













摘" " 要:【目的】鑒定杧果雜交后代F1的真實性與群體遺傳特性,為進一步開展杧果遺傳改良與群體構建、親本選擇提供依據。【方法】選擇13個主要品種為親本試材,混合種植進行自然授粉,獲得1001個F1后代,利用SSR標記對其進行遺傳多樣性研究。【結果】以親本DNA為模板,篩選出了13對引物應用于遺傳多樣性研究,檢測到等位基因數范圍3~9個,平均6.154個,平均有效等位基因數(Ne)為2.557,Shannon’s信息指數(I)為1.078,觀測雜合度(Ho)為0.571,期望雜合度(He)為0.579,多態性信息含量(PIC)為0.526;UPGMA聚類分析顯示,在遺傳相似系數為0.50時,可分為3個類群,與群體結構分析結果基本一致;F1代真假雜種鑒定結果中,母本為貴妃、金煌、凱特、臺農1號、A61、Juile、凱特的F1子代,真雜種率均高于50%,其中金煌、臺農1號、A61真雜種率高于80%,在期望雜合度與觀測雜合度方面,臺農1號、凱特、Juile、金煌、紅玉、貴妃的雜合度也相對較高,南逗邁、R2E2、紅玉、Villard、椰香真雜種率低,分別為25.00%、13.71%、25.15%、33.33%、36.36%。【結論】杧果品種臺農1號、凱特、Juile、金煌、紅玉、貴妃的雜交親和性較強,南逗邁、R2E2、紅玉、Villard、椰香品種極易自交,且品種間存在許多等位基因的現象,遺傳多樣性較為豐富。
關鍵詞:杧果;SSR分子標記;雜種鑒定;遺傳特性
中圖分類號:S667.7 文獻標志碼:A 文章編號:1009-9980(2024)12-2397-11
Identification of true hybrids of open-pollination seedling progenies in mango and genetic characterization of the progenies using SSR markers
DANG Zhiguo1, ZHENG Yanping1, ZHU Min1, 2, CHEN Yeyuan1, 2, GAO Aiping1, HUANG Jianfeng1, LUO Ruixiong1, YU Dong3, LEI Xintao1*
(1Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; 2Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Hainan, China; 3Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China)
Abstract: 【Objective】 As a perennial woody fruit tree, mango (Mangifera indica L.) has the problems of high genomic heterozygosity, unclear self-compatibility and hybridization affinity of most breeding parents, and low seed setting rate of artificial pollination, which brings some difficulties to the selection of parents for mango hybridization. SSR markers are mainly used in genetic diversity analysis, genetic relationship analysis and fingerprint construction in mango, but the use of SSR markers for identifying the true hybrids of mango F1 progeny has not been reported. In this study, 13 varieties were selected as parental materials, and SSR technology was used to detect the true hybrids and analyze the genetic characteristics of 1001 F1 progeny plants in order to provide theoretical guidance for clarifying the hybridization affinity of mango breeding parents and the selection of breeding parents. 【Methods】 The 13 mango varieties were mixed and planted for natural pollination. The mature fruits were harvested from the fruiting mother tree. The mother varieties included 12 varieties such as Guifei, Tainong No. 1, Jinhuang, Juile, Nan Doc Mai, Yexiang, Villard, R2E2, Tangmi, Hongyu, A61 and Keitt. The seedlings were obtained after sowing. 100 mg of fresh tissue of the leaves of each seedling were taken with a puncher. The DNA was extracted by magnetic bead genomic DNA extraction kit, and the concentration and purity of DNA were detected by ultraviolet spectrophotometer and 1% agarose gel electrophoresis, the PCR products were detected by agarose gel electrophoresis (1% concentration) and capillary fluorescence electrophoresis. 