力。在人體實驗中,4個月的跑步機運動后,血漿Cathepsin B水平有所升高,且升高的Cathepsin B水平與海馬功能顯著相關[29]。長期運動訓練(35±15年)促進了中年男性橄欖球運動員記憶力的改善,并降低了BDNF和Cathepsin B的外周靜息水平[5]。由此可見,Cathepsin B-BDNF通路在運動誘導的學習記憶等認知功能的改善中發揮著重要作用。
1.3 IGF-1對腦內BDNF表達的影響
胰島素樣生長因子1(IGF-1)是調節突觸可塑性、影響神經生長、神經傳遞和增強認知功能的重要因子[30, 31]。同時,它還與血管的維持和重塑密切相關,增齡導致的IGF-1減少會降低腦血管密度和腦血流量,從而造成認知功能損害[32, 33]。一些體內研究發現,運動可以增加外周和腦內的IGF-1水平[34-37]。IGF-1水平的增強誘導了海馬BDNF表達水平增加,它們共同被認為是運動對學習記憶影響的關鍵因素[38]。動物研究中,運動通過增加大腦對外周循環中IGF-1的攝取,防止軟骨藻酸誘導的海馬損傷小鼠空間記憶能力的喪失[39]。ZAPPA等[40]人將重組腺病毒介導的IGF-1基因轉移到鏈脲佐菌素(STZ)誘導的散發性阿爾茲海默病(sAD)大鼠模型上,結果發現,海馬突觸可塑性顯著增強,大鼠的記憶能力明顯改善。人體研究中,與對照組相比,一次力量訓練和耐力訓練均能提高老年男性血清BDNF和IGF-1濃度[41]。16周的水上運動增加了BDNF和IGF-1的表達,改善了老年女性的認知功能[42]。因此,衰老導致血液內IGF-1濃度下降,而運動可明顯提高老年人血液中IGF-1水平,并通過調節BDNF基因表達,提高學習記憶能力。
1.4 乳酸等代謝產物對腦內BDNF表達的調控
乳酸是糖代謝過程中產生的副產物,在運動中起著重要的作用。小鼠在進行跑臺運動時,肌肉收縮釋放的代謝物乳酸可通過單羧酸轉運蛋白MCT穿過血腦屏障,誘導海馬中BDNF表達,促進大腦學習和記憶功能的改善。乳酸可激活NAD+-依賴性組蛋白去乙酰化酶(SIRT1),并通過SIRT1/PGC1α/FNDC5/BDNF信號通路介導運動對學習和記憶的有益作用[43]。此外,在運動過程中,機體代謝產物如β-羥丁酸、α-酮戊二酸等都可通過外周調控腦內BDNF表達,為運動增強學習記憶的作用機制提供了新的方向[44]。
2 運動促進血管生成
血管內皮生長因子(VEGF)是主要的促血管生成因子。VEGF作用于血管壁的內皮細胞,可促使細胞分裂并生成新的血管[45],在缺血性腦損傷中具有重要的神經保護作用[46]。在動物實驗中,有研究證明VEGF在海馬神經發生中發揮關鍵作用[47]。有氧運動可以顯著增加大鼠海馬中VEGF的表達,促進海馬神經發生,改善大鼠的學習記憶能力,而外周阻斷VEGF完全消除了大鼠齒狀回的長時程增強反應(LTP),抵消了運動對海馬神經發生的影響,損害了大鼠的工作記憶[48-50]。Song等[46]人研究發現,在腦梗死大鼠模型中,4周中等持續強度的游泳運動可使大鼠海馬組織中BDNF和VEGF的表達顯著增加,并能促進神經再生及血管新生,有益于腦梗死大鼠神經認知功能的恢復。在人體實驗中,有研究表明,一次有氧運動和持續四周的抗阻運動均能增加骨骼肌中VEGF的 mRNA表達水平[51-53]。Voss及其同事做的一項隨機對照實驗證明,有氧運動使老年人大腦顳葉和額葉皮質功能連通性增強,這與VEGF的基線水平升高有關[54]。此外,運動還可通過微囊蛋白1(Caveolin-1)/VEGF通路改善腦卒中后血管新生、神經發生,增強突觸可塑性,幫助中風患者恢復運動和認知功能[55]。綜上,運動可以通過調節VEGF表達水平,促進血管生成,改善學習記憶等認知功能。
3 運動增強海馬突觸可塑性
