






摘" " 要:果樹設施栽培是通過人為因素改變果樹生產的外部環境,從而改變果樹生產周期,使果品提前或推遲成熟,提高果樹的生產效益,已成為中國果業發展的新業態。重點闡述分析了果樹設施栽培中的建筑設施、監測系統、環境調控設備、生產設備與機具等關鍵裝備的研究應用現狀,總結中國設施果樹栽培裝備研究應用中存在的問題有:設施結構簡陋,缺乏專用覆蓋材料,環境調控能力弱,農機生產裝備落后、智能化不足等。指出了中國設施果樹栽培裝備未來的發展方向為:建筑設施智能化、生態化,設施環境調控智能化,農機農藝高度融合。
關鍵詞:設施果樹;栽培;裝備;環境控制;中國
中圖分類號:S66 文獻標志碼:A 文章編號:1009-9980(2024)12-2567-15
Research status and prospects of equipments for protected fruit tree cultivation in China
WANG Wenming1, WANG Zhiqiang2#, SUN Yongli3, HE lihong4*, WANG Haibo2*
(1Taizhou Vocational College of Science and Technology, Taizhou 318020, Zhejiang, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China; 3Northeast Agricultural University, Harbin 150030, Heilongjiang, China; 4China Agricultural Machinery Testing Centre, Ministry of Agriculture and Rural Affairs, Beijing 100122, China)
Abstract: The cultivation of fruit trees in facilities is a new format in the development of China’s fruit industry, which changes the external environment of fruit production through human factors, thus changing the production cycle of fruit crops, making fruit ripening ahead of or behind schedule, and improving the production efficiency of fruit trees. Compared with open-air cultivation and field production, the protected fruit tree cultivation has the outstanding advantages of being unaffected by climatic conditions, high degree of automation, high utilization rate of space per unit area, and continuous production throughout the year. Facility fruit tree cultivation equipment is a key element for realizing the facility cultivation of fruit trees. In recent years, with the continuous progress of science and technology and the deepening of agricultural modernization, significant achievements have been made in the research on and application of facility fruit tree cultivation equipments in China. This article focuses on analyzing the current research and application status of key equipments in fruit tree facility cultivation, including architectural facilities, monitoring systems, environmental control equipment, production equipment and machinery. The issues identified in the research and application of fruit tree facility cultivation equipment in China are summarized as follows: (1) Simplistic facility structures: Fruit tree facility cultivation requires specialized facilities such as greenhouses, large sheds, and irrigation and fertilization systems. However, market supply is limited, and orchards often rely on general agricultural facilities. These facilities are inadequate for meeting the specific needs of fruit trees, leading to poor growth and low yields. Due to economic and technical constraints, fruit growers tend to opt for low-cost and structurally simple large sheds or greenhouses. While these can basically meet growth requirements, they lack insulation, ventilation and shading functions, resulting in significant environmental fluctuations and cramped spaces that are unfavorable for mechanized operations, thereby limiting the production efficiency of facility fruit trees. (2) Lack of specialized covering materials: Fruit tree facility cultivation necessitates specialized covering materials and suitable substrates, but the market offers limited specialized materials. Orchards frequently use ordinary agricultural materials as substitutes, yielding unsatisfactory results. These alternative materials often have poor light transmission and weak weather resistance, and are prone to damage and aging, leading to insufficient illumination and temperature fluctuations. Simultaneously, unsuitable substrates cause poor root development and frequent pest and disease outbreaks in fruit trees. These issues collectively affect the effectiveness of facility cultivation and fruit quality, highlighting the urgency of research and application of specialized materials. (3) Weak environmental control capabilities: Facility fruit tree cultivation requires precise control of environmental factors such as temperature, humidity and lighting to meet the needs of fruit trees at different growth stages. However, due to simplistic facility structures, many orchards lack corresponding environmental control equipment, such as temperature control systems, humidity control systems and light supplementation systems. This results in ineffective environmental control within the facilities, failing to meet the optimal conditions for fruit tree growth, which subsequently affects fruit tree yield and quality. (4) Outdated agricultural machinery and equipment with insufficient intelligence: Facility fruit tree cultivation requires specific agricultural machinery and equipment to adapt to its production environment and operational needs, such as miniaturized agricultural machinery to fit the cramped spatial layout within facilities. However, most fruit tree facilities still use general agricultural machinery and equipment, whose operational accuracy and efficiency fail to meet the requirements of facility fruit tree cultivation. Additionally, the level of automation and intelligence of agricultural machinery and tools is low, with many requiring manual assistance, preventing automated operations and precise control. This increases the production costs of facility fruit tree cultivation and limits production efficiency. The future development directions for fruit tree facility cultivation equipment in China are pointed out as follows: (1) Future architectural facilities will not only provide basic functions like insulation and shading but also integrate smart materials and Internet of Things technology to achieve automated adjustment and ecological cycling. Simultaneously, an ecological cycling system will be constructed within the facilities, such as rainwater collection and reuse, and natural degradation of waste through the synergistic effects between plants and microorganisms. This development direction aims to enhance the adaptability and ecological sustainability of the facilities. (2) Monitoring and control devices will be upgraded to comprehensive intelligent systems that perceive the growth status of fruit trees through the addition of biosensors. The data analysis terminal will employ deep learning and pattern recognition technologies to analyze data in real-time and provide precise guidance for environmental control. Combined with big data and AI, the system can automatically formulate management plans, such as irrigation, fertilization, and pest and disease control, thereby improving the management level and production efficiency of facility fruit tree cultivation. (3) Water and fertilizer integration equipment, combined with high-precision sensors and control systems, will monitor fruit tree growth and soil conditions in real-time, precisely control irrigation and fertilization, and achieve personalized customized management. This will enhance water and fertilizer utilization efficiency, reduce waste, and improve fruit tree quality and yield. Simultaneously, facility agricultural machinery and equipment will incorporate advanced navigation, recognition and communication technologies to achieve automated and intelligent operations, like precise pruning and efficient harvesting. Multiple agricultural machinery and equipment will also share information in real-time and work in coordination to complete complex cultivation tasks. This trend will significantly enhance the efficiency and quality of facility fruit tree cultivation, promoting higher-level development of facility agriculture.
