









摘" " 要:【目的】探究外源物質(肉桂酸,4-香豆酸)對核桃內果皮發育的影響。【方法】以新露核桃為試材,于核桃硬化期分別用不同濃度的肉桂酸和4-香豆酸噴施,探究不同濃度肉桂酸和4-香豆酸對木質素沉積、核桃硬殼組成成分(木質素、纖維素、半纖維素)含量、代謝酶活性以及在核桃硬化過程中總酚和總糖含量的影響。【結果】與對照相比,低濃度肉桂酸、4-香豆酸處理和高濃度肉桂酸、4-香豆酸處理后內果皮木質素的積累存在顯著差異,在處理后期,核桃內果皮部分硬化,仍存在內果皮缺失或不完整現象。隨時間延長,肉桂酸和4-香豆酸處理后核桃內果皮中木質素、纖維素和半纖維素含量整體呈上升趨勢,最高分別可達69.69%、39.08%和29.16%;肉桂酸和4-香豆酸處理下PAL酶活性呈下降趨勢,且在一定濃度4-香豆素處理下PAL酶活性最高,較CK提高447.25 U·g-1;低濃度4-香豆酸提升CAD酶活性,高濃度4-香豆酸會抑制CAD酶活性,一定濃度肉桂酸處理提高CAD酶活性,最高比CK增長1.21倍;一定濃度肉桂酸、4-香豆酸處理可以降低POD活性,最高較CK分別降低32.46%和63.10%。一定濃度下4-香豆酸和肉桂酸可以抑制C4H酶活性的下降。【結論】50~150 mg·L-1肉桂酸和 50~150 mg·L-1 4-香豆酸促進核桃內果皮木質素的積累,200 mg·L-1 4-香豆酸抑制木質素的合成。
關鍵詞:核桃;內果皮;外源物質;木質素;酶
中圖分類號:S664.1 文獻標志碼:A 文章編號:1009-9980(2024)12-2486-12
Effects of cinnamic acid and 4-coumaric acid on shell development and physiological characteristics in walnut
WANG Xinhui1, GUO Zhongzhong1, YU Shangqi1, LI Yixia1, ZHANG Jianliang2, ZHANG Rui1*, JIN Qiang1*
(1National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang/College of Horticulture and Forestry, Tarim University, Alar 843300, Xinjiang, China; 2The Xinjiang Production and Construction Corps Division Three Service Center of Mass of Agricultural Development, Alar 843300, Xinjiang, China)
Abstract: 【Objective】 The germplasm resources of walnut in China are abundant. Walnut varieties with different hard shell thickness, such as thick shell, thin shell, paper shell and exposed-kernel shell, are available in Xinjiang, which provides a good material basis for the study on walnut shell. The thickness of walnut shell is largely affected by the amount of lignin deposited. Cinnamic acid and 4-coumaric acid are products of the lignin metabolic pathway. Therefore, in this paper the effects of different concentrations of cinnamic acid and 4-coumaric acid applied to the Xinlu walnut sample was studied on the development of Endcoarp (hard shell). Through the study on the development of inner pericarp (hard shell) of Xinlu walnut, a unique variety in Xinjiang, the mechanism of kernel exposure and the mechanism of thin shell in Xinjiang were discussed. 【Methods】 In Wensu County Experimental Forest Farm of Aksu, Xinjiang Uygur Autonomous Region, the inner peel of Xinlu walnut was used as the test material, which was collected from over 15 years old trees at a spacing of 5 m×6 m, with vigorous growth, without pests and diseases, and with consistent water and fertilizer management. In the hardening stage of walnut shell, the walnut tree canopy was sprayed with different concentrations of cinnamic acid and 4-coumadic acid, respectively. The effects of cinnamic acid and 4-coumaric acid on lignin deposition, components of walnut shell (lignin, cellulose and hemicellulose), metabolic enzyme activity (PAL, CAD, C4H and POD) and total phenol and sugar contents during the hardening process of walnut shell were investigated. 