200 pairs of primers were selected from the previous transcriptome data of mango for screening, and 200 pairs of primers were synthesized using each parent as the template of DNA. The screened primers were used for SSR analysis. The genetic parameters such as number of alleles (Na), number of effective genes (Ne), observed heterozygosity (Ho), expected heterozygosity (He), fixation index (F) and Shannon’s information index (I) were calculated by the Cervus software; The polymorphism information index (PIC) was calculated by the GenALEx6.0 software, and the genetic differentiation coefficient was obtained; The Structure was used to analyze the genetic structure of the population and the genetic diversity of mango F1 generation; The unweighted pair-group method with arithmetic means (UPGMA) was used to cluster the populations of mango offspring by using the selected SSR core primers. 【Results】 Thirteen pairs of primers with stable amplification and clear bands were screened, and 13 loci with good polymorphism and stability were determined. The PIC value was between 0.314 and 0.741, and the polymorphism of the loci was high. The number of alleles ranged from 3 to 9, with an average of 6.154. The average effective number of alleles (Ne) was 2.557, the Shannon’s information index (I) was 1.078, the observed heterozygosity (Ho) was 0.571, the expected heterozygosity (He) was 0.579, and the polymorphism information content (PIC) was 0.526; The UPGMA cluster analysis showed that when the genetic similarity coefficient was 0.50, it could be divided into three groups, which was basically consistent with the results of population structure analysis. Compared with other varieties, the alleles of mango varieties Guifei, Yexiang, and Juile were more evenly distributed in the population, the average Shannon’s information index (I) was higher, and Juile was the lowest, indicating that the genetic diversity in the Guifei population was higher and the population differentiation was the highest; The genetic differentiation between Guifei and Juile was obvious, and the genetic differentiation between the other varieties was small; The true hybrid rates of the open-pollination progenies generated from the mother plants of Guifei, Jinhuang, Keitt, Tainong No. 1, A61, Juile and Keitt were over 50%, and the true hybrid rate of Jinhuang, Tainong No. 1 and A61 was as high as 80%; In terms of expected heterozygosity and observed heterozygosity, the heterozygosity of Tainong No. 1, Keitt, Juile, Jinhuang, Hongyu and Guifei was also relatively high, and the true heterozygosity of Nan Doc Mai, R2E2, Hongyu, Villard and Yexiang, was low, which was 25.00%, 13.71%, 25.15%, 33.33% and 36.36%, respectively. 【Conclusion】 The genetic differentiation between Hongyu and R2E2, Hongyu and Yexiang, Hongyu and Nan Doc Mai, Juile and R2E2, Juile and Nan Doc Mai, Guifei and Nan Doc Mai, Guifei and Juile was obvious, and the genetic differentiation between the remaining varieties was small; The SSR identification of mango open-pollination generation showed that the crossing compatibility of mango varieties Tainong No. 1, Keitt, Juile, Jinhuang, Hongyu and Guifei was strong, while the crossing compatibility of Nan Doc Mai, R2E2, Hongyu, Villard and Yexiang, varieties was weak, which was easy to self-fertilize, and there were many alleles among the varieties, and the genetic diversity was rich.