Key words: Facility fruit tree; Cultivation; Equipment; Environmental control; China
設施栽培,又稱設施園藝或保護地栽培,是一種在露地不適于園藝作物生長的季節(如寒冷或炎熱季節)或地區,利用特定設施(如溫室、塑料大棚、小拱棚、養殖棚等)人為地創造適宜園藝作物生長發育的小氣候環境的農業生產方式[1-2]。設施果樹栽培,作為現代農業的重要組成部分,對提高果樹產量、改善果實品質、滿足市場需求以及推動農業產業結構調整具有重要的意義[3-5]。栽培裝備是設施果樹栽培的關鍵要素,近年來,隨著科技的不斷進步和農業現代化的深入推進,中國設施果樹栽培裝備的研究與應用取得了顯著成果,實現了從簡單到復雜、從單一到多元的轉變,涵蓋了溫室大棚、水肥一體化設備、環境調控設備與農機作業機具等多個方面[6-7]。這些裝備的應用不僅改善了果樹生長的環境條件,還實現了對果樹生長過程的精準控制,有效提升了果樹的產量和品質。筆者旨在系統梳理中國設施果樹栽培裝備的研究應用現狀,分析其存在的主要問題,并探討未來的發展趨勢,以期為全面提高中國設施果樹栽培裝備研究應用水平提供有益參考。
1 中國設施果樹栽培裝備研究現狀
如圖1所示,中國設施果樹栽培裝備按不同功能可由建筑設施、測控裝置、環境調控設備和生產設備與機具組成[8-10]。建筑設施是設施果樹栽培的關鍵裝備,其通常由不同結構的大棚、溫室等組成,可以提供保溫、遮陽、通風、防蟲等功能,可幫助果樹在寒冷的冬季和早春之間生長,保護果樹免受惡劣天氣和害蟲的侵害。測控裝置包括安裝在設施內的各種傳感器(如溫度、光照度、CO2濃度、土壤含水率傳感器等)和數據分析決策終端,傳感器用于實時監測果樹生長環境的各項參數,了解果樹所處環境的狀態,智能決策終端通過對傳感器采集數據的分析,形成相關決策傳遞給設施內的環境調控設備(補光、增溫、加濕、通風、氣體調控等),使得設施內的環境更適宜果樹的生長。生產設備與機具由水肥一體化裝備與農機作業裝備組成,水肥一體化裝備的功能是通過自動化攪拌裝備將水和肥料混合并準確地送到果樹的根部,有效地控制果樹的水分和營養供應,以滿足果樹的生長需求,可以根據果樹的生長階段和需求調整水肥的比例和供應量,提高果樹的產量和質量。農機作業裝備主要包括割草機、修枝機、果實采摘機等,其主要功能是代替人工進行設施內的相關生產環節作業,提高果樹生產效率和栽培質量。
1.1 建筑設施
1.1.1 建筑設施類型與特點 常用的設施果樹栽培的建筑設施主要有日光溫室、塑料大棚和連棟玻璃溫室,其結構特點與材料組成如表1所示。日光溫室是節能日光溫室的簡稱,又稱暖棚,由兩側山墻、維護后墻體、支撐骨架及覆蓋材料組成[11-12],在中國北方地區廣泛應用,是一種在室內不加熱的溫室,通過后墻體對太陽能吸收實現蓄放熱,維持室內一定的溫度水平,以滿足作物生長的需要[13];塑料大棚俗稱冷棚,是一種簡易實用的保護地栽培設施,利用竹木、鋼材等材料,并覆蓋塑料薄膜,搭成拱形棚,具有建造容易、使用方便、投資較少等優點,在中國南方被廣泛應用,其有利于果樹防御自然災害,能提早或延遲供應鮮果,提高單位面積產量;連棟玻璃溫室是一種以鋼結構為主體,利用玻璃作為覆蓋材料的溫室類型,內置了采暖、通風、灌溉等配套設備,其采光好、強度高、環境調節能力強,在中國南方經濟發達省份已少部分推廣使用,但建造成本較高[14-15]。
1.1.2 建筑設施結構研究 在設施果樹栽培中,建筑設施的結構設計直接關系到溫室的穩定性、耐久性以及果樹的生產效率,合理的結構設計不僅能有效抵御風雪等自然災害,還能最大化利用光照資源,為果樹創造適宜的生長環境[16]。中國農業科學院果樹研究所漿果類創新團隊設計了一種適合國情的低成本、節能型日光溫室[17],并在不同地區進行了試驗驗證,結果顯示該溫室在保溫、采光及積雪清理方面表現優異,對葡萄等果樹的生長質量和果實品質有顯著提升。郭利民等[18]設計了一種高脊、大跨度、空間寬敞的鋼結構日光溫室,其結構穩固性顯著提升,增強了抵抗自然災害的能力。陳吉[19]和陸琳等[20]針對不同地域和氣候條件分別設計了果樹專用大棚和適應低緯高原氣候的新型日光溫室。閆冬梅等[21]利用有限元軟件建模分析了不同作物吊掛模式等對溫室結構內力的影響,發現柱腳鉸接的單管拱架在作物荷載兩點吊掛時會出現強烈的局部應力集中現象,提出應采用前柱腳鉸接、后柱腳固接、后墻立柱為格構柱的結構形式,以達到最小和最大應力及最合理的應力分布。此外,郄麗娟等[22]設計了一種裝配式異質復合墻體日光溫室,使用環保建材和裝配式鋼骨架,與傳統溫室相比,該溫室墻體熱阻高、傳熱系數低,且具有更高的放熱效率和升溫速率,室內溫度更穩定,且結構安全性更好。王蕊等[23]的研究結果表明,針對北方土質墻體日光溫室,黏土、粉質黏土和沙土含水量超26%、16%和14%時墻體易失穩,外坡角增至70°加劇風險,建議控制含水量,外坡角60°~70°為宜。
1.1.3 建筑設施環境與能耗研究 建筑設施環境與能耗的研究是提升設施果樹生產效率和實現綠色發展的關鍵,降低能耗、提高能源利用效率,不僅能降低生產成本,還能減輕對環境的影響,推動設施果樹栽培向更加環保、可持續的方向發展[24-26]。趙曉彤等[27]通過實時監測典型日光溫室的環境因子,分析了溫室的能耗情況,發現傳熱能耗在冬季夜間占主導地位,其次為冷風滲透能量消耗,土壤在日光溫室夜間起到室內保溫作用。王超等[28]的研究結果表明,最冷月和冬至日的日光溫室采暖能耗需求隨緯度升高而增加,冬至日需求量分布不均,關鍵影響因素為南屋面保溫和換氣次數。史宇亮等[29]通過測試最冷季節(30 d)溫室內氣溫、墻體溫度、室外氣溫及室外太陽輻照度等數據,分析了土墻溫室內外溫度分布規律,結果表明,墻體表面及淺層溫度隨溫室氣溫周期性變化,深層溫度穩定,墻體夜間放熱效率為43%。許紅軍等[30]研究結果表明,日光溫室墻體可劃分為保溫層、穩定層、蓄熱層,各層的厚度與墻體蓄熱材料、保溫材料的熱物性有關,墻體厚度大于30 cm時,溫室內溫度波動平緩。在溫室結構、保溫性能不變的情況下,溫室蓄熱層厚度及波動情況受外界光溫環境的綜合影響較小。
1.1.4 建筑設施覆蓋材料研究 設施果樹栽培中,建筑設施的覆蓋材料選擇多樣,主要包括塑料薄膜(如PVC、PE、PO膜)、玻璃、遮陽網、無紡布、草苫(或草簾)以及水簾等[31-33]。其中,塑料薄膜因其成本低、透光保溫性能優良且安裝維護簡便,得到廣泛應用。玻璃則以其出色的透光隔熱性著稱,但成本相對較高。遮陽網和無紡布等半透明材料,能夠有效調節設施內的光照和溫度,滿足特定栽培需求。草苫和草簾等不透明材料,則主要用于保溫,確保果樹在寒冷季節的正常生長。此外,水簾在夏季用于降溫,以保持設施內的適宜溫度。在選擇這些覆蓋材料時,應綜合考慮作物生長需求、當地氣候條件、成本效益以及環保因素,以實現最佳栽培效果。王偉等[34]通過CFD方法對比發現,雙膜拱棚在夏季能減少高溫積聚,冬季則保持較高平均溫度,特別適合壽光地區氣候。魏巍等[35]的研究顯示,雙膜日光溫室能顯著提高淺層土壤溫度,且室內熱環境更穩定。楊小鋒等[36]則提出了覆蓋PE薄膜較之白色防蟲網和露地處理,可提高棚內溫度,調節設施溫差和光環境,防止害蟲侵入,顯著改善果實品質,提高果實產品安全性,促進杧果植株生長。楊定偉等[37]和程麗等[38]的研究則分別揭示了裝配式礫石和土模塊溫室的優異保溫蓄熱性能,以及雙層薄膜覆蓋和復合材料后墻體對保溫性能的提升作用。
1.2 監測系統
