999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

灰比諾葡萄病毒內蒙古分離物全基因組分析

2024-12-31 00:00:00郭孟澤徐磊閆雨婷孫平平張磊李正男
果樹學報 2024年12期

摘" " 要:【目的】獲取灰比諾葡萄病毒(grapevine pinot gris virus,GPGV)內蒙古分離物全基因組序列,并對該病毒群體進行序列一致性、系統發育、基因重組以及群體遺傳多樣性等分析。【方法】以GPGV陽性樣品為試驗材料,通過RT-PCR技術和cDNA末端快速擴增技術(rapid amplification of cDNA ends,RACE)克隆GPGV內蒙古分離物的全基因組序列,并通過分子生物學分析軟件對其進行基因組序列分析。【結果】成果克隆了2條GPGV內蒙古分離物(20IM-ViVi1和20IM-ViVi2)的全基因組序列,序列全長均為7250 nt,且均編碼3個ORFs;序列一致性分析結果顯示,20IM-ViVi1與20IM-ViVi2基因組序列核苷酸一致率為96.4%,與其他分離物的全基因組序列一致率分別為79.7%~96.8%、79.5%~97.7%;系統進化分析表明,GPGV所有全基因組分離物可劃為4個分支,其中本研究中所獲得的2個分離物20IM-ViVi1與20IM-ViVi2均聚集在第Ⅰ分支,并均與中國夏黑分離物SRR2845691-GPGV親緣關系最近;遺傳多樣性分析結果表明,GPGV具有較高的遺傳多樣性,其中GPGV亞洲分離物遺傳多樣性最高。【結論】首次獲得GPGV內蒙古分離物的全基因組序列,并闡述了2個GPGV內蒙古分離物與已知病毒之間的進化關系,可為中國GPGV株系劃分、遺傳進化研究奠定理論基礎。

關鍵詞:灰比諾葡萄病毒;系統進化分析;序列一致性;遺傳多樣性

中圖分類號:S663.1;S436.631 文獻標志碼:A 文章編號:1009-9980(2024)12-2425-11

Complete genome sequence analysis of grapevine pinot gris virus isolates from Inner Mongolia

GUO Mengze, XU Lei, YAN Yuting, SUN Pingping, ZHANG Lei, LI Zhengnan*

(1College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China)