Key words: Mango; SSR; Hybrid identification; Genetic characteristics
杧果(Mangifera indica Linn.)為漆樹科杧果屬植物,素有“熱帶果王”之稱,具有一定的營養價值與經濟價值[1]。杧果作為多年生木本果樹,基因組雜合度高,且大部分育種親本自交親和性、雜交親和性不夠清晰,人工授粉結實率低,給雜交育種親本的選配帶來了一定難度。
分子標記是繼傳統形態標記、細胞標記、生化標記之后興起的新技術。相對于RFLP、PAPD、STS、AFLP等其他分子標記技術,簡單重復序列標記(simple sequence repeats,SSR)具有位點豐富、重復性好、鑒別能力強、多態性高、呈共顯性[2]等優點,被廣泛應用于花生[3-5]、小豆[6]、板栗[7]、石榴[8-9]、水稻[10]、茶樹[11]和蘋果[12]等多種作物雜交后代的真假鑒定以及遺傳多樣性分析等。
目前,在杧果的研究中,SSR主要應用于遺傳多樣性分析、親緣關系分析以及指紋圖譜的構建[13],姚全勝等[14]利用SSR技術對184株雜交實生苗進行鑒定,證實該技術可以對杧果雜種的真實性進行快速驗證,但是多親本、大樣本實生后代雜種鑒定研究未見報道。筆者在本研究中以大果、紅色、高可溶性固形物含量、豐產穩產為育種目標,選擇13個品種為親本材料,采用SSR技術對其1001個F1后代株進行真假雜種檢測及遺傳特性分析,為明確杧果育種親本雜交親和性和育種親本選配提供理論指導。
1 材料和方法
1.1 試驗材料
材料種植于中國熱帶農業科學院品種資源研究所儋州實驗基地五隊的杧果育種圃,13個杧果品種貴妃、金煌、臺農1號、白象牙、紅玉、R2E2、椰香、湯米、凱特、Villard、南逗邁、Juile、A61混合種植,進行自然授粉。從掛果母本樹上收獲成熟果實,母本品種包括貴妃、臺農1號、金煌、Juile、南逗邁、椰香、Villard、R2E2、湯米、紅玉、A61、凱特等12個品種,播種后獲得實生后代,共1001份材料,并從13個品種中鑒定出實生后代的可能父本,并分析其遺傳特性。
1.2 DNA提取
用打孔器在葉片上打孔,取新鮮組織100 mg,采用磁珠法基因組DNA提取試劑盒提取杧果的基因組DNA,用紫外分光光度計和1%瓊脂糖凝膠電泳檢測DNA濃度和純度,-20 ℃保存備用。
1.3 引物篩選
在前期獲得杧果的轉錄組數據中選取200對引物中進行篩選,由天一輝遠生物科技有限公司合成,通過預試驗,對每對引物都進行多次重復擴增。以各親本作為DNA的模板對合成的200對引物進行篩選,將篩選得到的引物對樣品進行SSR分析。
1.4 SSR-PCR體系
PCR反應體系如表1,擴增反應為:95 ℃預變性5 min,95 ℃變性30 s,52~62 ℃退火30 s,72 ℃延伸30 s,10個循環,每個循環降1 ℃;95 ℃變性30 s,52 ℃退火30 s,72 ℃延伸30 s,25個循環;72 ℃末端延伸20 min,4 ℃保存。
1.5 PCR產物檢測
采用1%瓊脂糖凝膠電泳檢測與毛細管熒光電泳檢測。
1.6 數據統計與分析
利用Excel統計擴增的等位基因位點信息。利用Cervus軟件計算等位基因數(Na)、有效基因數(Ne)、觀測雜合度(Ho)、期望雜合度(He)、固定指數(F)、Shannon’s信息指數(I)等遺傳參數;利用GenALEx6.0軟件計算多態信息指數(PIC),獲得遺傳分化系數;利用R語言繪制熱點圖;利用Structure分析群體遺傳結構;采用非加權組平均法(UPGMA),利用篩選出的SSR核心引物對杧果實生后代進行群體間的聚類分析。
2 結果與分析
2.1 SSR引物篩選
通過對每個親本進行多次重復性檢測,篩選出13對穩定擴增、條帶清晰的引物對(表2),確定13個多態性和穩定性較好的位點(圖1)。
2.2 各位點遺傳多樣性