設施果樹栽培通過監測系統的應用,果農可更加準確地掌握果樹生長環境的變化,精確調節灌溉和養分供應,提高果樹的生長效率和產量,并減少資源的浪費[39],其工作原理如圖2所示。監測系統一般包括光照傳感器、溫濕度傳感器、CO2氣體濃度傳感器、土壤水分養分檢測裝置等[40-41]。李振東[42]設計了涉及物聯網、ZigBee、ARM,以及4G通信技術的智能葡萄大棚監測系統,通過信息采集器對溫室環境信息數據進行采集,然后通過無線傳感網絡將數據傳遞到協調器上,以ARM作為核心處理器替代傳統單片機進行數據處理,最后通過4G網絡通信技術將數據傳送到云管理,從而實現管理人員對葡萄大棚的實時監測與控制。陳春玲等[43]基于北方果樹栽培日光溫室環境,提出一種基于無線傳感器的數據融合方法,以提高實時數據精度,通過格拉布斯判定準則剔除粗大誤差,再結合自適應加權平均算法進行數據融合,試驗結果顯示,該方法能有效提高數據精度,為溫室環境監測和控制提供更精準的基礎數據。孫昌權等[44]設計開發了一種設施草莓智慧生產管控系統,包括生長環境信息感知系統和設施內的環境調控系統2個部分,該系統結合多傳感器數據融合算法和專家決策控制系統模型,提高環境參數采集的準確性和真實性,保證草莓各生長階段對生長環境和水肥需求的精準控制。
1.3 環境調控設備
環境調控設備包括溫濕度控制裝置(如溫控器、加熱設備、卷膜器、加濕裝置等)、光照調控設備(如光溫室自動卷簾機、LED補光燈等)、CO2發生裝置和通風裝置(風道、排風設備)等組成,環境調控設備的應用可有效優化果樹的生長環境,提高生產效率,提高產量和果品質量[45-46]。
1.3.1 溫濕度控制裝置 在設施果樹栽培中,溫濕度控制裝置通過溫濕度傳感器收集數據,依據預設范圍自動調節風機、卷膜器和加濕器等,維持最佳生長環境。張明秋[47]采用先進的隨機森林算法,設計了人工光源設施內的溫濕度控制系統。該系統通過多變量解耦內模控制方法,實現了對溫濕度的精準控制,試驗證明其性能穩定且滿足生產需求。李亨[48]通過對比多種控制方法,發現模糊解耦控制在設施內溫濕度調控方面表現最佳。劉云驥等[49]研發了日光溫室正壓式濕簾風機降溫系統,并優化了結構參數,該系統在夏季能顯著降低溫度,提供均勻的溫濕度環境。宋財柱等[50]則利用L-M算法的BP神經網絡模型,成功建立了溫室內空氣溫濕度的預測模型,為溫室內的環境調控提供了有力支持。陳辛格等[51]針對中高緯度地區溫室冬季面臨的問題,提出了結合窄槽式集熱器與固體除濕劑的調控系統,顯著改善了作物生長環境。薛曉萍等[52]研究結果表明,自然通風降濕能力弱,溫室內濕度呈現明顯的下高上低垂直分布,高風速降濕能力強,溫室北側濕度高于南側,偏東風降濕效率高,北風效果差。
1.3.2 自動卷簾機 自動卷簾機能自動卷放保溫覆蓋物,調節棚內光照、溫度和濕度,提高勞動效率,減小勞動強度,是設施果樹栽培不可或缺的裝備[53]。劉洋等[54]設計了一種錐形滾筒式翻越卷放裝置,該裝置由卷被軸、搖桿、主機、輔助翻越機構組成,通過繩索傳動實現保溫被的翻越卷放,有效解決了保溫被卷起后的問題。吳若丁等[55]研發了一種新型日光溫室雙穩態折疊結構保溫設施,通過充氣或抽氣進行狀態切換,免除了卷簾機的使用。張國祥等[56]設計的協調鋪卷裝置,能實現多種覆蓋物的協調鋪卷,展現出較好的控制精度和穩定性。裴雪等[57]設計了基于溫光耦合的卷簾機精準控制系統,該系統采用光照與溫度傳感器實時監測,結合溫光耦合模型決策,通過中間繼電器及紅外限位開關控制卷簾機,提高其控制精度與使用安全性。董亮等[58]設計了一款自動接縫的日光溫室卷簾裝置,實現中間覆蓋材料同步卷放,可折疊且與卷簾軸同步運行,保持恒定角度避免碰撞。
1.3.3 CO2發生裝置 CO2發生裝置一般安裝在設施中央部,利用化學反應產生CO2,通過排氣管將產生的CO2均勻釋放至整個空間,促進果樹光合作用,提高果樹產量與果實品質[59-60]。辛敏[61]設計的零濃度差CO2施肥系統,能夠將室內CO2濃度有效補充至室外相同水平,不僅降低了成本,還提高了CO2的利用率。馬凱等[62]設計了日光溫室CO2施肥系統,試驗結果表明,日光溫室的施肥區CO2濃度提高12.4%,油桃光合速率提高48.2%,品質顯著改善,增施CO2氣肥可有效提高油桃光合速率及品質。
1.3.4 通風裝置 通風裝置是設施果樹栽培的重要設備,主要由進風口、出風口、風機及控制系統等組成,其通過風機驅動空氣流動,實現溫室與外界的空氣交換,有效降低室內溫度,減少病蟲害發生,一些先進的通風裝置還集成了降溫、加濕等功能,進一步提升了設施果樹栽培的效率和果實品質[63-67]。胡萬玲等[68]研究不同的送/回風方式對日光溫室的影響,發現下送上回的通風方式效果最佳。萬敏等[69]研究發現開啟后墻通風口及調整其位置能提高降溫效率、降低作物蒸騰速率。鄭若琳等[70]則通過數值模擬揭示,通風形式顯著影響溫室內氣流與溫濕度分布,上下通風口同時開啟在炎熱天氣下效果最佳,有效降低室內溫濕度,而下通風口單獨使用則會導致分布不均。
1.4 生產設備與機具
1.4.1 水肥一體化裝備 設施果樹栽培可通過水肥一體化裝備,將水與肥料混合后,經過精確的灌溉系統,將水分和養分均勻地輸送到果樹的根部,為果樹精確供應水肥,優化果樹的生長環境[71-73]。水肥一體化裝備一般由儲水裝置、肥料儲存與混合裝置、灌溉系統和控制系統組成,如圖3所示。儲水裝置儲存各種水源以確保灌溉連續,肥料儲存裝置混合適合果樹吸收的營養液,灌溉系統將水肥溶液均勻送至果樹根部,實現節水、節肥、高效灌溉;控制系統監控管理整個裝備,根據果樹生長、環境條件和用戶需求,自動調整水肥混合比例、灌溉時間和頻率,確保果樹獲得最佳水肥供應[74]。黃卿宜等[75]研究水肥一體化條件下設施甜瓜施肥灌溉制度,試驗結果表明,增加施肥量能顯著提升甜瓜株高和莖粗,高灌水下限可促使作物早熟,提高市場價值。李增源等[76]設計了設施葡萄智能化水肥管理系統,其基于NB-IoT網絡傳輸的固態電阻傳感器設備對設施葡萄根系土壤水分進行實時監測,建立基于土壤水分張力的設施葡萄灌溉決策指標,并依托水肥一體化設備實現自動灌溉。
1.4.2 農機作業裝備 設施果樹栽培的農機作業裝備包括微耕機、割草機、修枝機、植保機、采摘機等[77-79],其性能參數如表2所示。微耕機是小型土壤耕作機械,適用于狹小空間,能進行旋耕、松土、開溝等作業,可根據需求更換刀具和附件;割草機以電動遙控式為主,高效除草,保持果園整潔;修枝機則根據果樹需求修剪枝條,保持樹形和通風,有手動、電動、氣動等類型;植保機用于病蟲害防治,噴灑化學藥劑,電動植保機噴霧均勻且高效;采摘機則能自動采摘成熟度和大小合適的果實,提高采摘效率,有振動式、吸入式等多種類型,這些機械大大提高了設施果樹的生產效率[80-82]。姬麗雯等[83]研究設計了一種應用于日光溫室的草莓采摘機器人,該機器人使用激光雷達構建地圖與定位,雙目深度相機識別成熟草莓,并由6自由度機械臂進行抓取和放置,能實現自主路徑規劃,行走過程中識別成熟草莓并完成采摘。
2 國外設施果樹栽培裝備研究現狀
國外設施果樹栽培裝備的研究起步較早,呈現高度集成化、智能化與綠色化的發展趨勢,以荷蘭、日本、澳大利亞、美國、以色列等發達國家的成果顯著[84-87],這些國家多采用現代化的大型連棟大棚及日光溫室作為主要栽培設施,并結合先進的保溫、通風、遮陽及加溫系統,能夠精準調控環境參數,為果樹生長創造最適條件[88-91]。
美國新建造的果樹栽培溫室單體面積均在1 hm2以上,并大量采用無土栽培技術[92];荷蘭的設施果樹栽培連棟玻璃溫室如圖4所示,溫室以文洛式結構設計,具有超大空間和跨度,便于中大型農業機械進入作業,采用中空鋁合金骨架代替傳統溫室的單層鐵材質天溝,不僅減少了設施溫室的支撐結構,也降低了支撐結構的遮光面積,提升了采光及保溫效果,設施頂部覆蓋高透光漫反射玻璃,透光率在90%以上,為果樹提供了充足的光照條件。同時溫室內配備先進的環境調控系統和智能化管理系統,能夠精確控制溫室的環境參數,為果樹提供最佳的生長環境[93-95]。