【Results】 Compared with the control, there was a significant difference in the accumulation of lignin in walnut endocarp after treatment with both low and high concentrations of cinnamic acid and 4-coumaric acid. At the later stage of treatment, the endocarp was partially hardened, and there was still a phenomenon of endocarp missing or incompleteness with time. The contents of lignin, cellulose and hemicellulose generally increased with the treatment of cinnamic acid and 4-coumaric acid. The changes of lignin deposition in walnut peel during the shell hardening period were observed by phlorogluphenol staining. The deposition began at the position near the vascular bundle about 64 days after flowering, and the lignin content significantly increased up to 69.69% after 4-coumaric acid treatment (p≤0.05); Cellulose content increased by 33.92% and hemicellulose content increased by 19.6%. After treatment with cinnamic acid, the lignin content increased by 58.98% and hemicellulose content increased by 29.16%. There was a downward trend of PAL enzyme with both cinnamic acid and 4-coumaric acid treatments, and the highest PAL enzyme activity with 4-coumarin treatment was 447.25 U·g-1 higher than CK at a certain concentration. Low concentration of 4-coumaric acid treatment could promote PAL activity in pre-hardening, while high concentration could inhibit PAL activity in pre-hardening. After treatment with cinnamic acid, PAL activity was significantly higher than CK at 0.2-1.5 h (p≤0.05), and the peak value of PAL activity appeared after treatment, which increased by 12.91% compared with CK. PAL activity increased after treatment with cinnamic acid, and 100 mg·L-1 to 150 mg·L-1 was better than 50 mg·L-1 at the early shell-hardening stage. Low concentration of 4-coumaric acid promoted CAD activity, but high concentration of 4-coumaric acid inhibited CAD activity, and a certain concentration of cinnamic acid increased CAD activity by 1.21 times compared with CK. C4H enzyme activity increased first and then decreased, C4H enzyme content decreased rapidly from day 4 after CK treatment, and C4H enzyme began to decrease rapidly 9 days after 4-coumaric acid and cinnamic acid treatments. Under a certain concentration, 4-coumaric acid and cinnamic acid can delay the decrease of C4H content. POD showed a decreasing trend during the hardening process