突觸是神經元之間在功能上發生聯系的部位[56]。突觸可塑性是學習、記憶的基礎,海馬是學習記憶形成的重要場所。因此,運動增強海馬突觸可塑性可能是提高學習記憶能力的另一重要機制[57]。大量研究表明,運動可對海馬突觸可塑性產生有益作用,防止衰老過程中學習記憶能力等認知能力的下降[58-60]。在β-淀粉樣蛋白致AD大鼠模型中,8周跑臺運動顯著增加了海馬神經元樹突密度和海馬組織中突觸素(synaptophysin)、突觸后致密區蛋白-95(PSD95)表達水平,提高了大鼠的學習記憶能力[58]。4周抗阻訓練顯著增加了3xTg轉基因小鼠海馬突觸前囊泡蛋白synaptotagmin1和synaptobrevin1的表達水平,增加了小鼠海馬突觸可塑性,改善了小鼠的學習記憶能力[59]。類似地,付燕等[60]人的研究結果表明,6周有氧游泳運動可以通過增加海馬PSD95蛋白表達,延緩D-半乳糖誘導的SD大鼠腦衰老,減輕衰老過程中的學習記憶功能衰退。董軍濤等[61]人研究發現,自主運動、強迫運動及功能性電刺激誘導的運動都可以改善血管性癡呆大鼠的學習記憶能力,其機制可能與運動促進海馬區SYN、PSD95蛋白表達,增強海馬突觸可塑性有關。
4 運動減輕神經炎癥
中樞神經系統炎癥也稱神經炎癥,衰老過程伴隨著炎癥反應的增加及學習記憶能力的下降。運動可通過增強機體免疫功能,緩解衰老所致的慢性炎癥反應,改善相關認知功能障礙。在Tg2576 轉基因AD小鼠模型中,3周的自主跑輪運動顯著降低了腦內Aβ斑塊的沉積水平,抑制了促炎細胞因子腫瘤壞死因子α(TNF-α)及白細胞介素-1β(IL-1β)水平的升高,改善了小鼠的認知功能[62]。史衛俊等[63]人研究發現12周的有氧游泳運動通過抑制SD大鼠海馬小膠質細胞激活及炎性因子釋放,緩解D-半乳糖構建的衰老大鼠模型腦內炎癥反應,改善其學習記憶能力。此外,多項研究發現,力量訓練也可顯著下調衰老大鼠腦內促炎細胞因子的分泌,抑制神經炎癥反應,提高大鼠的學習記憶能力[59, 64, 65]。在臨床研究中,有規律的體育運動已被證明可減少IL-6、TNF-α等炎癥標志物水平,這與老年人在認知測試中的更好表現有關[66-68]。綜上,炎癥反應與老年人學習記憶能力的衰退有著緊密關聯,運動可緩解衰老過程中的炎癥反應,促進認知功能的改善。
5 運動增強腦的抗氧化能力
衰老過程中腦內活性氧(ROS)產生增多,氧化應激和氧化損傷增加。越來越多的證據表明,累積的氧化應激可能是導致認知衰老和神經退行性疾病發生發展的重要機制之一。運動可通過增強腦的抗氧化能力,促進海馬相關學習記憶能力的提高。Rahmati等人研究發現,5周力量訓練可顯著提高Wistar大鼠海馬谷胱甘肽(GSH)水平和抗氧化酶谷胱甘肽過氧化物酶(GPX)的活性,增強海馬神經元的抗氧化應激能力,改善衰老引起的學習記憶障礙[69]。Lu[70]等發現,4周跑步機運動顯著減少了鏈脲霉素(STZ)誘導的AD大鼠模型腦內4-HNE和8-OHDG等氧化產物水平,降低ROS水平,抑制氧化損傷,改善AD大鼠認知功能。氧化應激也是造成多巴胺能神經元丟失的主要原因之一。Jang等[71]人研究發現,6周的耐力運動顯著改善了MPTP誘導的PD模型小鼠的抗氧化能力,降低了黑質致密部多巴胺能神經元的氧化損傷,恢復了PD小鼠的運動障礙。由以上研究可以看出,運動可通過增強一系列抗氧化酶水平,提高腦的抗氧化能力,從而改善衰老導致的學習記憶等認知功能障礙,發揮對神經退行性疾病的神經保護作用。
6 結語
衰老是生物體不可避免的過程,衰老所致的學習記憶功能衰退對老年人的生活質量造成了嚴重影響。因此,如何延緩腦衰老,提高老年人的學習記憶能力,維持終身腦健康已成為當今社會關注的重中之重。運動已被證明對老年人腦學習記憶能力的改善起到積極的促進作用,可有效預防和緩解神經退行性疾病引起的認知障礙。運動改善老年人腦學習記憶能力的機制可能與運動增加腦源性神經營養因子表達,促進血管生成,增強腦的突觸可塑性和抗氧化能力,降低炎癥反應有關。未來應進一步明確不同運動方式及不同運動強度和時間等對老年人腦學習記憶能力改善的效果及具體機制,以為老年人制定合理的運動計劃,延緩腦衰老提供科學依據。
參考文獻
[1]"" ALZHEIMER'S A. 2014 Alzheimer's disease facts and figures [J]. Alzheimers Dement, 2014, 10(2): e47-92.