日本的設施葡萄栽培大棚如圖5所示,大棚多采用堅固耐用的鋼架結構作為支撐,覆蓋材料則選用透光性好、耐用的聚乙烯長壽無滴膜等;大棚設計充分考慮采光、保溫和通風需求,通常坐北朝南、東西延長,確保葡萄能夠充分接受光照;大棚尺寸適中,一般脊高在4.5~5 m之間,長度在80~120 m之間,既方便管理又適宜機械化,大棚內配備了傳感器及水肥一體化系統,以實現葡萄生長環境的實時監測和精準控制。
美國、荷蘭、以色列等發達國家,通過將工業的先進技術融入到農業生產中,較早地提出了“工廠化農業”的理念,這些國家已研發了系列的設施果樹生產配套裝備,如小型微耕機、除草機、修枝機及采摘機器人等,實現了從土壤耕整、樹體修剪到果實采摘的設施生產全程機械化作業,提高了設施果樹的栽培效率[96-97]。此外,荷蘭還研制出大型溫室清洗裝置,專門用于清除溫室屋面的灰塵,以此提高溫室的透光效果,進一步優化農業生產條件。
3 中國設施果樹栽培裝備發展面臨的問題
3.1 設施結構簡陋
設施果樹栽培需要一系列專用的設施來支持,包括溫室、大棚、灌溉系統、施肥系統等。然而,目前市場上針對設施果樹栽培的專用設施并不多[98-100]。同時受經濟條件和技術水平限制,許多果農往往選擇結構簡單、材料廉價的簡易大棚或溫室栽培果樹,據統計,中國簡易設施面積約占設施總面積的2/3[9],這些簡易設施結構規格不一,雖然能夠在一定程度上滿足果樹生長的基本需求,但往往缺乏必要的保溫、通風和遮陽等功能,導致設施內環境波動大,不利于果樹的穩定生長;同時這種設施跨度小、高度矮,內部空間不足,無法進行機械化作業,限制了設施果樹生產效率的提高[101]。
3.2 設施環境調控能力弱
設施果樹栽培需要對溫度、濕度、光照等環境因子進行精準調控,以滿足果樹不同生長階段的需求。然而,由于設施結構簡陋,缺乏相應自動化環境調控設備,如溫濕度控制系統、補光系統、通風系統等,這導致設施內環境無法得到有效調控,難以滿足果樹生長的最佳條件[102]。
3.3 缺乏專用覆蓋材料
設施果樹栽培需要使用一些專用的覆蓋材料(耐候性強、透光性好),然而市場上的專用設施覆蓋材料不多,很多只能使用普通的農業材料進行替代[103]。傳統的覆蓋材料(如草苫、保溫被等)存在透光性能差、易損壞、保溫效果不好等缺陷,難以滿足設施果樹對光、溫的精細調控需求。這不僅增大了環境調控難度,還限制了果樹的正常生長,進而影響了果品的產量與品質。
3.4 設施生產機械化程度低、智能化程度不足
目前,中國設施果樹栽培的機械化程度較低,綜合機械化率不足40%,很多生產環節仍以人力為主[77,104]。設施果樹栽培因其特殊的種植模式和狹小的空間布局,急需小型化、靈活性強的專用農機具,然而當前市場上針對設施果樹栽培的專用小型農機種類有限,且功能相對單一,難以滿足多樣化、精細化的生產需求。同時農機自動化、智能化水平較低,很多需要人力輔助作業,這都增加了設施果樹的生產成本,限制了生產效率。
4 設施果樹栽培裝備未來的發展方向
4.1 建筑設施智能化、生態化
未來的建筑設施不僅提供基礎的保溫、遮陽等功能,還將結合智能材料、物聯網技術,實現自動化調節和生態循環[105]。例如,溫室可采用智能玻璃或智能棚膜,根據光照度自動調節透光度;同時,設施內部將構建生態循環系統,如雨水收集、再利用,以及通過植物和微生物的協同作用實現廢棄物的自然降解。這種發展方向旨在提高設施的自適應性和生態可持續性。
4.2 設施環境調控智能化
首先測控裝置將進化為全面感知果樹生長狀態的智能系統,除了現有的溫度、光照等傳感器,還將引入更多類型的生物傳感器,如葉片氣孔導度、果實可溶性固形物含量、果實香氣成分等,以全方位地監測果樹生長。數據分析決策終端將運用更先進的算法,如深度學習、模式識別等,對感知數據進行實時分析,為環境調控提供精準指導,通過大數據和人工智能技術的結合,管理系統能自動制定和調整灌溉、施肥、病蟲害防治等方案,以滿足果樹生長的各種需求。這種全面感知與智能決策的發展趨勢,將極大地提高設施果樹栽培的管理水平和生產效益[106]。
4.3 農機農藝高度融合
在未來設施果樹栽培中,農機與農藝將高度融合[107-109]。首先,結合果樹生長特性,采用標準的設施果樹栽培模式,包括科學地確定株行距、培養適宜的樹形,拓寬設施內機耕道路,平整土地,以適應機械化作業的需求。其次,一系列智能農機將被廣泛應用,設施內的智能農機裝備將結合先進的導航、識別和通信技術,實現自動化和智能化的作業,如修剪機器人能夠自動識別樹枝的生長情況和修剪需求,進行精準的修剪操作;采摘機器人則能通過視覺識別和機械手臂的精確控制,實現無損、高效的果實采摘。再次,多臺農機裝備之間還將實現實時的信息共享和協同作業,通過先進的通信技術和協同算法,共同完成復雜的果樹栽培任務。農機農藝高度融合將極大地提升設施果樹栽培的作業效率和生產質量,推動其向更高水平發展[110-111]。
參考文獻 References:
[1] 許奇志,鄧朝軍,蔣際謀,陳秀萍. 避雨設施葡萄對套種枇杷生長與結果的影響[J]. 果樹學報,2023,40(10):2149-2159.
XU Qizhi,DENG Chaojun,JIANG Jimou,CHEN Xiuping. Effects of grapes in shelter facilities on tree growth and fruiting of interplanted loquat[J]. Journal of Fruit Science,2023,40(10):2149-2159.
[2] 李都岳,吳延軍. 補光對設施栽培櫻桃果實成熟和糖分積累的影響[J]. 果樹學報,2023,40(10):2183-2194.
LI Duyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J]. Journal of Fruit Science,2023,40(10):2183-2194.
[3] 劉鳳之,王海波,李莉,宣景宏. 我國設施果樹產業現狀、存在問題與發展對策[J]. 中國果樹,2021(11):1-4.
LIU Fengzhi,WANG Haibo,LI Li,XUAN Jinghong. Current situation,issue and suggestion of the protected fruit industry in China[J]. China Fruits,2021(11):1-4.
[4] 王海波,周澤宇,楊振鋒,曹玉芬,張彩霞,程存剛,周宗山,王文輝,胡成志,馮學杰,呂鑫,曹永生. 我國果業高質量發展的制約因素探析[J]. 中國果樹,2023(7):1-9.
WANG Haibo,ZHOU Zeyu,YANG Zhenfeng,CAO Yufen,ZHANG Caixia,CHENG Cungang,ZHOU Zongshan,WANG Wenhui,HU Chengzhi,FENG Xuejie,Lü Xin,CAO Yongsheng. Constraints on the high-quality development of Chinese fruit industry[J]. China Fruits,2023(7):1-9.
[5] 楊玉香. 中國北方設施果樹產業現狀與發展對策[J]. 落葉果樹,2024,56(3):63-65.
YANG Yuxiang. Current situation and development strategies of facility fruit tree industry in Northern China[J]. Deciduous Fruits,2024,56(3):63-65.
[6] 戚行江,梁森苗,陳海豹,俞浙萍,孫鸝,鄭錫良,張淑文. 促早栽培對楊梅葉片形態及果實成熟與品質的影響[J]. 果樹學報,2023,40(11):2403-2412.