13對引物在杧果中共獲得80個等位基因,每對引物擴增的等位基因數為3~9個,其中MG-039、MG-046和MG-187檢測到9個等位基因。每個位點有效等位基因數平均為2.557。Shannon’s信息指數平均為1.027,其中MG-023位點的Shannon’s信息指數最高。平均期望雜合度略高于平均觀測雜合度。一般認為,0.25<PIC≤0.5時,為中度多態性;PIC>0.5時,為高度多態性。13個位點中PIC值在0.314~0.741之間,表明這13個位點多態性較高(表3)。
2.3 群體遺傳多樣性
在有效個體數(N)與等位基因數(Na)方面,貴妃最高,Juile最低,說明在總群體內,貴妃對應位點實際觀測到的等位基因類型最多。有效等位基因數值(Ne)越接近等位基因數(Na)的絕對值時,表明等位基因在群體中分布越均勻,即貴妃、椰香、Juile相對于其他品種而言,等位基因在群體中分布較均勻。貴妃平均Shannon’s信息指數(I)最高,Juile最低,說明貴妃群體中遺傳多樣性較高,種群分化程度最高,反之,Juile最低。貴妃的觀測雜合度(Ho)與期望雜合度(He)均為最高,表明貴妃的多態性高。固定指數(F)能夠衡量種群中基因型的實際頻率是否偏離Hardy-Weinberg(哈代溫伯格)理論比例,當種群中純合體過量時,F>0;反之,當雜合體過量時,F<0(表4)。
2.4 哈代溫伯格平衡檢驗
利用Hardy-Weinberg定律研究12種不同杧果的基因,其中11個品種處于平衡狀態,其中品種紅玉顯示顯著偏離Hardy-Weinberg(p<0.05)(表5)。
2.5 品種間遺傳分化指數Fst
Fst指親緣關系地方群體間的平均近交系數,當Fst在0.05~0.15時,表明群體間存在中等程度的遺傳分化,Fst>0.05時,群體間存在較大程度的遺傳分化。通過品種間Fst結果發現,紅玉和R2E2、紅玉和椰香、紅玉和南逗邁、Juile和R2E2、Juile和南逗邁、貴妃和南逗邁、貴妃和Juile間遺傳分化明顯,其余品種間遺傳分化不明顯(圖2)。
2.6 品種間遺傳距離與聚類分析
遺傳距離作為衡量品種間不同性狀綜合遺傳差異大小的指標,能夠直觀反映親本品種間的遺傳差異。品種R2E2和紅玉、R2E2和Juile間的遺傳距離最大,分別為0.737 7和0.622 0,表示該品種間遺傳差異較大,其余品種的遺傳距離較小,遺傳差異不明顯(圖3)。根據樣品間及群體間的遺傳距離,運用Phylip軟件采用UPGMA方法進行群體間聚類分析,凱特和湯米被聚為一類,紅玉和Juile被聚為一類,親緣關系較近(圖4)。
2.7 Structure分析
Structure分析顯示,當K=3時,△K=35,值最大(圖5),可將所有個體分成3個群體。由群體遺傳結構(圖6)可知,不同顏色表示不同遺傳組成,同一顏色占比最高的能夠聚為同一類亞群,即R2E2為一簇,紅玉為一簇,A61、貴妃、金煌、Juile、凱特、南逗邁、湯米、臺農1號、Villard和椰香聚為一簇,因此12個品種可以劃分為三大亞群,遺傳背景分為3個類型。
2.8 親權鑒定
對雙親本均未知組合進行親權分析,然后從中挑選出已知母本并不是第一候選親本將其剔除,其中共剔除191個樣本,剔除比例為19.1%,對809個子代和候選父本(母本已知)進行親權關系鑒定,實際鑒定率為87%(表6,表7)。
2.9 雜交鑒定結果
從可鑒定的父本中得出,以A61為母本的3個雜交后代中,真雜種率為80%;貴妃為母本的116個后代中,自交率為38.46%,真雜種率為61.54%;紅玉為母本的167個后代,其自交率為74.8%,真雜種率為25.2%;金煌為母本的69個后代中,自交率低,真雜種率為82.61%;Juile為母本的2個雜交后代中,其父本50%來自紅玉,50%來自南逗邁;南逗邁為母本的后代中,雜交率低,真雜種率為25.00%,其自交率為75.00%;凱特為母本的77個后代中,真雜種率為72.73%,自交率為27.27%;母本為R2E2的后代群體中,自交率為82.69%,真雜種率為17.31%;湯米為母本的后代中,自交率為56.57%,真雜種率為43.43%;臺農1號為母本的59個后代中,自交率為16.95%,真雜種率為83.05%;Villard為母本的51個后代中,自交率為66.67%,真雜種率為33.33%;椰香為母本的11個后代中,自交率為63.64%,真雜種率為36.36%(表8)。結果表明,在12個已知品種中,南逗邁、R2E2、紅玉、Villard、椰香自交率高,初步說明其自交親和性強,極易自交;其余品種的雜交率均高于50%,其品種的雜交親和性較強。