Abstract: 【Objective】 The objective of this study was to acquire the complete genomic sequence of grapevine pinot gris virus (GPGV) isolates from Inner Mongolia and to perform a comprehensive analysis of the GPGV population, encompassing sequence identity, phylogenetic relationships, gene recombination, sequence similarity and genetic diversity. 【Methods】 Grape leaf samples that had previously tested positive for GPGV served as the experimental materials for total RNA extraction. A total of 100 mg of GPGV-infected grape samples were processed in accordance with the Spectrum? Plant Total RNA Kit instructions. The quality and concentration of the extracted RNA were evaluated via 1% agarose gel electrophoresis and microspectrophotometry, respectively, and the RNA was preserved at -80 ℃ for future use. Vector NTI software was utilized to align all the full-length genomic sequences of GPGV reported in the NCBI GenBank database. Three primer pairs (GPGV-1F/GPGV-1R, GPGV-2F/GPGV-2R and GPGV-3F/GPGV-3R) were designed within the conserved regions to amplify the complete genomic sequence of GPGV, ensuring that overlapping fragments between adjacent amplification products exceeded 200 bp. Subsequently, primers (GPGV3 and GPGV1) were designed for amplifying the terminal sequences of GPGV. Total RNA was employed as a template to synthesize cDNA using the SuperScript? Ⅲ Reverse Transcriptase Kit under the conditions of 50 ℃ for 1 hour, followed by 70 ℃ for 15 minutes. The cDNA template was then used to amplify the nucleotide sequences of GPGV with Q5 High-Fidelity 2×Master Mix, employing thermal cycling parameters of denaturation at 98 ℃ for 30 seconds, annealing at 56 ℃ for 30 seconds, and extension at 72 ℃ for 2 minutes over 35 cycles. The SMARTer? RACE 5'/3' Kit was used to amplify the 5' and 3' terminal sequences of GPGV. PCR products were identified through 1% agarose gel electrophoresis, and the target fragments were purified using a gel DNA purification kit. The amplified and RACE-obtained GPGV genomic sequences were assembled using Vector NTI software to reconstruct the complete genomic sequences of GPGV. ClustalW in MEGA 11 was employed to conduct multiple sequence alignments of all complete genomic sequences of GPGV in the NCBI database (152 isolates), and a phylogenetic tree was constructed using the Maximum-Likelihood method with 1000 bootstrap replicates as determined by the MODLES program. Sequence identity analysis was performed on the complete genomic sequences and open reading frames (ORFs) using BioEdit 7.2 software. Recombination analysis was executed on the complete genomic sequences of the isolates using seven recombination detection algorithms provided by RDP4 software. Population neutrality tests, selection pressure analysis, nucleotide polymorphism analysis, and haplotype polymorphism analysis were conducted on GPGV isolates using DnaSP v.6.12.03. 【Results】 The complete genomes of two GPGV isolates from Inner Mongolia (20IM-ViVi1 and 20IM-ViVi2) were successfully cloned, each comprising 7250 nucleotides and encoding three open reading frames (ORFs). Sequence identity analysis demonstrated that the genome sequences of isolates 20IM-ViVi1 and 20IM-ViVi2 were 96.4% identical. Their identity with other isolates varied from 79.7% to 96.8% and 79.5% to 97.7%, respectively. Furthermore, the identity among the full genome sequences of GPGV isolates in China spanned from 82.0% to 99.9%. A phylogenetic tree based on the complete genome sequences of all GPGV isolates revealed that the existing 152 complete genomes were partitioned into four clades. Clade Ⅲ and Clade Ⅳ were further divided into two minor subclades (a and b). The two isolates 20IM-ViVi1 and 20IM-ViVi2 obtained in this study were both grouped in CladeⅠ and were most closely related to the Summer Black grape isolate SRR2845691-GPGV from China. A phylogenetic tree constructed from Chinese GPGV isolates indicated that these isolates were predominantly divided into four clades. The GPGV isolate Shihezi-1 from Xinjiang displayed a relatively high genetic distance from other isolates, with a distant phylogenetic relationship, and was therefore placed in CladeⅠ separately. The isolates 20IM-ViVi1 and 20IM-ViVi2 obtained in this study were both aggregated in Clade Ⅳ and were most closely related to the Summer Black grape isolate SRR2845691-GPGV. Recombination analysis revealed that no significant recombination events were detected in the GPGV isolates 20IM-ViVi1 and 20IM-ViVi2. Genetic diversity analysis suggested that GPGV possessed high genetic diversity, with the Asian isolates showing the highest genetic diversity. 【Conclusion】 This study marks the first to obtain the complete genome sequences of GPGV isolates from Inner Mongolia. Both GPGV isolates had a genome length of 7250 nt, containing three ORFs, and exhibited high identity with existing GPGV isolates (excluding the Japanese isolate H-JP2), with identity ranges from 79.7% to 96.8% and 79.5% to 97.7%, respectively. Additionally, the phylogenetic tree constructed from all GPGV complete genome sequences was divisible into four clades, with the isolates obtained in this study clustering in CladeⅠ. Genetic diversity analysis revealed that Asian GPGV isolates exhibited high genetic diversity, potentially indicating an origin center, although population expansion occurred in Europe. This study represents the first comprehensive analysis of GPGV isolates from Inner Mongolia, providing critical insights into their genomic structure and evolutionary dynamics.

Key words: Grapevine pinot gris virus; Phylogenetic analysis; Sequence identity; Genetic diversity

葡萄(Vitis vinifera)是有較高營養價值和經濟價值的一種園藝作物[1]。據糧農組織(FAO)統計,2021年,中國葡萄產量為1 126.99萬t,位居世界第一;種植面積為58.272 8萬hm2,位居世界第四。但近年來中國葡萄產區病毒性病原日益流行,葡萄已知的病毒性病原種類超過100種[2-4],成為感染病毒種類最多的果樹。目前,葡萄感染病毒后一般會出現發芽延遲、節間縮短、葉片畸形、漿果壞死、漿果變酸、花葉、斑駁、脈明、環斑以及木質部凹陷等癥狀[5-6],嚴重影響葡萄產業的發展。

灰比諾葡萄病毒(grapevine pinot gris virus,GPGV)是乙型線形病毒科(Betafexiviridae)纖毛病毒屬(Trichovirus)的代表成員,基因組為正義單鏈RNA分子,編碼3個重疊的開放閱讀框(open reading frame,ORF),ORF1編碼RNA依賴的RNA聚合酶(RNA-dependent RNA polymerase,RdRp)、ORF2編碼運動蛋白(movement protein,MP)、ORF3編碼外殼蛋白(coat protein,CP)。GPGV所引起的葡萄病害最早始于意大利特倫蒂諾地區葡萄園種植的灰比諾上[1]。但該病毒是在9 a(年)后才被發現,隨后世界上大多數主要的葡萄種植區都檢測到了GPGV,例如歐洲的法國、德國、俄羅斯、捷克、希臘、斯洛伐克、斯洛文尼亞、土耳其、西班牙和葡萄牙;亞洲的中國、韓國和巴基斯坦;北美洲的美國、加拿大;南美洲的烏拉圭;大洋洲的澳大利亞[7-17]。目前,GPGV在中國葡萄主要種植區較為流行,可造成葡萄葉片斑駁和變形病(grapevine leaf mottling and deformation,GLMD),并且漿果酸度增加,嚴重影響葡萄以及葡萄酒產業的發展。但是一些幾乎無癥狀的葡萄樣本也檢測到了GPGV,因此這些癥狀相關的原因尚不清楚[18]。此外,白花蠅子草(Silene latifolia)和藜(Chenopodium album)是GPGV的草本寄主[19],葡萄缺節癭螨(Colomerus newkirk)是GPGV傳播的昆蟲介體[20]。