of walnut shell, and POD activity decreased with 4-coumaric acid and cinnamic acid treatment. With the development of walnut pericarp, the total phenol content did not change significantly. After treatment with cinnamic acid, the total phenol content decreased, and reached a peak value of 49.6 mg·g-1 after 0.2 day of treatment. The content of total sugar in the endocarp was very low, and the content of total sugar was higher than that of CK after 4-coumaric acid treatment for 1.5 days, with the highest increase of 4.82 mg·g-1. Lignin was positively correlated with cellulose and hemicellulose contents (p≤0.01), indicating that the higher the cellulose content of lignin, the higher the hemicellulose content. The main components of walnut shell (lignin, cellulose and hemicellulose contents) were significantly correlated with the activities of PAL, CAD and POD (p≤0.05), indicating that PAL, CAD and POD are the key components of walnut shell. 【Conclusion】 50-150 mg·L-1 cinnamic acid and 50-150 mg·L-1 4-coumaric acid promoted the accumulation of lignin in walnut pericarp, but 200 mg·L-1 4-coumaric acid inhibited lignin synthesis.
Key words: Walnut; Endocarp; Foreign substances; Lignin; Enzymes
核桃是重要的堅果和木本油料樹種,具有較高的經濟價值。新疆是我國最早種植核桃的地區之一,也是中國核桃主要產區之一。據統計,全疆核桃種植面積42萬hm2,產量125萬t,面積居全國第六位,產量居全國第二位[1]。核桃產業已成為果農增收致富的主導產業之一,甚至是有些縣、鄉的支柱產業[2]。我國核桃種質資源豐富,據統計,我國保存核桃資源超過900份[3]。新疆現有厚殼、薄殼、紙皮、露仁等不同硬殼厚度的核桃品種,為核桃殼的研究提供了良好的材料基礎。新疆特有核桃品種新露出現了核桃內果皮發育不完全、局部區域缺失現象,導致在貯藏加工過程中易出現污染[3-4],但新露露仁品種是一種研究核殼發育的理想品種,通過對新疆特有核桃品種新露內果皮(硬殼)發育的研究,初步闡述露仁機制以及對新疆薄殼的發生機制提供理論參考。
木質素的合成代謝貫穿核桃內果皮的發育過程,是植物細胞壁的重要組成成分,為細胞壁提供強支撐[5]。在木質素合成過程中會產生14種中間代謝物,改變代謝物質的組成或含量會使木質素單體組成或木質素的空間結構發生變化[6],從而影響最終合成的木質素含量。肉桂酸和4-香豆酸是木質素合成途徑中所產生的中間代謝物之一,魚尚奇等[6]在核桃內果皮木質素合成中間代謝物分析及露仁相關基因篩選研究中發現,露仁核桃中4-香豆酸以及肉桂酸含量出現反常現象,具體表現為非木質化區域肉桂酸呈現低水平狀態,4-香豆酸呈現高水平狀態,與內果皮木質素正常沉積的部位表現相反趨勢。此外,4-香豆酸是苯丙氨酸在苯丙氨酸解氨酶(PAL)和肉桂酸-4-羥化酶(C4H)兩種酶催化作用下生成的,再經過4-香豆酸輔酶A連接酶(4CL)的催化,形成不同的肉桂醇以及酚類等具有抗氧化能力的物質[7],肉桂醇再由肉桂醇脫氫酶(CAD)催化成不同的木質素單體。李姚瑤等[8-9]發現外源4-香豆酸是過氧化氫酶和多酚氧化酶的抑制劑,但能增強苯丙烷類代謝途徑中PAL、C4H和4CL的活性,從而促進木質素合成。曹毛毛[10]研究表明,4-香豆酸可以抑制POD活性,從而激活苯丙烷類代謝途徑。研究表明,與易受瓜實蠅侵染的佛手瓜相比,未發生侵染的佛手瓜通過激活苯丙烷代謝途徑,促進了4-香豆酸積累,從而進一步合成木質素[11]。肉桂酸與4-香豆酸具有極其相似的結構。Yin等[12]在2003年發現,在高等植物(蕓薹屬植物)中存在天然的順式肉桂酸。順式肉桂酸能促進生長,產生向生反應,延緩果實成熟,多年來被認為是一種合成的植物生長調節劑[13]。肉桂酸和4-香豆酸不僅是植物體中次生代謝的產物,還在植物生長發育過程中扮演著重要角色。因此,筆者通過探究外源噴施肉桂酸和4-香豆酸對核桃內果皮組成成分含量、木質素合成關鍵酶,以及總酚和總糖含量的影響,為核桃內果皮發育以及木質素合成研究提供理論參考。
1 材料和方法
1.1 材料
試驗材料為新露核桃,取自新疆維吾爾自治區阿克蘇市試驗林場,樹齡均為17 a(年),株行距為5 m×6 m,選擇生長健壯一致,無病蟲害且水肥管理一致的樹體進行試驗。于花后約60 d(2023年6月8日),硬化開始時選擇外觀大小基本一致的核桃果實,對其結果枝及果實分別噴施0(對照,CK)、50(R1)、100(R2)、150(R3)和200 mg·L-1(R4)5個濃度(ρ,后同)的肉桂酸及0(CK)、50(X1)、100(X2)、150(X3)和200 mg·L-1(X4)5個濃度的4-香豆酸,每個處理3次重復。藥劑現配現用,并在光照度較弱、處理后4 h無降水的情況下進行。按照處理0.2、0.5、1.5、4、9、14、24、34 d(共8次)采集果實,采集的果實全部在低溫無菌條件下分離出內果皮作為試驗樣品,迅速將樣品切至顆粒狀并用液氮冷卻后放入超低溫冰箱保存。