QI Xingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.
[7] 解冰芊,郭天然,李玉婷,任利慧,黃建. 冬棗光響應模型及不同物候期光合變化動態研究[J]. 果樹學報,2024,41(8):1617-1626.
XIE Bingqian,GUO Tianran,LI Yuting,REN Lihui,HUANG Jian. Light response model and photosynthetic dynamics at different phenological stages of Dongzao jujube[J]. Journal of Fruit Science,2024,41(8):1617-1626.
[8] 李天來,齊明芳,孟思達. 中國設施園藝發展60年成就與展望[J]. 園藝學報,2022,49(10):2119-2130.
LI Tianlai,QI Mingfang,MENG Sida. Sixty years of facility horticulture development in China:Achievements and prospects[J]. Acta Horticulturae Sinica,2022,49(10):2119-2130.
[9] 李天來. 加快發展好中國特色設施種植業[J]. 寒旱農業科學,2022,1(1):1-3.
LI Tianlai. Speeding up the development of facility planting industry with Chinese characteristics[J]. Journal of Cold-Arid Agricultural Sciences,2022,1(1):1-3.
[10] 齊明芳,劉興安,孟思達,李天來. 我國節能日光溫室發展歷程[J]. 新農業,2023(19):4-7.
QI Mingfang,LIU Xing’an,MENG Sida,LI Tianlai. The development history of energy-saving solar greenhouses in China[J]. New Agriculture,2023(19):4-7.
[11] LI Y M,YAN J,LI Z Z,HE M,LIU X G,LI T L. A globalized methodology of energy-saving solar greenhouse design in high latitudes[J]. Energy,2024,304:132117.
[12] YANG A Q,XU X,JIA S C,HAO W X. Heat storage and release performance of solar greenhouses made of composite phase change material comprising methyl palmitate and hexadecanol in cold climate[J]. Thermal Science and Engineering Progress,2024,54:102837.
[13] WAN X C,XIA T Y,LI Y M,SUN Z P,LIU X G,LI T L. Study on a novel water heat accumulator below the north roof in Chinese solar greenhouse:System design[J]. Applied Thermal Engineering,2023,234:121316.
[14] 王蕊,楊小龍,馬健,須暉,李天來. 溫室透光覆蓋材料的種類與特性分析[J]. 農業工程技術,2016,36(16):9-12.
WANG Rui,YANG Xiaolong,MA Jian,XU Hui,LI Tianlai. Analysis of types and characteristics of light-transmitting covering materials for greenhouses[J]. Agricultural Engineering Technology,2016,36(16):9-12.
[15] 周長吉. 日光溫室主動加溫技術與設備[J]. 中國蔬菜,2023(7):7-19.
ZHOU Changji. Active heating technology and equipment for Chinese solar greenhouse[J]. China Vegetables,2023(7):7-19.
[16] 張惠楠,李明,祝鵬. 北方日光溫室構造的研究進展[J]. 智慧農業導刊,2024,4(6):64-68.
ZHANG Huinan,LI Ming,ZHU Peng. Progress in the structure of the northern solar greenhouse[J]. Journal of Smart Agriculture,2024,4(6):64-68.
[17] 王志強,王海波,劉鳳之,王孝娣,王小龍,李鵬,史祥賓. 設施農業大棚冬季除雪注意事項及方法[J]. 果樹實用技術與信息,2022(12):45-46.
WANG Zhiqiang,WANG Haibo,LIU Fengzhi,WANG Xiaodi,WANG Xiaolong,LI Peng,SHI Xiangbin. Points for attention and methods for snow removal in winter from facility agricultural greenhouses[J]. Applied Technology and Information for Fruit Trees,2022(12):45-46.
[18] 郭利民,常聚普,吳亞冉,王磊,于利強,桑圣奇. 一種新型適宜果樹反季節栽培的鋼結構日光溫室[J]. 北方園藝,2019(19):45-48.
GUO Limin,CHANG Jupu,WU Yaran,WANG Lei,YU Liqiang,SANG Shengqi. A novel steel-framed solar greenhouse suitable for off-season cultivation of fruit trees[J]. Northern Horticulture,2019(19):45-48.
[19] 陳吉. 果樹專用連棟大棚設計與應用[J]. 農業開發與裝備,2017(9):88-89.
CHEN Ji. Design and application of a specialized multi-span greenhouse for fruit trees[J]. Agricultural Development amp; Equipments,2017(9):88-89.
[20] 陸琳,于菲,仇明華,張晏. 一種新型日光溫室及其在果樹栽培中的應用[J]. 農業工程技術,2017,37(25):38-40.
LU Lin,YU Fei,QIU Minghua,ZHANG Yan. A novel solar greenhouse and its application in fruit tree cultivation[J]. Agricultural Engineering Technology,2017,37(25):38-40.
[21] 閆冬梅,徐開亮,周長吉,張秋生. 柔性保溫墻橢圓管單管拱架日光溫室內力分析及結構優化[J]. 農業工程學報,2023,39(14):215-222.
YAN Dongmei,XU Kailiang,ZHOU Changji,ZHANG Qiusheng. Internal force analysis and structure optimization of single oval tube arch solar greenhouse with flexible insulation wall[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):215-222.
[22] 郄麗娟,韓建會,李永. 裝配式異質復合墻體日光溫室熱性能分析與評價[J]. 中國農業大學學報,2023,28(4):159-169.
QIE Lijuan,HAN Jianhui,LI Yong. Thermal performance analysis and evaluation on solar greenhouse with assembled heterogeneous composite wall[J]. Journal of China Agricultural University,2023,28(4):159-169.
[23] 王蕊,楊小龍,王小雯,馬健,李天來,須暉. 含水量對日光溫室土質墻體穩定性影響的有限元分析[J]. 沈陽農業大學學報,2017,48(3):277-283.
WANG Rui,YANG Xiaolong,WANG Xiaowen,MA Jian,LI Tianlai,XU Hui. Finite element analysis of effect of water content on earth-wall stability of Chinese solar greenhouse[J]. Journal of Shenyang Agricultural University,2017,48(3):277-283.
[24] 蔣國振,胡耀華,劉玉鳳,鄒志榮. 基于CFD的下沉式日光溫室保溫性能分析[J]. 農業工程學報,2011,27(12):275-281.
JIANG Guozhen,HU Yaohua,LIU Yufeng,ZOU Zhirong. Analysis on insulation performance of sunken solar greenhouse based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(12):275-281.
[25] 孫樹鵬,董朝陽,黎貞發,楊涵洧. 基于CFD的不同環境溫度下日光溫室內部溫度變化研究[J]. 天津農業科學,2020,26(10):43-47.
SUN Shupeng,DONG Chaoyang,LI Zhenfa,YANG Hanwei. Study on temperature change of solar greenhouse at different environmental temperature based on CFD[J]. Tianjin Agricultural Sciences,2020,26(10):43-47.
[26] BERROUG F,LAKHAL E K,EL OMARI M,FARAJI M,EL QARNIA H. Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings,2011,43(11):3027-3035.
[27] 趙曉彤,須暉,李天來,王蕊. 東北地區日光溫室冬季能量分配模型的建立[J]. 沈陽農業大學學報,2019,50(1):43-50.
ZHAO Xiaotong,XU Hui,LI Tianlai,WANG Rui. Establishment of winter energy distribution model for solar greenhouse in Northeast China[J]. Journal of Shenyang Agricultural University,2019,50(1):43-50.
[28] 王超,方慧,張義,桑碩,曹軻菲. 輕簡柔性墻體裝配式日光溫室能耗分析[J]. 農業工程學報,2023,39(3):190-197.
WANG Chao,FANG Hui,ZHANG Yi,SANG Shuo,CAO Kefei. Energy consumption analysis of simply soft insulated wall-assembled Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(3):190-197.
[29] 史宇亮,王秀峰,魏珉,李清明,劉福勝,侯加林. 日光溫室土墻體溫度變化及蓄熱放熱特點[J]. 農業工程學報,2016,32(22):214-221.
SHI Yuliang,WANG Xiufeng,WEI Min,LI Qingming,LIU Fusheng,HOU Jialin. Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(22):214-221.