近年來,GPGV的基因組特征、危害癥狀、地理分布和起源中心受到了廣泛關注,較多研究表明GPGV種群的遺傳多樣性處于中等水平,且中國也是起源中心的主要指向之一[17]。然而,關于GPGV中國分離物的全基因組序列報道較少。因此,為了深入了解GPGV的遺傳多樣性和系統發育關系,利用RT-PCR和RACE技術獲得了2條GPGV的內蒙古分離物(20IM-ViVi1和20IM-ViVi2),并將其與NCBI GenBank 數據庫所下載的其他GPGV分離物進行了序列一致性分析、系統發育分析、重組分析以及遺傳多樣性分析,以期為中國GPGV的防治提供理論基礎。

1 材料和方法

1.1 材料

試驗材料為前期研究中檢測為GPGV陽性的葡萄葉片樣品,分別于2020年6月8日和2020年7月15日在內蒙古呼和浩特市周邊不同的設施葡萄園采集,并經液氮速凍后存放于-80 ℃冰箱備用。

1.2 總RNA提取

取上述感染GPGV的葡萄樣品100 mg,按照植物總RNA提取試劑盒(Spectrum? Plant Total RNA Kit)說明書進行總RNA的提取,通過1%的瓊脂糖凝膠電泳和微量分光光度計分別對所提取RNA的質量和濃度進行檢測,并于-80 ℃冰箱保存備用。

1.3 引物設計

利用Vector NTI軟件對NCBI Genbank數據庫已報道的所有GPGV全長基因組序列進行序列比對,在序列保守區設計了3個引物對(GPGV-1F/GPGV-1R、GPGV-2F/GPGV-2R、GPGV-3F/GPGV-3R)用于GPGV全基因組序列擴增,相鄰擴增片段間重疊片段長度均大于200 bp,隨后結合上述擴增結果設計了用于擴增GPGV末端序列的引物(GPGV3、GPGV1)(表1)。引物均由生工生物工程(上海)股份有限公司合成。

1.4 GPGV全基因組序列擴增

以提取的總RNA為模板,采用反轉錄試劑盒(SuperScript? Ⅲ Reverse Transcriptase)合成cDNA,反應條件:50 ℃,1 h,70 ℃,15 min。以cDNA為模板,在高保真酶(Q5 High-Fidelity 2×Master Mix)的作用下分段擴增GPGV的核苷酸序列,循環參數為:98 ℃變性30 s,56 ℃退火30 s,72 ℃延伸2 min,35個循環。利用SMARTer? RACE 5'/3' Kit試劑盒擴增GPGV 5'和3'末端序列。PCR產物通過1%瓊脂糖凝膠電泳進行檢測,瓊脂糖凝膠DNA回收試劑盒回收目的片段。純化后的產物連接至pTOPO-Blunt克隆載體,并轉化JM109大腸桿菌感受態細胞,經PCR進行菌液鑒定后,取適量菌液送至華大基因進行測序,剩余菌液用50%甘油保存,置于-80 ℃冰箱備用。

1.5 GPGV基因組序列分析

采用Vector NTI軟件將RT-PCR擴增以及cDNA末端快速擴增(RACE)得到的GPGV基因組序列進行組裝,獲得GPGV的完整基因組序列。利用NCBI ORF finder (https://www.ncbi.nlm.nih.gov/orffinder)進行ORFs預測,獲得GPGV分離物的5'端非編碼區(5'-UTR)、3'端非編碼區(3'-UTR)和ORFs的序列。利用EMBOSS transeq(https://www.ebi.ac.uk/Tools/st/emboss_transeq/)進行ORFs的翻譯,獲得氨基酸序列。利用Mega 11的ClustalW方法對GPGV在NCBI數據庫中所有的完整基因組序列(152個分離物)進行多重序列比對,并以最大似然法(maximum-likelihood method,ML)構建了系統進化樹,依MODLES程序確定了建樹參數,自展值設為1000。利用BioEdit 7.2軟件對完整基因組序列以及ORFs的核苷酸與氨基酸序列進行一致性分析。利用RDP4軟件提供的7種重組檢測算法對得到的分離物全基因組序列進行重組分析。利用DnaSP v.6.12.03對GPGV分離物進行群體遺傳多樣性分析[21]。