1.2 方法
1.2.1" " 木質素沉積變化分析" " 木質素染色觀察:采用Wiesner法檢測木質素沉積[4],將處理后的核桃果實切片。從首次處理開始,每12 h取樣1次,不同濃度各取3個果實,利用1%的間苯三酚-乙醇-鹽酸染液,將核桃果實切片置于染色液中染色5~6 min,待顯色后取出拍照。
1.2.2" " 木質素、纖維素、半纖維素含量" " 分別取不同濃度肉桂酸和4-香豆酸處理后的內果皮硬化組織樣本,參考趙玉雪等[14]的方法,測定木質素、纖維素和半纖維素含量。
1.2.3" " PAL,CAD,C4H,POD酶活性" " 采用北京索萊寶有限公司的試劑盒分別測定植物苯丙氨酸裂解酶(PAL)、植物肉桂醇脫氫酶(CAD)、植物肉桂酸-4-羥化酶(C4H)、過氧化物酶(POD)活性。
1.2.4" " 總酚含量" " 利用福林酚法測定總酚含量[15]。
w(總酚)/(mg·g-1)=[C×25×A1000×M]。
式中,C為標準曲線求出的總酚質量濃度(μg·L-1);25為定容體積(mL);A為樣品稀釋倍數;M為樣品質量(g);1000為換算系數。
1.2.5" " 總糖含量" " 采用蒽酮-硫酸法測定總糖含量[16]。
1.3 數據分析
采用Excel2007進行數據處理與整理,采用Origin 2021繪制圖形,采用DPS軟件對所得的試驗數據進行LSD分析。
2 結果與分析
2.1 肉桂酸和4-香豆酸對核桃內果皮木質素沉積變化的影響
采用間苯三酚染色法觀察核桃硬化期內果皮木質素沉積變化,如圖1所示,核桃內果皮在硬化的過程中,木質素的沉積發生了顯著變化。6月8日(約花后60 d),與對照相比,肉桂酸處理后的木質素沉積無明顯變化;6月12日(約花后64 d),靠近維管束的位置先開始沉積,6月17日(約花后69 d),維管束染色顏色從淺紅轉為深紅,染色區域由維管束延伸到了內果皮。7月12日(約花后94 d),大部分內果皮染上色。如圖1-A所示,與對照相比,4-香豆酸處理后,X1,X2,X3處理的木質素含量均有上升,硬化前期和中期X2處理的木質素含量均有顯著增加,最高可達69.69%;X4處理顯著降低,最高可達30.03%;X1和X3處理的木質素含量增加但與對照差異不顯著。由圖1-B可知,與對照相比,肉桂酸處理后的核桃內果皮木質素含量均有上升,其中處理0.5~35 d時,R2和R3處理的木質素含量顯著增加,最高可達58.98%。7月2日時R3處理的木質素含量(w,后同)達到最大值,為286.18 mg·g-1。以上結果說明,4-香豆酸處理下,X1、X2、X3濃度促進木質素生成,X4濃度抑制木質素生成;肉桂酸處理下均會促進木質素生成,但是R2、R3濃度處理優于R1、R4濃度處理。
2.2 肉桂酸和4-香豆酸對纖維素、半纖維素含量的影響
由圖2-A可知,隨時間的延長,4-香豆酸處理的纖維素含量整體呈上升趨勢,與對照相比,在處理后0.2~1.5 d,X2、X3處理的纖維素含量顯著升高,分別最高提高了33.92%、23.46%。由圖2-B可知,肉桂酸處理的纖維素含量整體呈上升趨勢,R1、R2、R3處理下的纖維素含量高于對照(24 d除外),其中R3與對照呈顯著差異(9 d除外),平均提高了21.72%。噴施不同濃度肉桂酸處理的核桃內果皮纖維素含量在處理后34 d表現為R3>R2>R1>對照>R4。由圖2-C可知,不同濃度4-香豆酸處理的半纖維素含量變化趨勢存在差異。其中X2處理的半纖維素含量與對照相比均顯著增加,最高增加了19.6%,處理14 d時半纖維素含量達到最高且變化上升速率最快,上升了56.04 mg·g-1。X4處理的半纖維素含量與對照相比均有減少。由圖2-D可知, R2、R3處理的半纖維素含量與對照相比顯著增加,最高分別增加17.40%、29.16%,核桃硬化中后期時R3提高效果最為顯著,其中處理后9 d達到了峰值,相較對照,半纖維素含量提高了24%。以上結果說明噴施低濃度的4-香豆酸可以促進纖維素、半纖維素生成,高濃度4-香豆酸會抑制纖維素、半纖維素的生成;肉桂酸處理下均會促進纖維素生成,但是R2、R3濃度處理優于R1、R4濃度處理。
2.3 肉桂酸和4-香豆酸對代謝酶活性的影響
2.3.1" " 肉桂酸和4-香豆酸對PAL活性的影響" " PAL是植物體內苯丙烷類代謝的關鍵酶,如圖3-A所示,核桃硬化前期PAL活性較高,后期活性降低,X1、X2、X3處理后0.2~4 d PAL活性均較對照有所提高,其中在處理后1.5 d,X2處理的PAL活性達到最高,為447.25 U·g-1,顯著高于對照。由圖3-B可知,R2、R3、R4處理后,0.2~1.5 d PAL活性均顯著高于對照,R3處理0.2 d的PAL活性出現峰值,較對照顯著提高了12.91%。以上結果說明低濃度4-香豆酸處理可以促進硬化前期PAL活性提高。在硬化前期,與對照相比,肉桂酸處理的PAL活性均不同程度的提高,且R2、R3、R4濃度處理下優于R1。
2.3.2" " 肉桂酸和4-香豆酸對CAD活性的影響" " 肉桂醇脫氫酶(CAD)催化香豆醇、芥子醛等生成與之相應的肉桂醇,是木質素合成途徑中的關鍵酶。如圖4-A所示,在核桃硬化的過程中,核桃CAD活性整體上呈先上升后下降的趨勢,X1、X2、X3處理的CAD活性均高于對照,其中處理后1.5 d時,X3處理的CAD活性達到最高,為118.53 U·g-1;且X3處理后4 d提高效果最為顯著,較對照顯著提高126%。如圖4-B所示,在R3處理9 d后CAD活性達到峰值,比對照顯著提高121%。R1處理的CAD活性均低于R3、R2處理,表明R2、R3處理促進CAD活性效果比R1更佳。以上結果說明低濃度4-香豆酸促進CAD活性提高,高濃度4-香豆酸會抑制CAD活性;R2、R3肉桂酸處理的CAD活性優于R1、R4處理。