[30] 許紅軍,曹晏飛,李彥榮,阿拉帕提,高杰,蔣衛杰,鄒志榮. 基于CFD的日光溫室墻體蓄熱層厚度的確定[J]. 農業工程學報,2019,35(4):175-184.
XU Hongjun,CAO Yanfei,LI Yanrong,Alapati,GAO Jie,JIANG Weijie,ZOU Zhirong. Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):175-184.
[31] 趙洪滿. 設施溫室材料選擇及建造模式[J]. 農業工程,2022,12(6):75-77.
ZHAO Hongman. Material selection and construction mode of facility greenhouse[J]. Agricultural Engineering,2022,12(6):75-77.
[32] 劉晨霞,馬承偉,王平智,趙淑梅,程杰宇,王明磊. 日光溫室保溫被傳熱的理論解析及驗證[J]. 農業工程學報,2015,31(2):170-176.
LIU Chenxia,MA Chengwei,WANG Pingzhi,ZHAO Shumei,CHENG Jieyu,WANG Minglei. Theoretical analysis and experimental verification of heat transfer through thick covering materials of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(2):170-176.
[33] 于威,劉文合,白義奎,丁小明. 基于CFD的兩連跨日光溫室熱環境模擬[J]. 農業工程學報,2023,39(16):215-222.
YU Wei,LIU Wenhe,BAI Yikui,DING Xiaoming. Simulating thermal environment in a two-span solar greenhouse using CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(16):215-222.
[34] 王偉,方慧,伍綱,程瑞鋒,張義,袁余. 基于CFD模型的雙膜大跨度拱棚熱環境模擬[J]. 中國農業大學學報,2024,29(5):115-124.
WANG Wei,FANG Hui,WU Gang,CHENG Ruifeng,ZHANG Yi,YUAN Yu. Thermal environment simulation in a double-film large-span greenhouse based on CFD model[J]. Journal of China Agricultural University,2024,29(5):115-124.
[35] 魏巍,楊林艷,柴云娥,顧金壽,劉孝敏,劉葉瑞. 雙膜日光溫室土壤-空氣換熱器土壤溫度試驗研究[J]. 科學技術與工程,2024,24(5):1930-1936.
WEI Wei,YANG Linyan,CHAI Yun’e,GU Jinshou,LIU Xiaomin,LIU Yerui. Experimental study on soil temperature of soil-air heat exchanger in double-film solar greenhouse[J]. Science Technology and Engineering,2024,24(5):1930-1936.
[36] 楊小鋒,李勁松,楊沐,陳明樂,黃植. 設施栽培覆蓋材料對芒果品質及設施環境的影響[J]. 中國果樹,2011(6):44-48.
YANG Xiaofeng,LI Jinsong,YANG Mu,CHEN Mingle,HUANG Zhi. Effects of covering materials on mango quality and facility environment in protected cultivation[J]. China Fruits,2011(6):44-48.
[37] 楊定偉,荊海薇,景煒婷,何斌,鄒志榮,鮑恩財,曹晏飛. 不同墻體材料的裝配式日光溫室的熱性能對比分析[J]. 中國農業大學學報,2023,28(10):194-205.
YANG Dingwei,JING Haiwei,JING Weiting,HE Bin,ZOU Zhirong,BAO Encai,CAO Yanfei. Comparative analysis of thermal performance of fabricated solar greenhouses with different wall materials[J]. Journal of China Agricultural University,2023,28(10):194-205.
[38] 程麗,張國輝,楊帥,王春雨,林娜,潘凱. 高寒地區冬季不同類型日光溫室內環境的比較[J]. 北方園藝,2023(12):44-50.
CHENG Li,ZHANG Guohui,YANG Shuai,WANG Chunyu,LIN Na,PAN Kai. Comparative analysis of internal environment of different types of solar greenhouses in winter in alpine regions[J]. Northern Horticulture,2023(12):44-50.
[39] 王柯如,任妮,金晶,毛曉娟,劉楊. 設施環境調控技術研究現狀與挑戰[J]. 中國農業信息,2024,36(2):73-82.
WANG Keru,REN Ni,JIN Jing,MAO Xiaojuan,LIU Yang. Current status and challenges of research in facility environmental control technology[J]. China Agricultural Informatics,2024,36(2):73-82.
[40] KOCHHAR A,KUMAR N. Wireless sensor networks for greenhouses:An end-to-end review[J]. Computers and Electronics in Agriculture,2019,163:104877.
[41] 徐鵬,張冠智,李洋,徐曉東,楊振超. 智慧設施農業中控制系統的研究進展[J]. 中國農學通報,2023,39(3):156-164.
XU Peng,ZHANG Guanzhi,LI Yang,XU Xiaodong,YANG Zhenchao. Control system in smart facility agriculture:Research progress[J]. Chinese Agricultural Science Bulletin,2023,39(3):156-164.
[42] 李振東. 智能葡萄大棚監測系統設計[D]. 淮南:安徽理工大學,2019.
LI Zhendong. Design of intelligent grape greenhouse monitoring system[D]. Huainan:Anhui University of Science amp; Technology,2019.
[43] 陳春玲,崔琳,許童羽,周云成,李天來,王一情. 日光溫室無線傳感器多數據融合技術研究[J]. 沈陽農業大學學報,2016,47(1):86-91.
CHEN Chunling,CUI Lin,XU Tongyu,ZHOU Yuncheng,LI Tianlai,WANG Yiqing. Wireless-sensor and multi-data fusion technological research of sunlight greenhouse[J]. Journal of Shenyang Agricultural University,2016,47(1):86-91.
[44] 孫昌權,高菊玲. 設施草莓智慧生產管控系統設計與實現[J]. 中國農機化學報,2021,42(12):80-86.
SUN Changquan,GAO Juling. Design and implementation of intelligent control system for strawberry greenhouse[J]. Journal of Chinese Agricultural Mechanization,2021,42(12):80-86.
[45] 李玉亮,王尚華,魚亞蘭,牟佳,王旭東. 設施農業溫室環境調控裝備的研究與進展[J]. 中國農機裝備,2024(7):57-59.
LI Yuliang,WANG Shanghua,YU Yalan,MOU Jia,WANG Xudong. Research progress of greenhouse environment control equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):57-59.
[46] HE X L,WANG J,GUO S R,ZHANG J,WEI B,SUN J,SHU S. Ventilation optimization of solar greenhouse with removable back walls based on CFD[J]. Computers and Electronics in Agriculture,2018,149:16-25.
[47] 張明秋. 人工光源型植物工廠溫濕度環境控制與試驗研究[D]. 大慶:黑龍江八一農墾大學,2021.
ZHANG Mingqiu. Experimental study on temperature and humidity environment control in plant factory with artificial light source[D]. Daqing:Heilongjiang Bayi Agricultural University,2021.
[48] 李亨. 基于模糊神經網絡的植物工廠溫濕度控制研究[D]. 天津:天津職業技術師范大學,2019.
LI Heng. Study on temperature and humidity control of plant factory based on fuzzy neural network[D]. Tianjin:Tianjin University of Technology and Education,2019.
[49] 劉云驥,徐繼彤,龐松若,孫周平,李天來. 日光溫室正壓式濕簾風機系統設計及其降溫效果[J]. 中國農業大學學報,2019,24(5):130-139.
LIU Yunji,XU Jitong,PANG Songruo,SUN Zhouping,LI Tianlai. Design of positive-pressure wet curtain fan system for solar greenhouse and its cooling effects[J]. Journal of China Agricultural University,2019,24(5):130-139.
[50] 宋財柱,塔娜,閆彩霞,孫云峰,甄琦,李曉凱. 日光溫室環境因子預測模型及應用:基于BP神經網絡[J]. 農機化研究,2024,46(10):175-179.
SONG Caizhu,TA Na,YAN Caixia,SUN Yunfeng,ZHEN Qi,LI Xiaokai. Establishment and application of environmental factor model of solar greenhouse—based on BP neural network[J]. Journal of Agricultural Mechanization Research,2024,46(10):175-179.
[51] 陳辛格,伍綱,馮朝卿,姬亞寧,馬前磊,程瑞鋒. 基于窄槽式集熱器的日光溫室晝夜雙循環熱濕調控研究[J]. 工程熱物理學報,2024,45(4):962-969.