2 結果與分析

2.1 GPGV內蒙古分離物全基因組序列擴增與基因組結構特征

將葡萄葉片樣品提出的總RNA反轉錄為cDNA后,通過RACE技術和RT-PCR技術擴增出3段重疊的基因組序列以及末端序列(圖1)。使用Vector NTI軟件將各序列片段進行拼接組裝,獲得了2條GPGV分離物(20IM-ViVi1和20IM-ViVi2)的完整基因組序列(登錄號:OR935780、OR935781)。2條全基因組序列長度均為7250 nt,3'和5'非編碼區(UTR)長度為95 nt、82 nt,基因組結構均與已報道的GPGV基因組結構一致,含3個重疊的ORFs,ORF1(96~5563 nt,1855 aa)編碼了病毒甲基轉移酶(methyltransferases,MT)、2OG-Fe Ⅱ-Oxy加氧酶結構域、病毒RNA解旋酶以及RNA依賴型的RNA聚合酶(RdRp),ORF2(5569~6696 nt,375 aa)和ORF3(6581~7168 nt,195 aa)分別編碼了運動蛋白(MP)和外殼蛋白(CP)。

2.2 GPGV分離物序列一致性分析

將所獲得的2個內蒙古GPGV分離物與其他GPGV中國分離物進行全基因組序列一致性分析,結果表明,GPGV中國分離物彼此之間的全基因組序列一致率在82.0%~99.9%之間,其中分離物20IM-ViVi1與20IM-ViVi2之間具有較高的全基因組序列一致率,為96.4%(圖2)。將所獲得的2個序列分別與GenBank中其他GPGV全基因組序列進行成對比對,結果表明,分離物20IM-ViVi1與其他GPGV完整基因組序列的核苷酸序列一致率在79.7%~96.8%之間,其中與俄羅斯白羽分離物Rk3(GenBank登錄號:OL961512)之間的全基因組序列一致率最高,為96.9%;與日本紫葛葡萄(Vitis coignetiae)分離物H-JP2(GenBank登錄號:LC601812)之間的全基因組序列一致率最低,為78.8%;分離物20IM-ViVi2與其他GPGV完整基因組序列的核苷酸序列一致率在79.5%~97.7%之間,其中與中國夏黑分離物SRR2845691GPGV(GenBank登錄號:BK011076)之間的全基因組序列一致率最高,為97.7%;與日本紫葛葡萄分離物H-JP2之間的全基因組序列一致率最低,為79.5%。

為分析GPGV內蒙古分離物分子多樣性的具體區域,將所獲得的GPGV內蒙古分離物的各ORFs與GenBank中其他GPGV的ORFs進行成對比對,結果表明分離物20IM-ViVi1的RdRp(ORF1)的核苷酸與氨基酸序列一致率的范圍分別為78.9%~97.5%、87.6%~98.9%;MP(ORF2)的核苷酸與氨基酸序列一致率的范圍分別為80.1%~97.4%、86.6%~98.9%;CP(ORF3)的核苷酸與氨基酸序列一致率的范圍分別為84.8%~95.7%、92.3%~100.0%。分離物20IM-ViVi2的RdRp(ORF1)的核苷酸與氨基酸一致率的范圍分別為78.6%~97.6%、86.4%~98.7%;MP(ORF2)的核苷酸與氨基酸序列一致率的范圍分別為79.9%~98.4%、86.6%~99.2%;CP(ORF3)的核苷酸與氨基酸一致率的范圍分別為85.1%~98.1%、92.3%~100.0%。

2.3 GPGV系統進化分析

為明確所獲得的GPGV內蒙古分離物與NCBI GenBank數據庫已報道的GPGV分離物之間的親緣關系,利用MEGA11軟件以最大似然法構建了系統進化樹,MODLES程序判定了最大似然法的最佳進化模型(GTR+G+I)。結果(圖3)顯示,GPGV現有的152個完整基因組被分為4個分支,第Ⅲ分支和第Ⅳ分支又被分為a、b 2個小的分支。其中本研究中所獲得的2個分離物20IM-ViVi1與20IM-ViVi2均聚集在第Ⅰ分支,并均與中國夏黑分離物SRR2845691-GPGV親緣關系最近。

另外,為明確中國GPGV分離物的系統發育關系,以最大似然法對22個中國GPGV分離物進行了系統發育樹的重建,結果(圖4)顯示,中國分離物主要分為4個分支,其中GPGV新疆分離物Shihezi-1與其他分離物具有較大的遺傳距離,親緣關系較遠,被單獨分在了第Ⅰ分支。而本研究中所獲得的分離物20IM-ViVi1與20IM-ViVi2均被聚集在第Ⅳ分支,并且均與中國夏黑分離物SRR2845691-GPGV親緣關系最近。