2.3.3" " 肉桂酸和4-香豆酸對C4H活性的影響" " 如圖5-A所示,C4H活性整體上呈先上升后下降的趨勢,對照處理的C4H活性從第4天開始迅速下降,4-香豆酸處理的C4H活性從處理后第9天開始迅速下降;其中X3處理在第9天達到峰值,為207.89 U·g-1。X1處理的C4H活性均低于對照,最大值為90.51 U·g-1,說明低濃度4-香豆酸抑制C4H活性。如圖5-B所示,在處理后4~24 d,不同濃度肉桂酸處理的核桃均提高了C4H活性,最高較對照顯著提高109%。以上結果說明一定濃度下4-香豆酸和肉桂酸可以延遲C4H活性的下降。
2.3.4" " 肉桂酸和4-香豆酸對POD活性的影響" " 如圖6-A所示,POD活性在核桃硬化過程中,整體上呈現出下降趨勢。在硬化前期(0.2~4.0 d),不同濃度4-香豆酸處理的POD活性均低于對照,最高較對照顯著降低32.46%,在X3處理0.5 d時與對照極差為23.77 U·g-1。如圖6-B所示,除了處理第4天外,其他時間R2、R3處理的POD活性均低于對照,且R4處理后9 d的POD活性與對照呈顯著差異。以上結果說明在一定濃度處理下4-香豆酸和肉桂酸會降低POD活性。
2.4 肉桂酸和4-香豆酸對總酚含量的影響
如圖7-A所示,隨著核桃內果皮的發育,不同濃度4-香豆酸處理的總酚含量變化趨勢存在差異。在處理0.2 d后,X1、X2、X3處理的總酚含量高于對照且總酚含量變化為X2>X3>X1>對照>X4。如圖7-B所示,隨著核桃內果皮的發育,不同濃度肉桂酸處理的總酚含量變化趨勢存在差異,X1處理在0.2 d后出現峰值,為49.6 mg·g-1,顯著高于對照。
2.5 肉桂酸和4-香豆酸對總糖含量的影響
如圖8-A所示,總糖在核桃內果皮中的含量非常低,X2處理后14 d與對照極值最大,為7.67 mg·g-1。X1,X2,X3處理后1.5 d,總糖含量與對照呈顯著差異,X3處理在處理1.5~34 d總糖含量較對照均有提高,最高提高4.82 mg·g-1。如圖8-B所示,R3處理1.5~14 d總糖含量均高于對照,平均提高2.69 mg·g-1。R2處理4~9 d時總糖含量小于對照,平均降低0.87 mg·g-1。
2.6 木質素組成成分及木質素代謝酶相關性分析
通過對新露核桃硬殼主要成分(木質素、纖維素、半纖維素)含量,PA、CAD、C4H、POD活性以及總糖和總酚含量進行相關性分析(圖9),發現木質素含量與纖維素和半纖維素含量呈顯著正相關,說明木質素含量越高,纖維素和半纖維素含量越高。核桃硬殼主要成分(木質素、纖維素、半纖維素)含量與PAL、CAD、POD活性呈顯著負相關,說明PAL、CAD、POD是核桃硬殼組成成分的關鍵酶。在肉桂酸處理下半纖維素含量與C4H活性呈顯著正相關,說明C4H活性對核桃硬殼的成長發育也具有影響。
3 討 論
核桃內果皮是核桃的天然保護屏障,核桃木質素沉積不足會使核桃出現核桃內果皮發育不完全,從而出現露仁情況,影響核桃的口感及貯運,降低核桃的商業價值和經濟價值。
筆者通過對新露核桃進行肉桂酸和4-香豆酸處理,發現肉桂酸和4-香豆酸處理下木質素沉積與對照相比都出現了不同的變化,本團隊前期研究發現核桃木質素沉積先開始于核桃頂部和基部[17],與本試驗結果一致。李姚瑤等[9]研究表明,4-香豆酸處理可以激活核桃果實中木質素合成關鍵酶的活性,促進木質素合成。Islam等[18]發現,通過外源4-香豆酸噴灑處理,可以誘導中國小白菜中對羥基肉桂酸和黃酮類物質的合成,并且4-香豆酸處理還可以通過誘導歐洲小油菜苯丙烷代謝途徑中相關酶活性的增強,進一步激活茉莉酸信號分子,從而調控木質素合成,減輕歐洲小油菜黑腐病的發生[19],本試驗中噴施4-香豆酸同樣增強了木質素合成通路中關鍵酶的活性;且低濃度4-香豆酸促進木質素合成,高濃度4-香豆酸抑制木質素合成。肉桂酸具有與4-香豆酸相似的結構,本試驗中不同濃度肉桂酸處理的木質素含量均高于對照且隨濃度升高木質素含量呈先上升后下降的趨勢,說明一定濃度下肉桂酸促進木質素的合成。文菁等[20]研究發現纖維素、半纖維素含量變化與木質素含量變化趨勢大致相同。本試驗中低濃度4-香豆酸促進纖維素、半纖維素合成,高濃度4-香豆酸抑制纖維素、半纖維合成;不同濃度肉桂酸處理的纖維素和半纖維含量均高于對照(R4除外),且隨肉桂酸濃度升高纖維素和半纖維素含量呈先上升后下降的趨勢,可能是因為核桃內果皮是由木質素、纖維素和半纖維素組成[21],且木質素分散于纖維素纖維中,半纖維素貫穿于木質素和纖維素纖維之間,連接二者[22],木質素的積累表現為次生細胞壁增厚,而半纖維素、纖維素是細胞壁的主要組成成分,因此纖維素、半纖維素含量的變化與木質素含量的變化基本一致。
通過相關性分析發現,木質素、纖維素、半纖維素合成過程中主要是由PAL、CAD、POD等關鍵酶共同調控。PAL催化L-苯丙氨酸裂解為反式肉桂酸和氨,有研究表明,PAL是木質素合成途徑中的關鍵酶和光調控酶[23-24],PAL活性高的位置木質素沉積多。文菁等[20]研究表明,核桃內果皮分化的初期較高,然后降低,是因為引起木質素的積累需要PAL活性達到一定水平。本試驗中低濃度4-香豆酸可以促進硬化前期PAL活性提高,高濃度4-香豆酸會抑制硬化前期PAL活性。肉桂酸處理的PAL活性增強,且在硬化前期R2、R3處理下效果更好。但是4-香豆酸X2處理后第9天和第14天低于對照;R2處理后9 d、14 d低于對照;R1處理后4 d、24 d低于對照,可能是光照因素導致PAL活性降低。CAD是木質素合成過程中最后起作用的酶,作用于單木質素生物合成的最后步驟,在聚合成木質素聚合物之前將肉桂醛催化還原成肉桂醇[25]。郭永翠等[26]研究表明,核桃硬化過程中CAD基因參與調控木質素合成。研究表明,在擬南芥CAD雙基因突變體中,相比于野生型突變體,成熟莖中木質素含量降低了40%,引起了其莖稈木質素結構的改變[27]。汪燦等[28]的研究結果表明,蕎麥品種中木質素含量高的莖稈,CAD活性相對較強。