[2]"" ZHAO X, LI X. The prevalence of Alzheimer's disease in the Chinese Han population: a meta-analysis [J]. Neurol Res, 2020, 42(4): 291-8.
[3]"" SPIRDUSO W W, CLIFFORD P. Replication of age and physical activity effects on reaction and movement time [J]. J Gerontol, 1978, 33(1): 26-30.
[4]"" HILLMAN C H, ERICKSON K I, KRAMER A F. Be smart, exercise your heart: exercise effects on brain and cognition [J]. Nat Rev Neurosci, 2008, 9(1): 58-65.
[5]"" DE LA ROSA A, SOLANA E, CORPAS R, et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B [J]. Sci Rep, 2019, 9(1): 3337.
[6]"" ERICKSON K I, HILLMAN C, STILLMAN C M, et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines [J]. Med Sci Sports Exerc, 2019, 51(6): 1242-51.
[7]"" DE LA ROSA A, OLASO-GONZALEZ G, ARC-CHAGNAUD C, et al. Physical exercise in the prevention and treatment of Alzheimer's disease [J]. J Sport Health Sci, 2020, 9(5): 394-404.
[8]"" WANG S, CHEN L, ZHANG L, et al. Effects of long-term exercise on spatial learning, memory ability, and cortical capillaries in aged rats [J]. Med Sci Monit, 2015, 21: 945-54.
[9]"" KIM S E, KO I G, KIM B K, et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus [J]. Exp Gerontol, 2010, 45(5): 357-65.
[10] AGUIAR A S, JR., CASTRO A A, MOREIRA E L, et al. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling [J]. Mech Ageing Dev, 2011, 132(11-12): 560-7.
[11] SPEISMAN R B, KUMAR A, RANI A, et al. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats [J]. Brain Behav Immun, 2013, 28: 25-43.
[12] LI X, WANG L, ZHANG S, et al. Timing-Dependent Protection of Swimming Exercise against d-Galactose-Induced Aging-Like Impairments in Spatial Learning/Memory in Rats [J]. Brain Sci, 2019, 9(9):236.
[13] HAYASHI M, YAMASHITA A, SHIMIZU K. Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging [J]. Brain Res, 1997, 749(2): 283-9.
[14] 蔡婧,袁瓊嘉.有氧運動對腦衰老大鼠海馬BDNF表達的影響[J].當代體育科技, 2016, 6(11): 148-9.
[15] ALOMARI M A, KHABOUR O F, ALZOUBI K H, et al. Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels [J]. Behav Brain Res, 2013, 247: 34-9.
[16] 付燕,謝攀,李雪,等.長期有氧運動對大鼠腦衰老過程中學習記憶與海馬BDNF表達的影響[J]. 中國運動醫學雜志, 2015, 34(08): 750-6.
[17] LEE M C, OKAMOTO M, LIU Y F, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling [J]. J Appl Physiol (1985), 2012, 113(8): 1260-6.
[18] GARCIA-MESA Y, PAREJA-GALEANO H, BONET-COSTA V, et al. Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms [J]. Psychoneuroendocrinology, 2014, 45: 154-66.
[19] 肖友定,高前進,王二利.骨骼肌功能與運動調控老年人認知功能[J].中國組織工程研究, 2022, 26(33): 5400-6.
[20] BOSTROM P, WU J, JEDRYCHOWSKI M P, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis [J]. Nature, 2012, 481(7382): 463-8.
[21] ARHIRE L I, MIHALACHE L, COVASA M. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome [J]. Front Endocrinol (Lausanne), 2019, 10: 524.
[22] WRANN C D, WHITE J P, SALOGIANNNIS J, et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway [J]. Cell Metab, 2013, 18(5): 649-59.
[23] AZIMI M, GHARAKHANLOU R, NAGHDI N, et al. Moderate treadmill exercise ameliorates amyloid-beta-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1alpha/FNDC5/BDNF pathway [J]. Peptides, 2018, 102: 78-88.