2.4 GPGV的遺傳多樣性分析

通過DNAsp v.6軟件對152個GPGV分離物進行了中性測試以及核苷酸多態性分析,并延ORFs基因組序列走向繪制等比例趨勢圖。其中中性測試結果(圖5)顯示,GPGV群體在RdRp、MP以及CP編碼區均處的Tajima’s D中性檢測值分別為-2.234 92、

-2.137 45、-2.059 23,且支撐該數值的p值均小于0.05,表明GPGV三個ORFs均受到了顯著的負向選擇。核苷酸多態性分析結果顯示,GPGV群體在RdRp、MP以及CP編碼區域的核苷酸多態性(π)為0.032 88±0.001 54、0.028 59±0.003 25、0.028 27±0.004 50,表明GPGV具有較高的遺傳多樣性。此外,亞洲GPGV分離物的核苷酸多態性(π=0.078 70±0.014 69)顯著高于其他大洲GPGV分離物的核苷酸多態性(表2),但亞洲GPGV分離物的中性檢測值并不顯著,可能遵循中性進化的原則。

為了評估GPGV進化過程中每個編碼區的選擇壓力變化,使用DNAsp v. 6計算dN/dS比值(表2)。所有GPGV編碼區的dN值均小于dS值(dN/dS值<1),表明純化選擇限制了群體的變異性。然而,純化選擇壓力在整個基因組中并不是均勻分布的(圖6)。CP受到的純化選擇最強,其dN/dS值最低,為0.051 501。MP受到的純化選擇最弱,其dN/dS值最高,為0.132 055。此外,通過使用HyPhy軟件包中的SLAC方法進一步表明MP編碼區具有較多的正選擇位點(圖6),且FEL、FUBAR、SLAC三種方法均篩選出了強正選擇位點(表2),其中共同被篩選的位點為RdRp編碼區的657,MP編碼區的388、344、346、356、366以及CP編碼區的32。

3 討 論

GPGV是造成葡萄葉片發病、漿果品質變差的主要病原之一[22-23],前人研究表明在大多數情況下GPGV與葡萄發育遲緩以及葉片發生的褪綠、斑駁、畸形等癥狀有關[1],而在Saldarelli等[18]的調查中發現GPGV更多的存在于一些幾乎無癥狀的葡萄樣品中。Bertazzon等[13]發現有癥狀的植株的GPGV量高于感染GPGV但無癥狀的植株。而筆者在本研究中分離得到的GPGV分離物的寄主癥狀并不相同,考慮到多種病毒復合侵染情況,2個GPGV分離物的致病性有待進一步研究。關于GPGV的草本寄主以及昆蟲介體,筆者在本研究中尚未有所收獲,然而現有研究表明GPGV還可感染白花蠅子草、藜等草本植物[19],這些草本植物在世界各地的葡萄園中隨處可見。這些草本植物中可能會增強病毒的感染繁殖能力、持久性以及擴大傳播范圍,進而傳播給鄰近的葡萄[19]。

近年來,GPGV在世界各地越來越多,但是完整基因組序列的報道仍然有限,以至于其起源問題仍然模糊不清,筆者在本研究中對內蒙古7個地區(呼和浩特、包頭、赤峰、通遼、巴彥淖爾、鄂爾多斯、烏海)的69個葡萄樣本進行多病毒檢測時,其中4個地區(呼和浩特、包頭、赤峰、通遼)的16個葡萄樣本檢測出GPGV,檢出率高達23.18%,可見GPGV在內蒙古非常流行,對當地葡萄的產量與品質十分不利。因此,筆者在本研究中對感染GPGV的陽性樣品進行了全基因組擴增、克隆,得到了2個GPGV內蒙古分離物20IM-ViVi1和20IM-ViVi2的全基因組序列。內蒙古的2個GPGV分離物基因組結構特征與已報道的一致,含3個重疊的開放閱讀框(ORF),ORF1編碼了病毒甲基轉移酶(MT)、2OG-Fe Ⅱ-Oxy加氧酶結構域、病毒RNA解旋酶以及RNA依賴型的RNA聚合酶(RdRp),ORF2和ORF3分別編碼了的運動蛋白(MP)和外殼蛋白(CP)[24-28]。