說明CAD活性與木質素含量有關,本試驗中CAD活性整體呈先上升后下降的趨勢,低濃度4-香豆酸、肉桂酸促進CAD活性升高,而高濃度4-香豆酸抑制CAD活性。可能是因為CAD是木質素合成最后一個步驟的關鍵酶,外施一定濃度的4-香豆酸和肉桂酸可以使上游產物阿魏輔酶A和阿魏酸增多,致使上游產物增加,CAD活性升高,促進木質素合成,且有研究發現阿魏酸的累積量與木質素含量有關[29];但當4-香豆酸和肉桂酸濃度極高時,植物會產生負反饋,導致CAD活性降低,木質素合成量降低。研究表明,POD能維持細胞代謝平衡,提高植物的抗旱性,與木質素形成和植物的抗氧化能力有關[30]。李夕勃[31]研究表明,POD活性在核桃硬殼發育過程中較低,且POD活性與木質素含量呈負相關,與本試驗結果一致。IAA在內果皮硬化發育中扮演重要的角色,魚尚奇等[18]研究表明,在核桃硬化時期IAA含量最高可達25.067 mg·g-1,并且通過轉錄組和蛋白組的聯合分析得出,Jr IAA9、Jr IAA16和Jr IAA27在新露核桃內果皮硬化過程中發揮著重要的調控作用。李義霞等[4]在外源IAA對核桃內果皮生長發育的影響研究中發現,IAA參與調控核桃內果皮的發育,影響內果皮木質素的積累。研究表明,POD活性與木質素含量成反比[10],并且POD活性上升會使植物內源IAA含量降低[32]。推測是因為4-香豆酸抑制POD活性,再通過復雜的代謝反應,提高核桃內源IAA含量,從而激活苯丙烷代謝途徑。本試驗結果表明,核桃內果皮的總酚含量較少,且變化量小,4-香豆酸和肉桂酸處理均不同程度提高了總酚含量,可能是因為肉桂酸和4-香豆酸提高了PAL活性,而PAL是合成總酚的關鍵酶[33]。外源物質肉桂酸和4-香豆酸可能通過改變關鍵酶的活性以及核桃內果皮中的物質含量,從而使木質素含量發生改變,調控核桃內果皮的發育。
4 結 論
通過對新露核桃進行不同濃度外源物質(肉桂酸和4-香豆酸)處理,與對照相比,50~150 mg·L-1肉桂酸和50~150 mg·L-1 4-香豆酸處理對核桃內果皮木質素的積累起促進作用,200 mg·L-1 4-香豆酸抑制木質素的合成,對核桃內果皮木質素的積累起抑制作用,主要表現在木質素沉積,木質素、纖維素和半纖維素含量以及PAL、CAD和POD活性等方面,表明外源肉桂酸和4-香豆酸對核桃內果皮的發育有一定的作用。
參考文獻 References:
[1] 王一峰,陳耀年,王瀚,趙淑玲,孫杰,王讓軍. 我國核桃雜交育種研究進展[J]. 現代農業,2020(4):15-17.
WANG Yifeng,CHEN Yaonian,WANG Han,ZHAO Shuling,SUN Jie,WANG Rangjun. Research progress of cross breeding of walnut in China[J]. Modern Agriculture,2020(4):15-17.
[2] 武朋輝,楊紅軍,馬紅梅. 西安鮮食核桃產業發展方向及面臨的問題[J]. 陜西林業科技,2021,49(1):100-105.
WU Penghui,YANG Hongjun,MA Hongmei. The development direction and problems of fresh walnut industry in Xi’an[J]. Shaanxi Forest Science and Technology,2021,49(1):100-105.
[3] 阿卜杜許庫爾·牙合甫,木合塔爾·扎熱,馬凱,張強,黃閩敏,寧萬軍. 核桃主栽品種新新2和溫185光合特性與其品質和產量的關系[J]. 新疆農業科學,2020,57(7):1243-1250.
Abduxukur Yakup,Muhtar Zari,MA Kai,ZHANG Qiang,HUANG Minmin,NING Wanjun. Comparison of fruit quality,yield and photosynthetic characteristics of walnut varieties Xinxin 2 and Wen 185[J]. Xinjiang Agricultural Sciences,2020,57(7):1243-1250.
[4] 李義霞,魚尚奇,郭眾仲,付嘉智,鹿宏麗,王紅霞,張銳,木塔力甫. 外源IAA對核桃內果皮生長發育的影響[J/OL].果樹學報,2024:1-16(2024-02-26). https://doi.org/10.13925/i.cnki.gsxb.20230524.
LI Yixia,YU Shangqi,GUO Zhongzhong,FU Jiazhi,LU Hongli,WANG Hongxia,ZHANG Rui,MU Talifu. Effect of exogenous IAA on the growth and development of walnut endocarp[J/OL]. Journal of Fruit Science,2024:1-16(2024-02-26). https://doi.org/10.13925/i.cnki.gsxb.20230524.
[5] MEENTS M J,WATANABE Y,SAMUELS A L. The cell biology of secondary cell wall biosynthesis[J]. Annals of Botany,2018,121(6):1107-1125.
[6] 魚尚奇. 核桃內果皮木質素合成中間代謝物分析及露仁相關基因篩選研究[D]. 阿拉爾:塔里木大學,2020.
YU Shangqi. Analysis of lignin synthesis intermediate metabolites and screeningof genes related to bared-nut in walnut endocarp[D]. Alar:Tarim University,2020.
[7] 于百杰. 外源p-香豆酸處理對冷藏南果梨抗冷性的調控研究[D]. 沈陽:沈陽農業大學,2023.