[24] BELVIRANLI M, OKUDAN N. Exercise Training Protects Against Aging-Induced Cognitive Dysfunction via Activation of the Hippocampal PGC-1alpha/FNDC5/BDNF Pathway [J]. Neuromolecular Med, 2018, 20(3): 386-400.
[25] CHAPMAN H A, RIESE R J, SHI G P. Emerging roles for cysteine proteases in human biology [J]. Annu Rev Physiol, 1997, 59: 63-88.
[26] FELBOR U, KESSLER B, MOTHES W, et al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L [J]. Proc Natl Acad Sci U S A, 2002, 99(12): 7883-8.
[27] MUELLER-STEINER S, ZHOU Y, ARAI H, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease [J]. Neuron, 2006, 51(6): 703-14.
[28] MOON H Y, BECKE A, BERRON D, et al. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function [J]. Cell Metab, 2016, 24(2): 332-40.
[29] MCGINNIS G R, BALLMANN C, PETERS B, et al. Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury [J]. Am J Physiol Heart Circ Physiol, 2015, 308(11): H1423-33.
[30] DOI T, SHIMADA H, MAKIZAKO H, et al. Association of insulin-like growth factor-1 with mild cognitive impairment and slow gait speed [J]. Neurobiol Aging, 2015, 36(2): 942-7.
[31] ASHPOLE N M, SANDERS J E, HODGES E L, et al. Growth hormone, insulin-like growth factor-1 and the aging brain [J]. Exp Gerontol, 2015, 68: 76-81.
[32] TREJO J L, PIRIZ J, LLORENS-MARTIN M V, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects [J]. Mol Psychiatry, 2007, 12(12): 1118-28.
[33] BIBEL M, BARDE Y A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system [J]. Genes Dev, 2000, 14(23): 2919-37.
[34] CARRO E, NUNEZ A, BUSIGUINA S, et al. Circulating insulin-like growth factor I mediates effects of exercise on the brain [J]. J Neurosci, 2000, 20(8): 2926-33.
[35] ELIAKIM A, MOROMISATO M, MOROMISATO D, et al. Increase in muscle IGF-I protein but not IGF-I mRNA after 5 days of endurance training in young rats [J]. Am J Physiol, 1997, 273(4): R1557-61.
[36] NAKAJIMA S, OHSAWA I, OHTA S, et al. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice [J]. Behav Brain Res, 2010, 211(2): 178-84.
[37] TREJO J L, CARRO E, TORRES-ALEMAN I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus [J]. J Neurosci, 2001, 21(5): 1628-34.
[38] FUJIMURA H, ALTAR C A, CHEN R, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation [J]. Thromb Haemost, 2002, 87(4): 728-34.
[39] CARRO E, TREJO J L, BUSIGUINA S, et al. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy [J]. J Neurosci, 2001, 21(15): 5678-84.
[40] ZAPPA VILLAR M F, LOPEZ HANOTTE J, CRESPO R, et al. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer's disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement [J]. Hippocampus, 2021, 31(10): 1137-53.
[41] ARAZI H, BABAEI P, MOGHIMI M, et al. Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men [J]. BMC Geriatr, 2021, 21(1): 50.
[42] KANG D W, BRESSEL E, KIM D Y. Effects of aquatic exercise on insulin-like growth factor-1, brain-derived neurotrophic factor, vascular endothelial growth factor, and cognitive function in elderly women [J]. Exp Gerontol, 2020, 132: 110842.
[43] EL HAYEK L, KHALIFEH M, ZIBARA V, et al. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF) [J]. J Neurosci, 2019, 39(13): 2369-82.
[44] 于濤.運動從外周調控腦內BDNF表達促進認知的研究進展[J].中國體育科技, 2020, 56(11): 71-7.
[45] BLOOR C M. Angiogenesis during exercise and training [J]. Angiogenesis, 2005, 8(3): 263-71.
[46] SONG M K, KIM E J, KIM J K, et al. Effect of regular swimming exercise to duration-intensity on neurocognitive function in cerebral infarction rat model [J]. Neurol Res, 2019, 41(1): 37-44.
[47] JIN K, ZHU Y, SUN Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11946-50.
[48] FABEL K, FABEL K, TAM B, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis [J]. Eur J Neurosci, 2003, 18(10): 2803-12.
[49] CAO L, JIAO X, ZUZGA D S, et al. VEGF links hippocampal activity with neurogenesis, learning and memory [J]. Nat Genet, 2004, 36(8): 827-35.
[50] LICHT T, GOSHEN I, AVITAL A, et al. Reversible modulations of neuronal plasticity by VEGF [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 5081-6.