3 討 論
SSR分子標記技術作為一種便捷、可靠的方法被廣泛應用于不同作物F1代的真偽雜種鑒定及驗證[15]、遺傳圖譜的構建[16]、雜種純度鑒定[17-20]、遺傳多樣性分析等。
雜交是品種創新和選育的重要環節,親本的選擇選配是決定杧果雜交育種是否成功的關鍵。在自然授粉群體中,杧果親本很難被鑒定,現研究指出目前80%的杧果品種都來自實生選育,僅20%左右的品種通過控制授粉及混合自然授粉所選育[14]。杧果作為定向育種難度大、育種周期長的作物,大部分育種親本不明確,在國際上常規人工雜交育種坐果率僅為0.3%,所以有必要開展杧果雜交后代的早期鑒定工作,排除假雜種,提高杧果育種效率。
杧果為高度雜合體,在生產過程中后代容易受自花授粉的影響,產生基因變異,且不同品種中極易進行自然雜交。對于遺傳變異小的群體,鑒定出的可能父本較多,會導致多個父本剔除不了,筆者在本試驗中利用SSR分子標記技術對其進行親權鑒定,13個SSR位點上,1001個后代中809個后代與其父母本基因型基本符合孟德爾遺傳定律,初步表明這些位點能夠精準鑒定出可能父本,為杧果雜交育種性狀遺傳提供基礎數據,未鑒定出親本的后代在親權鑒定中產生位點不匹配的錯誤,有可能因為無效等位基因使一些雜合子的單條帶無法檢測出來,Hokanson等[21]和Kapoor等[22]的研究指出,模擬結果與實際結果相差較大是無效等位基因的存在造成的。
物種的遺傳多樣性本質是生物體遺傳物質的變異,遺傳多樣性水平越高,該物種或種群對新環境的適應能力就越強[23]。DNA分子標記能夠反映出遺傳變異程度,筆者在本研究中通過13對SSR標記,對809份杧果樣品進行遺傳多樣性分析,根據群體遺傳結構聚類為三大不同亞群。該SSR標記位點顯示杧果品種間存在許多等位基因的現象,等位基因數變化范圍為3~9,平均等位基因數(Na)為6.154,平均有效等位基因數(Ne)為2.557,Shannon’s信息指數(I)為1.078,觀測雜合度(Ho)平均為0.571,期望雜合度(He)平均為0.579,多態性信息含量(PIC)平均為0.526,多態性信息含量在0<PIC≤0.25之間,為低多態性,0.25<PIC≤0.5為中度多態性,PIC>0.5為高度多態性,在本試驗的13個標記中有10個為高度多態性,3個為中度多態性。試驗中所有SSR位點在樣品間表現出好的多態性,各指標之間大多體現較高的一致性,表明引物的多態性較高,能夠有效地揭示杧果實生后代的遺傳多樣性,更好地鑒別現有的主栽品種。
Structure分析是將遺傳相似的基因型個體聚在一起,假定每一個被分析的個體在所有的類別中都有共同的祖先,估計各類別的屬于該祖先的概率值,是一種分析群體遺傳結構的常用方法。本試驗中對12個杧果親本進行Structure分析,準確推斷出它的品種結構圖。結果顯示,當K=3時,ΔK值最大,說明被檢測的品種分為三個簇,R2E2為一簇,紅玉為一簇,A61、貴妃、金煌、Juile、凱特、南逗邁、湯米、臺農1號、Villard和椰香聚為一簇,說明這12個親本的遺傳背景分為3個類型。親權鑒定結果顯示,R2E2品種聚為一簇,紅玉品種聚為一簇,其他品種聚為一簇。由此可見,R2E2和紅玉兩個品種,將會得到它們的純合體基因型。
4 結 論
在杧果F1代雜種鑒定中,杧果品種臺農1號、凱特、Juile、金煌、紅玉、貴妃的雜交親和性較強;南逗邁、R2E2、紅玉、Villard、椰香品種極易自交,且品種間存在許多等位基因的現象,遺傳多樣性較為豐富。該結果為進一步開展杧果遺傳改良與群體構建、親本選擇提供了前期依據。
參考文獻 References:
[1] 李志強,黨志國,趙志常,黃建峰,高愛平,陳業淵. 芒果雜交F1代群體的遺傳多樣性分析及遺傳圖譜的構建[J]. 分子植物育種,2016,14(4):953-958.