YU Baijie. Effect of exogenous p-coumaric acid treatment on cold resistance of ‘Nanguo’ pear under cold storage[D]. Shen-yang:Shenyang Agricultural University,2023.
[8] 李姚瑤,曹毛毛,王小璐,蘇金龍,高慧. 外源p-香豆酸處理對采后桃果實苯丙烷代謝和抗氧化能力的影響[J]. 食品科學,2019,40(23):227-232.
LI Yaoyao,CAO Maomao,WANG Xiaolu,SU Jinlong,GAO Hui. Effect of exogenous p-coumaric acid on phenylpropanoid metabolism and antioxidant capacity of postharvest peach fruit[J]. Food Science,2019,40(23):227-232.
[9] 李姚瑤. p-香豆酸處理調控采后桃果實冷害的機理研究[D]. 西安:西北大學,2020.
LI Yaoyao. The regulation mechanism of p-coumaric acid treatment alleviates chilling injury in postharvest peach fruit[D]. Xi’an:Northwest University,2020.
[10] 曹毛毛. p-香豆酸調控獼猴桃果實采后衰老的作用機制研究[D]. 西安:西北大學,2019.
CAO Maomao. Mechanism of p-coumaric acid regulation on postharvest senescence of kiwifruit[D]. Xi’an:Northwest University,2019.
[11] SHIVASHANKAR S,SUMATHI M,KRISHNAKUMAR N K,RAO V K. Role of phenolic acids and enzymes of phenylpropanoid pathway in resistance of chayote fruit (Sechium edule) against infestation by melon fly,Bactrocera cucurbitae[J]. Annals of Applied Biology,2015,166(3):420-433.
[12] YIN Z Q,WONG W,YE W C,LI N. Biologically active Cis-cinnamic acid occurs naturally in Brassica parachinensis[J]. Chinese Science Bulletin,2003,48(6):555-558.
[13] 劉元衛,李勝,馬紹英,柴強,張緒成. 肉桂酸對豆科和禾本科作物的化感效應[J]. 分子植物育種,2017,15(9):3637-3641.
LIU Yuanwei,LI Sheng,MA Shaoying,CHAI Qiang,ZHANG Xucheng. Allelopathic effect of cinnamic acid on leguminous and gramineous crops[J]. Molecular Plant Breeding,2017,15(9):3637-3641.
[14] 趙玉雪,朱佳敏,楊霞,婁麗. 核桃青皮中木質素、纖維素、半纖維素測定初報[J]. 貴州林業科技,2021,49(2):7-10.
ZHAO Yuxue,ZHU Jiamin,YANG Xia,LOU Li. A preliminary report on the determination of lignin,cellulose and hemicellulose in walnut green husk[J]. Guizhou Forestry Science and Technology,2021,49(2):7-10.
[15] 賈昌路,張銳利,張宏,徐崇志,高山,張琦,張銳. 新疆阿克蘇地區核桃品質分析[J]. 江蘇農業科學,2016,44(4):351-354.
JIA Changlu,ZHANG Ruili,ZHANG Hong,XU Chongzhi,GAO Shan,ZHANG Qi,ZHANG Rui. Quality analysis of walnut in Aksu Region of Xinjiang[J]. Jiangsu Agricultural Sciences,2016,44(4):351-354.
[16] 高俊鳳. 植物生理學實驗指導[M]. 北京:高等教育出版社,2006.
GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing:Higher Education Press,2006.
[17] 魚尚奇,張銳,郭眾仲,宋巖,付嘉智,武鵬雨,馬治浩. 核桃內果皮硬化期生長素動態變化及差異表達基因分析[J]. 園藝學報,2021,48(3):487-504.
YU Shangqi,ZHANG Rui,GUO Zhongzhong,SONG Yan,FU Jiazhi,WU Pengyu,MA Zhihao. Dynamic changes of auxin and analysis of differentially expressed genes in walnut endocarp during hardening[J]. Acta Horticulturae Sinica,2021,48(3):487-504.
[18] ISLAM M T,LEE B R,DAS P R,LA V H,JUNG H I,KIM T H. Characterization of p-Coumaric acid-induced soluble and cell wall-bound phenolic metabolites in relation to disease resistance to Xanthomonas campestris pv. campestris in Chinese cabbage[J]. Plant Physiology and Biochemistry,2018,125:172-177.
[19] ISLAM M T,LEE B R,LA V H,LEE H,JUNG W J,BAE D W,KIM T H. P-Coumaric acid induces jasmonic acid-mediated phenolic accumulation and resistance to black rot disease in Brassica napus[J]. Physiological and Molecular Plant Pathology,2019,106:270-275.
[20] 文菁,趙書崗,王紅霞,張志華,李夕勃. 核桃硬殼發育期內果皮木質素與相關酶活性的變化[J]. 園藝學報,2015,42(11):2144-2152.
WEN Jing,ZHAO Shugang,WANG Hongxia,ZHANG Zhihua,LI Xibo. Changes of lignin content and its related enzyme activities in endocarp during walnut shell development period[J]. Acta Horticulturae Sinica,2015,42(11):2144-2152.