CHEN Xinge,WU Gang,FENG Chaoqing,JI Yaning,MA Qianlei,CHENG Ruifeng. Study on diurnal double-cycle heat and humidity control system of solar greenhouse based on solar narrow trough collector[J]. Journal of Engineering Thermophysics,2024,45(4):962-969.
[52] 薛曉萍,宿文. 基于CFD的自然通風對日光溫室濕度分布模擬分析[J]. 海洋氣象學報,2019,39(4):90-96.
XUE Xiaoping,SU Wen. CFD simulation of humidity distribution in solar greenhouse under natural ventilation[J]. Journal of Marine Meteorology,2019,39(4):90-96.
[53] 張國祥,傅澤田,張領先,嚴謹,張標,李鑫星. 中國日光溫室機械卷簾技術發展現狀與趨勢[J]. 農業工程學報,2017,33(增刊1):1-10.
ZHANG Guoxiang,FU Zetian,ZHANG Lingxian,YAN Jin,ZHANG Biao,LI Xinxing. Development status and prospect of mechanical rolling shutter technology in solar greenhouse in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(Suppl. 1):1-10.
[54] 劉洋,宋衛堂,王平智. 外保溫塑料大棚錐形滾筒式翻越卷放裝置的設計與試驗[J]. 中國農業大學學報,2023,28(9):158-166.
LIU Yang,SONG Weitang,WANG Pingzhi. Design and experiment of a conical reel type over-top rolling machine for thermal quilt in external thermal arch shed[J]. Journal of China Agricultural University,2023,28(9):158-166.
[55] 吳若丁,何斌,張亦博,龔健林,趙昱權. 雙穩態折疊結構日光溫室前屋面保溫設施的設計與試驗[J]. 中國農業科技導報,2023,25(5):112-122.
WU Ruoding,HE Bin,ZHANG Yibo,GONG Jianlin,ZHAO Yuquan. Design and experiment of thermal insulation facilities for the front roof of bistable folding solar greenhouse[J]. Journal of Agricultural Science and Technology,2023,25(5):112-122.
[56] 張國祥,張璐,李鑫星,龔志文,董玉紅,馬云飛. 日光溫室前屋面覆蓋物協調鋪卷裝置設計與試驗[J]. 農業機械學報,2023,54(5):348-358.
ZHANG Guoxiang,ZHANG Lu,LI Xinxing,GONG Zhiwen,DONG Yuhong,MA Yunfei. Design and experiment of coordinative operation device of covers on front roof of Chinese solar greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):348-358.
[57] 裴雪,范奧華,劉煥宇,王孝龍,王東,范葉滿,翟長遠. 基于溫光耦合的溫室卷簾機控制設備開發[J]. 農機化研究,2018,40(4):83-86.
PEI Xue,FAN Aohua,LIU Huanyu,WANG Xiaolong,WANG Dong,FAN Yeman,ZHAI Changyuan. Development of greenhouse rolling machine control equipment based on temperature and light coupling[J]. Journal of Agricultural Mechanization Research,2018,40(4):83-86.
[58] 董亮,王家忠,孔德剛,劉江濤,袁永偉. 日光溫室卷簾機自動接縫裝置設計[J]. 河北農業大學學報,2016,39(6):107-111.
DONG Liang,WANG Jiazhong,KONG Degang,LIU Jiangtao,YUAN Yongwei. A design of automatic seamless device for solar greenhouse rolling machine[J]. Journal of Agricultural University of Hebei,2016,39(6):107-111.
[59] 李偉靜. 設施果樹栽培增補二氧化碳的作用和方法[J]. 北方果樹,2023(1):23-25.
LI Weijing. Effects and methods of carbon dioxide supplementation in protected cultivation of fruit trees[J]. Northern Fruits,2023(1):23-25.
[60] 張俊清,丁宏斌. 溫室增施二氧化碳氣肥技術試驗效果探析[J]. 當代農機,2017(2):12-13.
ZHANG Junqing,DING Hongbin. Analysis of the Experimental effects of carbon dioxide fertilization technology in greenhouses[J]. Contemporary Farm Machinery,2017(2):12-13.
[61] 辛敏. 引進室外冷源的植物工廠零濃度差CO2施肥系統[D]. 北京:中國農業科學院,2015.
XIN Min. Null CO2 concentration difference enrichment system by introducing outside cold air in plant factor[D]. Beijing:Chinese Academy of Agricultural Sciences,2015.
[62] 馬凱,韓立群,閆鵬,克里木·伊明,梅闖,王繼勛. 南疆日光溫室油桃CO2施肥效應研究[J]. 新疆農業科學,2015,52(3):467-471.
MA Kai,HAN Liqun,YAN Peng,Kelimu·Yimin,MEI Chuang,WANG Jixun. Study on effects of enrichment to nectarine in greenhouses[J]. Xinjiang Agricultural Sciences,2015,52(3):467-471.
[63] 牟華偉,王金星,劉雙喜,于蓮雙,范連祥,傅生輝. 日光溫室集中式最優化控制通風系統[J]. 農機化研究,2015,37(9):113-117.
MOU Huawei,WANG Jinxing,LIU Shuangxi,YU Lianshuang,FAN Lianxiang,FU Shenghui. Greenhouse centralized optimization control ventilation system[J]. Journal of Agricultural Mechanization Research,2015,37(9):113-117.
[64] 劉林,侯加林,姜斌. 日光溫室通風系統的設計與實現[J]. 山東農業科學,2015,47(5):115-118.
LIU Lin,HOU Jialin,JIANG Bin. Design and implementation of intelligent greenhouse ventilation system[J]. Shandong Agricultural Sciences,2015,47(5):115-118.
[65] MASHONJOWA E,RONSSE F,MILFORD J R,PIETERS J G. Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model[J]. Solar Energy,2013,91:381-393.
[66] 方慧,楊其長,張義,程瑞鋒,張芳,盧威. 日光溫室熱壓風壓耦合自然通風流量的模擬[J]. 中國農業氣象,2016,37(5):531-537.
FANG Hui,YANG Qichang,ZHANG Yi,CHENG Ruifeng,ZHANG Fang,LU Wei. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects[J]. Chinese Journal of Agrometeorology,2016,37(5):531-537.
[67] AL-HELAL I M,WAHEEB S A,IBRAHIM A A,SHADY M R,ABDEL-GHANY A M. Modified thermal model to predict the natural ventilation of greenhouses[J]. Energy and Buildings,2015,99:1-8.
[68] 胡萬玲,陳沖,管勇,馬喬喬,葉文濤. 拱架送/回風方式對日光溫室冬季作物冠層區熱環境的影響[J]. 農業工程學報,2024,40(4):262-272.
HU Wanling,CHEN Chong,GUAN Yong,MA Qiaoqiao,YE Wentao. Effects of arch frame air supply and return mode on the indoor thermal environment of crop canopy area for solar greenhouse in winter[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(4):262-272.
[69] 萬敏,楊魏,劉竹青,徐晨曦,劉東. 不同通風方式日光溫室微環境模擬與作物蒸騰研究[J]. 農業機械學報,2024,55(1):328-338.
WAN Min,YANG Wei,LIU Zhuqing,XU Chenxi,LIU Dong. Microenvironment simulation and crop transpiration analysis of solar greenhouse with different ventilation modes[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):328-338.
[70] 鄭若琳,楊魏,劉竹青. 不同通風形式日光溫室濕熱特性的數值模擬[J]. 中國農業大學學報,2023,28(3):140-150.
ZHENG Ruolin,YANG Wei,LIU Zhuqing. Numerical simulation of humid heat characteristics in solar greenhouse under different ventilation modes[J]. Journal of China Agricultural University,2023,28(3):140-150.
[71] 劉思汝,石偉琦,馬海洋,王國安,陳清,徐明崗. 果樹水肥一體化高效利用技術研究進展[J]. 果樹學報,2019,36(3):366-384.
LIU Siru,SHI Weiqi,MA Haiyang,WANG Guoan,CHEN Qing,XU Minggang. Advances in research on efficient utilization of fertigation in fruit trees[J]. Journal of Fruit Science,2019,36(3):366-384.