LI Zhiqiang,DANG Zhiguo,ZHAO Zhichang,HUANG Jianfeng,GAO Aiping,CHEN Yeyuan. Genetic diversity analyze of mango’s F1 hybrids and construction of genetic map[J]. Molecular Plant Breeding,2016,14(4):953-958.
[2] 李文秀,賀軍軍,張華林,羅萍. SSR分子標記鑒定橡膠樹F1真偽雜種[J]. 熱帶作物學報,2021,42(5):1305-1309.
LI Wenxiu,HE Junjun,ZHANG Hualin,LUO Ping. Identification of F1 hybrids of Hevea brasiliensis by SSR markers[J]. Chinese Journal of Tropical Crops,2021,42(5):1305-1309.
[3] 劉洪,徐振江,饒得花,魯清,李少雄,劉海燕,陳小平,梁炫強,洪彥彬. 基于形態學性狀和SSR標記的花生品種遺傳多樣性分析和特異性鑒定[J]. 作物學報,2019,45(1):26-36.
LIU Hong,XU Zhenjiang,RAO Dehua,LU Qing,LI Shaoxiong,LIU Haiyan,CHEN Xiaoping,LIANG Xuanqiang,HONG Yanbin. Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers[J]. Acta Agronomica Sinica,2019,45(1):26-36.
[4] 王輝,PAWAN K,李雙鈴,任艷,袁美,莊偉建,VARSHNEY R K,郭寶珠,謝聯輝. SSR分子標記在花生雜種鑒定中的應用[J]. 福建農林大學學報(自然科學版),2015,44(4):350-354.
WANG Hui,PAWAN K,LI Shuangling,REN Yan,YUAN Mei,ZHUANG Weijian,VARSHNEY R K,GUO Baozhu,XIE Lianhui. Application of SSR markers in peanut F1 hybrid identification[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2015,44(4):350-354.
[5] 胡東青,王秀貞,唐月異,高華援,陳殿緒,吳琪,張樹偉,王傳堂. 利用SSR標記鑒定花生真雜種[J]. 花生學報,2012,41(4):22-25.
HU Dongqing,WANG Xiuzhen,TANG Yueyi,GAO Huayuan,CHEN Dianxu,WU Qi,ZHANG Shuwei,WANG Chuantang. Identification of hybrids in groundnut using SSR markers[J]. Journal of Peanut Science,2012,41(4):22-25.
[6] 劉俊睿,謝夢嬌,閆龍,李晗,楊凱,孫新展,張運,牛曉,孫東京,李永強,萬平. SSR分子標記鑒定小豆F1真假雜種[J]. 北京農學院學報,2014,29(1):1-5.
LIU Junrui,XIE Mengjiao,YAN Long,LI Han,YANG Kai,SUN Xinzhan,ZHANG Yun,NIU Xiao,SUN Dongjing,LI Yongqiang,WAN Ping. Identification of F1 hybrid in adzuki bean (Vigna angularis) by SSR markers[J]. Journal of Beijing University of Agriculture,2014,29(1):1-5.
[7] 白曉倩,陳于,張仕杰,趙玉強,王武,朱燦燦. 基于表型性狀和SSR標記的板栗品種遺傳多樣性分析及分子身份證構建[J]. 植物遺傳資源學報,2022,23(4):972-984.