[51] RICHARDSON R S, WAGNER H, MUDALIAR S R, et al. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise [J]. Am J Physiol, 1999, 277(6): H2247-52.
[52] JENSEN L, PILEGAARD H, NEUFER P D, et al. Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle [J]. Am J Physiol Regul Integr Comp Physiol, 2004, 287(2): R397-402.
[53] GUSTAFSSON T, KNUTSSON A, PUNTSCHART A, et al. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training [J]. Pflugers Arch, 2002, 444(6): 752-9.
[54] VOSS M W, ERICKSON K I, PRAKASH R S, et al. Neurobiological markers of exercise-related brain plasticity in older adults [J]. Brain Behav Immun, 2013, 28: 90-9.
[55] CHEN Z, HU Q, XIE Q, et al. Effects of Treadmill Exercise on Motor and Cognitive Function Recovery of MCAO Mice Through the Caveolin-1/VEGF Signaling Pathway in Ischemic Penumbra [J]. Neurochem Res, 2019, 44(4): 930-46.
[56] PLOUGHMAN M, AUSTIN M W, GLYNN L, et al. The effects of poststroke aerobic exercise on neuroplasticity: a systematic review of animal and clinical studies [J]. Transl Stroke Res, 2015, 6(1): 13-28.
[57] 金其貫,吳尚琳,王云峰,等.低氧和運動訓練對大鼠學習記憶能力的影響及其與海馬突觸可塑性的關系[J].體育科學, 2015, 35(01): 54-9.
[58] 劉濤,白石,黃悅.跑臺訓練對阿爾茨海默病模型大鼠記憶能力和突觸可塑性的影響[J].中國康復醫學雜志, 2016, 31(12): 1301-6.
[59] LIU Y, CHU J M T, YAN T, et al. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer's disease mice [J]. J Neuroinflammation, 2020, 17(1): 4.
[60] 付燕,王璐,李雪,等.有氧運動對D-gal致腦衰老過程中大鼠學習記憶能力及PSD-95的影響[J]. 武漢體育學院學報, 2016, 50(08): 87-93.
[61] 董軍濤,林陽陽,燕鐵斌,等.不同形式的運動訓練對血管性癡呆大鼠學習記憶及海馬區突觸可塑性的影響[J].中國康復醫學雜志, 2016, 31(07): 716-22.
[62] NICHOL K E, POON W W, PARACHIKOVA A I, et al. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid [J]. J Neuroinflammation, 2008, 5: 13.
[63] 史衛俊,陸紅,曹陽,等.有氧游泳運動對衰老過程大鼠海馬IL-6、IL-10及小膠質細胞的影響[J]. 中國運動醫學雜志, 2015, 34(09): 868-74.
[64] HASHIGUCHI D, CAMPOS H C, WUO-SILVA R, et al. Resistance Exercise Decreases Amyloid Load and Modulates Inflammatory Responses in the APP/PS1 Mouse Model for Alzheimer's Disease [J]. J Alzheimers Dis, 2020, 73(4): 1525-39.
[65] DE GREGORIO E, MENDES G C, SOMENSI L B, et al. Neuroprotective effects of strength training in a neuroinflammatory animal model [J]. BMC Neurosci, 2022, 23(1): 22.
[66] ALLEY D E, CRIMMINS E M, KARLAMANGLA A, et al. Inflammation and rate of cognitive change in high-functioning older adults [J]. J Gerontol A Biol Sci Med Sci, 2008, 63(1): 50-5.
[67] TEUNISSEN C E, VAN BOXTEL M P, BOSMA H, et al. Inflammation markers in relation to cognition in a healthy aging population [J]. J Neuroimmunol, 2003, 134(1-2): 142-50.
[68] WEAVER J D, HUANG M H, ALBERT M, et al. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging [J]. Neurology, 2002, 59(3): 371-8.
[69] RAHMATI M, KESHVARI M, XIE W, et al. Resistance training and Urtica dioica increase neurotrophin levels and improve cognitive function by increasing age in the hippocampus of rats [J]. Biomed Pharmacother, 2022, 153: 113306.
[70] LU Y, DONG Y, TUCKER D, et al. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease [J]. J Alzheimers Dis, 2017, 56(4): 1469-84.
[71] JANG Y, KWON I, SONG W, et al. Endurance Exercise Mediates Neuroprotection Against MPTP-mediated Parkinson's Disease via Enhanced Neurogenesis, Antioxidant Capacity, and Autophagy [J]. Neuroscience, 2018, 379: 292-301.