目前,關于GPGV的起源中心研究較多,大多數研究認為GPGV或起源于亞洲,其中Ple?ko等[12]認為中國極有可能是起源中心。而筆者在本研究中所獲得的GPGV分離物20IM-ViVi1和20IM-ViVi2與其他已知的GPGV全基因組序列一致率分別介于79.7%~96.8%、79.5%~97.7%,其中日本紫葛葡萄分離物H-JP2與所獲得的分離物序列一致率均為最低,序列變異較大[29],序列相似性分析也證實了這一結果。基于GPGV分離物全基因組序列構建的系統進化樹顯示,筆者在本研究中所獲得的夏黑分離物20IM-ViVi2與南京夏黑分離物SRR2845691-GPGV聚集在同一分支,且親緣關系最近。在品麗珠、維多利亞、歌海娜以及瓊瑤漿等葡萄品種中所克隆到的GPGV全基因組序列也存在近緣關系。因此,寄主差異在一定程度上影響了GPGV的遺傳進化,基于GPGV中國分離物重建的系統進化樹同樣證明了這一點。基于GPGV全基因組序列所構建的系統進化樹中還顯示出GPGV分離物具有較強的地理特異性,如GPGV中國分離物大多數聚集在第Ⅰ分支,GPGV澳大利亞分離物和意大利分離物大多數聚集在第Ⅲ分支,GPGV法國分離物和加拿大分離物大多數聚集在第Ⅳ分支。基于GPGV中國分離物全基因組序列重建的系統進化樹表明,在本研究中所獲的分離物與中國東部地區所克隆到的GPGV分離物具有較近的親緣關系。

物種起源中心通常是其遺傳多樣性最高的地區[30-31],筆者在本研究中對GPGV進行群體遺傳多樣性分析,結果表明GPGV亞洲分離物的遺傳多樣性(π=0.031 95 ±0.001 35)高于其他四大洲的GPGV分離物,因此,亞洲應是GPGV的起源中心。但考慮到基于GPGV全基因組序列所構建的ML樹第一節點為日本分離物,Hily等[17]所預測中國是起源地這一觀點便不成立。目前,已知的日本分離物有限且變異較大,早期斷定的起源時間有待GPGV序列進一步增多后重新分析[17]。Tajima’s D中性測試結果顯示,GPGV法國/歐洲分離物受到了顯著的負向選擇,表明近期GPGV在法國/歐洲發生了種群擴張。

4 結 論

獲得了2條GPGV完整基因組序列,分析結果表明,2個GPGV分離物基因組全長為7250 nt,含3個ORFs,與現有GPGV分離物全基因組序列具有較高的一致率(日本分離物H-JP2除外),一致率范圍分別為79.7%~96.8%、79.5%~97.7%。此外基于所有GPGV全基因組序列組構建的系統進化樹可分為4個分支,本研究所獲得的分離物均具聚在第Ⅰ分支。重組分析未發現與本研究所獲得分離物相關的重組事件。通過遺傳多樣性分析發現亞洲GPG分離物具有較高的遺傳多樣性,或是起源中心,但種群擴張發生在歐洲。本研究可為GPGV分子特征、進化關系以及遺傳多樣性研究奠定基礎。

參考文獻 References:

[1] GIAMPETRUZZI A,ROUMI V,ROBERTO R,MALOSSINI U,YOSHIKAWA N,LA NOTTE P,TERLIZZI F,CREDI R,SALDARELLI P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv. Pinot Gris[J]. Virus Research,2012,163(1):262-268.

[2] FUCHS M. Grapevine viruses:A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard[J]. Journal of Plant Pathology,2020,102(3):643-653.

[3] GOMEZ T S,ALONSO R,LUNA F,LANZA V M,BUSCEMA F. Occurrence of nine grapevine viruses in commercial vineyards of Mendoza,Argentina[J]. Viruses,2023,15(1):177.

[4] BELKINA D,KARPOVA D,POROTIKOVA E,LIFANOV I,VINOGRADOVA S. Grapevine virome of the don ampelographic collection in Russia has concealed five novel viruses[J]. Viruses,2023,15(12):2429.

[5] KAUR K,RINALDO A,LOVELOCK D,RODONI B,CONSTABLE F. The genetic variability of grapevine pinot gris virus (GPGV) in Australia[J]. Virology Journal,2023,20(1):211.

[6] TARQUINI G,PAGLIARI L,ERMACORA P,MUSETTI R,FIRRAO G. Trigger and suppression of antiviral defenses by grapevine pinot gris virus (GPGV):Novel insights into virus-host interaction[J]. Molecular Plant-Microbe Interactions,2021,34(9):1010-1023.

[7] BEUVE M,CANDRESSE T,TANNIèRES M,LEMAIRE O. First report of grapevine pinot gris virus (GPGV) in grapevine in France[J]. Plant Disease,2015,99(2):293.

[8] REYNARD J S,SCHUMACHER S,MENZEL W,FUCHS J,BOHNERT P,GLASA M,WETZEL T,FUCHS R. First report of grapevine pinot gris virus in german vineyards[J]. Plant Disease,2016,100(12):2545.