BAI Xiaoqian,CHEN Yu,ZHANG Shijie,ZHAO Yuqiang,WANG Wu,ZHU Cancan. Genetic diversity analysis and fingerprinting of chestnut varieties based on phenotypic traits and SSR markers[J]. Journal of Plant Genetic Resources,2022,23(4):972-984.
[8] 洪文娟. 石榴種質資源SSR分子標記遺傳多樣性分析及指紋圖譜構建[D]. 北京:北京林業大學,2020.
HONG Wenjuan. Genetic diversity analysis and finger prints construction of pomegranate germplasm resources based on SSR markers[D]. Beijing:Beijing Forestry University,2020.
[9] 趙麗華. 石榴(Punica granatum L.)種質資源遺傳多樣性及親緣關系研究[D]. 重慶:西南大學,2010.
ZHAO Lihua. Study on genetic diversity and genetic relationship of pomegranate (Punica granatum L.) germplasm[D]. Chongqing:Southwest University,2010.
[10] 劉奇燕,丁顯萍,張萍,張雯,韓海英,王亞清,朱昌棟. 雜交水稻種子SSR分子標記純度鑒定[J]. 安徽農學通報,2021,27(5):9-10.
LIU Qiyan,DING Xianping,ZHANG Ping,ZHANG Wen,HAN Haiying,WANG Yaqing,ZHU Changdong. Purity identification of SSR molecular markers in hybrid rice seeds[J]. Anhui Agricultural Science Bulletin,2021,27(5):9-10.
[11] 雷雨,段繼華,黃飛毅,康彥凱,羅意,陳宇宏,丁玎,姚利娜,董麗娟,李賽君. 茶樹雜交F1真假雜種的SSR鑒定及遺傳多樣性分析[J]. 植物遺傳資源學報,2021,22(3):748-757.
LEI Yu,DUAN Jihua,HUANG Feiyi,KANG Yankai,LUO Yi,CHEN Yuhong,DING Ding,YAO Lina,DONG Lijuan,LI Saijun. Identification and genetic diversity of tea F1 hybrids based on SSR markers[J]. Journal of Plant Genetic Resources,2021,22(3):748-757.
[12] 高源,王大江,王昆,叢佩華,李連文,樸繼成. 基于熒光SSR分析中國原產蘋果屬植物17個種的遺傳多樣性和遺傳結構[J]. 果樹學報,2020,37(11):1611-1622.
GAO Yuan,WANG Dajiang,WANG Kun,CONG Peihua,LI Lianwen,PIAO Jicheng. Genetic diversity and population structure of 17 species of Malus Mill. native to China based on fluorescent SSR analysis[J]. Journal of Fruit Science,2020,37(11):1611-1622.
[13] 陳道勤,邱永生,王勤南,黃錦福,吉家樂. 芒果人工雜交授粉結實率影響因素研究[J]. 現代農業科技,2020(18):64.
CHEN Daoqin,QIU Yongsheng,WANG Qinnan,HUANG Jinfu,JI Jiale. Study on the influencing factors of mango artificial hybridization pollination seed setting rate[J]. Modern Agricultural Science and Technology,2020(18):64.
[14] 姚全勝,雷新濤,黃忠興,朱敏,王松標,黃麗芳,馬小衛,詹儒林,武紅霞. 杧果炭疽病抗性雜交群體的構建及SSR分子標記鑒定[J]. 果樹學報,2010,27(2):265-269.
YAO Quansheng,LEI Xintao,HUANG Zhongxing,ZHU Min,WANG Songbiao,HUANG Lifang,MA Xiaowei,ZHAN Rulin,WU Hongxia. Construction of the resistance to anthracnose for crossed mango population and identification by SSR molecular markers[J]. Journal of Fruit Science,2010,27(2):265-269.
[15] 薛華柏,王芳芳,王磊,楊健,王龍,王蘇珂,蘇艷麗,喬玉山,李秀根. ‘滿天紅’ב紅香酥’雜種鑒定及遺傳變異Genic-SSR分析[J]. 果樹學報,2017,34(8):925-934.