[21] 鄭志鋒,鄒局春,陳浪,張宏健,凌敏. 核桃殼木質素的1H-NMR分析[J]. 西北林學院學報,2007,22(2):131-133.
ZHENG Zhifeng,ZOU Juchun,CHEN Lang,ZHANG Hong-jian,LING Min. Analysis of walnut shell lignin by 1H-NMR[J]. Journal of Northwest Forestry University,2007,22(2):131-133.
[22] 石吳娟,滕建文,夏寧,韋保耀,黃麗. 百香果皮細胞壁多糖的順序提取與理化性質分析[J/OL]. 食品工業科技,2024:1-15(2024-03-21). https://doi.org/10.13386/j.issn1002-0306.2023110001.
SHI Wujuan,TENG Jianwen,XIA Ning,WEI Baoyao,HUANG Li. Sequential extraction and physicochemical property analysis of cell wall polysaccharides from the passion fruit peels[J/OL]. Food Industry Science and Technology,2024:1-15(2024-03-21). https://doi.org/10.13386/j.issn1002-0306.2023110001.
[23] BUTLAND S L,CHOW M L,ELLIS B E. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures[J]. Plant Molecular Biology,1998,37(1):15-24.
[24] KUMAR A,ELLIS B E. The phenylalanine ammonia-lyase gene family in raspberry Structure,expression,and evolution[J]. Plant Physiology,2001,127(1):230-239.
[25] 王芬,吳婷,張萍,張強,劉麗. 核桃內果皮發育研究進展[J]. 四川林業科技,2024,45(1):1-7.
WANG Fen,WU Ting,ZHANG Ping,ZHANG Qiang,LIU Li. Research advances on endocarp development of walnut[J]. Journal of Sichuan Forestry Science and Technology,2024,45(1):1-7.
[26] 郭永翠,秦江南,袁雨婷,張銳. 新疆核桃WJ-CAD和ZJ-CAD基因克隆及時空表達分析[J]. 基因組學與應用生物學,2020,39(3):1215-1221.
GUO Yongcui,QIN Jiangnan,YUAN Yuting,ZHANG Rui. Cloning and expression analysis of WJ-CAD and ZJ-CAD genes of walnut in Xinjiang[J]. Genomics and Applied Biology,2020,39(3):1215-1221.
[27] SIBOUT R,EUDES A,MOUILLE G,POLLET B,LAPIERRE C,JOUANIN L,SéGUIN A. CINNAMYL ALCOHOL DEHYDROGENASE-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis[J]. The Plant Cell,2005,17(7):2059-2076.
[28] 汪燦,阮仁武,袁曉輝,胡丹,楊浩,林婷婷,何沛龍,李燕,易澤林. 蕎麥莖稈解剖結構和木質素代謝及其與抗倒性的關系[J]. 作物學報,2014,40(10):1846-1856.
WANG Can,RUAN Renwu,YUAN Xiaohui,HU Dan,YANG Hao,LIN Tingting,HE Peilong,LI Yan,YI Zelin. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat[J]. Acta Agronomica Sinica,2014,40(10):1846-1856.
[29] 翁飛. 氮素對水稻莖稈強度的影響及其生理機制[D]. 南京:南京農業大學,2019.
WENG F. Effects of nitrogen on rice stem strength and its physiological mechanism[D]. Nanjing:Nanjing Agricultural University,2019.
[30] 龔天芝,張德健. 外源硒對核桃硒含量和果實品質的影響及生理作用機制[J]. 果樹學報,2022,39(8):1443-1449.
GONG Tianzhi,ZHANG Dejian. Effect of exogenous selenium application on selenium content and fruit quality as well as its physiological mechanism in walnut[J]. Journal of Fruit Science,2022,39(8):1443-1449.
[31] 李夕勃. 核桃堅果硬殼發育與木質素代謝關系的研究[D]. 保定:河北農業大學,2012.
LI Xibo. Studies on relationship between lignin metabolism and shell development of Juglans regia L.[D]. Baoding:Hebei Agricultural University,2012.
[32] 談宏鶴,李小方,黃祥輝. 甘藍下胚軸不同切段內源IAA水平與不定根發生能力的研究[J]. 華東師范大學學報(自然科學版),2000(4):84-90.
TAN Honghe,LI Xiaofang,HUANG Xianghui. Studies on endogenous IAA levels and adventitious root formation capactity of different hypocotyl segments of cabbage[J]. Journal of Eastchina Normal University (Natural Science),2000(4):84-90.
[33] 李玉杰,劉少康,周濤,郝建雄,饒歡,趙丹丹,劉學強,王成祥. 鹽脅迫對芝麻萌發過程中活性成分、抗氧化性及抗氧化酶活性的影響[J/OL]. 食品工業科技,2024:1-14(2024-03-12). https://doi.org/10.13386/j.issn1002-0306.2023110056.
LI Yujie,LIU Shaokang,ZHOU Tao,HAO Jianxiong,RAO Huan,ZHAO Dandan,LIU Xueqiang,WANG Chengxiang. Effects of salt stress on active components,antioxidant activity and antioxidant oxidase activity of sesame during germination[J/OL]. Science and Technology of Food Industry,2024:1-14(2024-03-12). https://doi.org/10.13386/j.issn1002-0306.2023110056.