[9] GAZEL M,CAGLAYAN K,EL?I E,?ZTüRK L. First report of grapevine pinot gris virus in grapevine in Turkey[J]. Plant Disease,2016,100(3):657.

[10] 夏炎,黃松,武雪莉,劉一琪,王苗苗,宋春暉,白團輝,宋尚偉,龐宏光,焦健,鄭先波. 基于宏病毒組測序技術的蘋果病毒病鑒定與分析[J]. 園藝學報,2022,49(7):1415-1428.

XIA Yan,HUANG Song,WU Xueli,LIU Yiqi,WANG Miaomiao,SONG Chunhui,BAI Tuanhui,SONG Shangwei,PANG Hongguang,JIAO Jian,ZHENG Xianbo. Identification and analysis of apple viruses diseases based on virome sequencing technology[J]. Acta Horticulturae Sinica,2022,49(7):1415-1428.

[11] RASOOL S,NAZ S,ROWHANI A,GOLINO D A,WESTRICK N M,FARRAR K D,AL RWAHNIH M. First report of grapevine pinot gris virus infecting grapevine in Pakistan[J]. Plant Disease,2017,101(11):1958.

[12] PLE?KO I M,MARN M V,SELJAK G,?E?LINA I. First report of grapevine pinot gris virus infecting grapevine in Slovenia[J]. Plant Disease,2014,98(7):1014.

[13] BERTAZZON N,FILIPPIN L,FORTE V,ANGELINI E. Grapevine pinot gris virus seems to have recently been introduced to vineyards in Veneto,Italy[J]. Archives of Virology,2016,161(3):711-714.

[14] JO Y,CHOI H,CHO J K,YOON J Y,CHOI S K,CHO W K. In silico approach to reveal viral populations in grapevine cultivar Tannat using transcriptome data[J]. Scientific Reports,2015,5:15841.

[15] GLASA M,PREDAJ?A L,KOMíNEK P,NAGYOVá A,CANDRESSE T,OLMOS A. Molecular characterization of divergent grapevine pinot gris virus isolates and their detection in Slovak and Czech grapevines[J]. Archives of Virology,2014,159(8):2103-2107.

[16] WU Q,HABILI N. The recent importation of grapevine pinot gris virus into Australia[J]. Virus Genes,2017,53(6):935-938.

[17] HILY J M,POULICARD N,CANDRESSE T,VIGNE E,BEUVE M,RENAULT L,VELT A,SPILMONT A S,LEMAIRE O. Datamining,genetic diversity analyses,and phylogeographic reconstructions redefine the worldwide evolutionary history of grapevine pinot gris virus and grapevine berry inner necrosis virus[J]. Phytobiomes Journal,2020,4(2):165-177.

[18] SALDARELLI P,GIAMPETRUZZI A,MORELLI M,MALOSSINI U,PIROLO C,BIANCHEDI P,GUALANDRI V. Genetic variability of grapevine pinot gris virus and its association with grapevine leaf mottling and deformation[J]. Phytopathology,2015,105(4):555-563.

[19] GUALANDRI V,ASQUINI E,BIANCHEDI P,COVELLI L,BRILLI M,MALOSSINI U,BRAGAGNA P,SALDARELLI P,SI-AMMOUR A. Identification of herbaceous hosts of the grapevine pinot gris virus (GPGV)[J]. European Journal of Plant Pathology,2017,147(1):21-25.

[20] MALAGNINI V,DE LILLO E,SALDARELLI P,BEBER R,DUSO C,RAIOLA A,ZANOTELLI L,VALENZANO D,GIAMPETRUZZI A,MORELLI M,RATTI C,CAUSIN R,GUALANDRI V. Transmission of grapevine pinot gris virus by Colomerus vitis (Acari:Eriophyidae) to grapevine[J]. Archives of Virology,2016,161(9):2595-2599.

[21] LIBRADO P,ROZAS J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics,2009,25(11):1451-1452.

[22] REYNARD J S,BRODARD J,ZUFFEREY V,RIENTH M,GUGERLI P,SCHUMPP O,BLOUIN A G. Nuances of responses to two sources of grapevine leafroll disease on pinot noir grown in the field for 17 years[J]. Viruses,2022,14(6):1333.

[23] MILJANI? V,JAK?E J,KUNEJ U,RUSJAN D,?KVAR? A,?TAJNER N. Virome status of preclonal candidates of grapevine varieties (Vitis vinifera L.) from the Slovenian wine-growing region primorska as determined by high-throughput sequencing[J]. Frontiers in Microbiology,2022,13:830866.

[24] BERTAZZON N,FORTE V,FILIPPIN L,CAUSIN R,MAIXNER M,ANGELINI E. Association between genetic variability and titre of Grapevine Pinot Gris virus with disease symptoms[J]. Plant Pathology,2017,66(6):949-959.