XUE Huabai,WANG Fangfang,WANG Lei,YANG Jian,WANG Long,WANG Suke,SU Yanli,QIAO Yushan,LI Xiugen. Identification of the hybrids and analysis of genetic variation of a pear progeny derived from crossing between ‘Mantianhong’ and ‘Hongxiangsu’ by Genic-SSR[J]. Journal of Fruit Science,2017,34(8):925-934.
[16] 魏秀清,許玲,章希娟,許家輝. 龍眼優良雜交株系的SSR鑒定[J]. 東南園藝,2017,5(5):6-9.
WEI Xiuqing,XU Ling,ZHANG Xijuan,XU Jiahui. Identification of individual hybrid progeny in longan (Dimocarpus longan) by SSR[J]. Southeast Horticulture,2017,5(5):6-9.
[17] 韓國輝. 基于EST-SSR、Genomic-SSR和SCoT標記的柑橘連鎖圖譜構建及雜種和多倍體遺傳分析[D]. 重慶:西南大學,2012.
HAN Guohui. Construction of molecular linkage map and genetic analysis of hybrids and polyploidy of citrus based on EST-SSR,Genomic-SSR and SCoT markers[D]. Chongqing:Southwest University,2012.
[18] 劉偉,羅心平,張惠云,蔣儂輝,肖志丹,袁沛元,邱燕萍,凡超,楊曉燕,高賢玉,左艷秀,向旭. 荔枝新種質‘燎原’的分子標記鑒定[J]. 分子植物育種,2016,14(1):177-185.
LIU Wei,LUO Xinping,ZHANG Huiyun,JIANG Nonghui,XIAO Zhidan,YUAN Peiyuan,QIU Yanping,FAN Chao,YANG Xiaoyan,GAO Xianyu,ZUO Yanxiu,XIANG Xu. Identification of a novel litchi germplasm ‘Liaoyuan’ by molecular markers[J]. Molecular Plant Breeding,2016,14(1):177-185.
[19] GONAI T,MANABE T,INOUE E,HAYASHI M,YAMAMOTO T,HAYASHI T,SAKUMA F,KASUMI M. Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers[J]. Scientia Horticulturae,2006,109(1):43-47.
[20] 馬凱,趙鈺,張恒,韓立群,趙國慶,王繼勛. 基于SSR標記的中亞生態區核桃(Juglans regia L.)遺傳多樣性與種群結構分析[J]. 果樹學報,2021,38(11):1854-1867.
MA Kai,ZHAO Yu,ZHANG Heng,HAN Liqun,ZHAO Guoqing,WANG Jixun. Analysis of genetic diversity and population structure of walnut (Juglans regia L.) in Central Asia ecological region based on SSR markers[J]. Journal of Fruit Science,2021,38(11):1854-1867.
[21] HOKANSON S C,SZEWC-MCFADDEN A K,LAMBOY W F,MCFERSON J R. Microsatellite (SSR) markers reveal genetic identities,genetic diversity and relationships in a Malus × domestica Borkh. core subset collection[J]. Theoretical and Applied Genetics,1998,97(5):671-683.
[22] KAPOOR M,MAWAL P,SHARMA V,GUPTA R C. Analysis of genetic diversity and population structure in Asparagus species using SSR markers[J]. Journal,Genetic Engineering amp; Biotechnology,2020,18(1):50.
[23] 姚國瓊,楊帆,嚴苓方,孫正海,李偉. 基于轉錄組SSR的三角梅遺傳多樣性分析[J/OL].分子植物育種,2014:1-19[2022-03-15]. https://kns.cnki.net/kcms/detail/46.1068.S.20220228.2219.017.html.
YAO Guoqiong,YANG Fan,YAN Lingfang,SUN Zhenghai,LI Wei. Analysis of Bougainvillea glabra Choisy genetic diversity based on SSR of transcriptome[J/OL]. Molecular Plant Breeding,2024:1-19[2022-03-15]. https://kns.cnki.net/kcms/detail/46.1068.S.20220228.2219.017.html.