[25] 范旭東,張尊平,任芳,胡國君,李正男,董雅鳳. 我國灰比諾葡萄病毒分離物檢測及基因序列分析[J]. 植物病理學報,2018,48(4):466-473.

FAN Xudong,ZHANG Zunping,REN Fang,HU Guojun,LI Zhengnan,DONG Yafeng. Detection and sequence analyses of grapevine pinot gris virus isolates from China[J]. Acta Phytopathologica Sinica,2018,48(4):466-473.

[26] MURRAY G G R,WANG F,HARRISON E M,PATERSON G K,MATHER A E,HARRIS S R,HOLMES M A,RAMBAUT A,WELCH J J. The effect of genetic structure on molecular dating and tests for temporal signal[J]. Methods in Ecology and Evolution,2016,7(1):80-89.

[27] TARQUINI G,DE AMICIS F,MARTINI M,ERMACORA P,LOI N,MUSETTI R,BIANCHI G L,FIRRAO G. Analysis of new grapevine pinot gris virus (GPGV) isolates from Northeast Italy provides clues to track the evolution of a newly emerging clade[J]. Archives of Virology,2019,164(6):1655-1660.

[28] XIAO H,SHABANIAN M,MCFADDEN-SMITH W,MENG B. First report of grapevine pinot gris virus in commercial grapes in Canada[J]. Plant Disease,2016,100(5):1030.

[29] ABE J,NABESHIMA T. First report of grapevine pinot gris virus in wild grapevines (Vitis coignetiae) in Japan[J]. Journal of Plant Pathology,2021,103(2):725.

[30] VALOUZI H,SHAHMOHAMMADI N,GOLNARAGHI A,MOOSAVI M R,OHSHIMA K. Genetic diversity and evolutionary analyses of potyviruses infecting narcissus in Iran[J]. Journal of Plant Pathology,2022,104(1):237-250.

[31] JONES D R. Plant viruses transmitted by Thrips[J]. European Journal of Plant Pathology,2005,113(2):119-157.

主站蜘蛛池模板: 国产极品美女在线观看| 亚洲人成网18禁| 亚洲第一区欧美国产综合| 亚洲欧美国产五月天综合| 中文字幕免费播放| 亚洲av无码久久无遮挡| 亚洲乱码在线视频| 综合成人国产| 亚洲国产一区在线观看| 亚洲V日韩V无码一区二区| 一级黄色欧美| 婷婷五月在线视频| 91九色国产在线| 中文字幕自拍偷拍| 亚洲综合香蕉| 日本一区二区不卡视频| 免费视频在线2021入口| 一本一本大道香蕉久在线播放| 天堂成人在线| 亚洲色图欧美视频| 国产一区自拍视频| 日韩小视频在线播放| 99精品高清在线播放| 亚洲天堂视频在线观看免费| 国产乱人乱偷精品视频a人人澡| 久久综合色88| 国产女人在线| 亚洲欧美日韩久久精品| 午夜视频免费试看| 97视频精品全国免费观看| 久久国产成人精品国产成人亚洲| 在线观看免费AV网| 日韩欧美国产成人| 一本一道波多野结衣av黑人在线| 日韩精品久久久久久久电影蜜臀| 91人妻日韩人妻无码专区精品| 污网站免费在线观看| 国产一级毛片网站| 亚洲一级毛片免费观看| 无码专区第一页| 97se亚洲综合| 国产精品妖精视频| A级毛片高清免费视频就| 亚洲经典在线中文字幕| 天天色综网| 久久人妻xunleige无码| 一级看片免费视频| 亚洲国产精品日韩欧美一区| 麻豆国产精品| 亚洲精品国产综合99久久夜夜嗨| 久草热视频在线| 一级毛片无毒不卡直接观看| 午夜福利在线观看成人| 久久久久久久蜜桃| 精品国产福利在线| 午夜丁香婷婷| 欧美一区日韩一区中文字幕页| 国产 日韩 欧美 第二页| 成年A级毛片| 亚洲天堂777| 国产亚洲精品97在线观看| 亚洲一区二区在线无码| 亚洲综合片| 一级毛片在线播放免费观看| 色综合久久无码网| 色婷婷啪啪| 亚洲V日韩V无码一区二区| 无码 在线 在线| 亚洲性影院| a级毛片免费播放| 国产精品嫩草影院av| 国产精品无码AV中文| 美女扒开下面流白浆在线试听| 成人无码区免费视频网站蜜臀| 国产高潮流白浆视频| 四虎成人精品| 亚洲香蕉在线| 色AV色 综合网站| 亚洲天堂久久| 国产麻豆va精品视频| 亚洲天堂在线免费| 亚洲手机在线|