[72] 馮紫薈,但晨歆,薛鑫海,丘智晃,陳煜林,涂攀峰,鄧蘭生. 水肥一體化技術在荔枝上的應用[J]. 安徽農業科學,2023,51(6):144-147.
FENG Zihui,DAN Chenxin,XUE Xinhai,QIU Zhihuang,CHEN Yulin,TU Panfeng,DENG Lansheng. Application of integrated water and fertilizer technology in litchi[J]. Journal of Anhui Agricultural Sciences,2023,51(6):144-147.
[73] 胡亮亮,熊橙梁,張慶富,瞿水根,陳金,方志超,楊柳,何激光,鄧小華. 水肥一體化技術研究現狀及在我國的推廣應用[J]. 現代農業科技,2023(20):104-109.
HU Liangliang,XIONG Chengliang,ZHANG Qingfu,QU Shuigen,CHEN Jin,FANG Zhichao,YANG Liu,HE Jiguang,DENG Xiaohua. Research status of fertigation technology and its promotion and application in our country[J]. Modern Agricultural Science and Technology,2023(20):104-109.
[74] 李紅,湯攀,陳超,張志洋,夏華猛. 中國水肥一體化施肥設備研究現狀與發展趨勢[J]. 排灌機械工程學報,2021,39(2):200-209.
LI Hong,TANG Pan,CHEN Chao,ZHANG Zhiyang,XIA Huameng. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(2):200-209.
[75] 黃卿宜,孫一迪,周明耀,王恬,陳喜鋒. 水肥一體化條件下設施甜瓜灌溉施肥制度試驗研究[J]. 節水灌溉,2022(4):71-76.
HUANG Qingyi,SUN Yidi,ZHOU Mingyao,WANG Tian,CHEN Xifeng. Experimental study on irrigation and fertilization regime of protected melon under water and fertilizer integration[J]. Water Saving Irrigation,2022(4):71-76.
[76] 李增源,王紹雷,姬廷廷,張衛峰. 設施葡萄智能化水肥管理體系研究[J]. 中國土壤與肥料,2022(1):73-80.
LI Zengyuan,WANG Shaolei,JI Tingting,ZHANG Weifeng. Research on intelligent water and fertilizer management system of greenhouse grape[J]. Soil and Fertilizer Sciences in China,2022(1):73-80.
[77] 潘殿蓮,王志強. 我國設施果樹全程機械化生產現狀與趨勢研究[J]. 中國果樹,2024(4):148-151.
PAN Dianlian,WANG Zhiqiang. Research on the current situation and trends of mechanized production of protected fruit trees in China[J]. China Fruits,2024(4):148-151.
[78] 周桂官,蘇生平,蘇宇翔,吳劍銘,夏冰. 江蘇省設施西瓜機械化應用現狀及發展建議[J]. 中國蔬菜,2021(11):113-117.
ZHOU Guiguan,SU Shengping,SU Yuxiang,WU Jianming,XIA Bing. Current status and development suggestions for mechanized application in facility watermelon production in Jiangsu province[J]. China Vegetables,2021(11):113-117.
[79] 孫錦,高洪波,田婧,王軍偉,杜長霞,郭世榮. 我國設施園藝發展現狀與趨勢[J]. 南京農業大學學報,2019,42(4):594-604.
SUN Jin,GAO Hongbo,TIAN Jing,WANG Junwei,DU Changxia,GUO Shirong. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University,2019,42(4):594-604.
[80] LIU J Z,ZHAO S Y,LI N,FAHEEM M,ZHOU T,CAI W J,ZHAO M Z,ZHU X Y,LI P P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation[J]. Applied Engineering in Agriculture,2019,35(6):1067-1078.
[81] XIONG Y,GE Y Y,GRIMSTAD L,FROM P J. An autonomous strawberry-harvesting robot:Design,development,integration,and field evaluation[J]. Journal of Field Robotics,2020,37(2):202-224.
[82] 閻應紅. 柑桔機械化和機器人采收研發現狀與展望[J]. 中國南方果樹,2023,52(2):203-209.
YAN Yinghong. Current status and future prospects of research and development on mechanization and robotic harvesting of citrus[J]. South China Fruits,2023,52(2):203-209.
[83] 姬麗雯,劉永華,高菊玲,吳丹. 溫室草莓采摘機器人設計與試驗[J]. 中國農機化學報,2023,44(1):192-198.
JI Liwen,LIU Yonghua,GAO Juling,WU Dan. Design and experiment of strawberry picking robot in greenhouse[J]. Journal of Chinese Agricultural Mechanization,2023,44(1):192-198.
[84] 劉霓紅,蔣先平,程俊峰,李惠玲,李葦,薛坤鵬,侯露,熊征. 國外有機設施園藝現狀及對中國設施農業可持續發展的啟示[J]. 農業工程技術,2023,43(6):78.
LIU Nihong,JIANG Xianping,CHENG Junfeng,LI Huiling,LI Wei,XUE Kunpeng,HOU Lu,XIONG Zheng. Current status of organic protected horticulture abroad and its implications for sustainable development of protected agriculture in china[J]. Agricultural Engineering Technology,2023,43(6):78.
[85] 束勝,康云艷,王玉,袁凌云,鐘珉,孫錦,郭世榮. 世界設施園藝發展概況、特點及趨勢分析[J]. 中國蔬菜,2018(7):1-13.
SHU Sheng,KANG Yunyan,WANG Yu,YUAN Lingyun,ZHONG Min,SUN Jin,GUO Shirong. Analysis of the development status, characteristics, and trends of global facility horticulture[J]. China Vegetables,2018(7):1-13.
[86] EZZAERI K,FATNASSI H,WIFAYA A,BAZGAOU A,AHAROUNE A,PONCET C,BEKKAOUI A,BOUIRDEN L. Performance of photovoltaic Canarian greenhouse:A comparison study between summer and winter seasons[J]. Solar Energy,2020,198:275-282.
[87] REGANOLD J P,WACHTER J M. Organic agriculture in the twenty-first century[J]. Nature Plants,2016,2:15221.
[88] RAHMANN G,REZA ARDAKANI M,BàRBERI P,BOEHM H,CANALI S,CHANDER M,DAVID W,DENGEL L,ERISMAN J W,GALVIS-MARTINEZ A C,HAMM U,KAHL J,K?PKE U,KüHNE S,LEE S B,L?ES A K,MOOS J H,NEUHOF D,NUUTILA J T,OLOWE V,OPPERMANN R,REMBIA?KOWSKA E,RIDDLE J,RASMUSSEN I A,SHADE J,SOHN S M,TADESSE M,TASHI S,THATCHER A,UDDIN N,VON FRAGSTEIN UND NIEMSDORFF P,WIBE A,WIVSTAD M,WU W L,ZANOLI R. Organic agriculture 3.0 is innovation with research[J]. Organic Agriculture,2017,7(3):169-197.
[89] RAMIN SHAMSHIRI R,KALANTARI F,TING K C,THORP K R,HAMEED I A,WELTZIEN C,AHMAD D,MOJGAN SHAD Z. Advances in greenhouse automation and controlled environment agriculture:A transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering,2018,11(1):1-22.
[90] FATNASSI H,BOURNET P E,BOULARD T,ROY J C,MOLINA-AIZ F D,ZAABOUL R. Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems:A review[J]. Biosystems Engineering,2023,230:388-408.
[91] CHU C R,LAN T W,TASI R K,WU T R,YANG C K. Wind-driven natural ventilation of greenhouses with vegetation[J]. Biosystems Engineering,2017,164:221-234.
[92] FERENTINOS K P,KATSOULAS N,TZOUNIS A,BARTZANAS T,KITTAS C. Wireless sensor networks for greenhouse climate and plant condition assessment[J]. Biosystems Engineering,2017,153:70-81.
[93] CHAUHAN P S,KUMAR A. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode[J]. Energy Reports,2016,2:107-116.
[94] KAWASHIMA H. Development of a new energy-saving pipe-framed greenhouse[J]. Japan Agricultural Research Quarterly,2015,49:235-243.
[95] HOFFMAN J,LOEBER A. Exploring the micro-politics in transitions from a practice perspective:The case of greenhouse innovation in the Netherlands[J]. Journal of Environmental Policy amp; Planning,2016,18(5):692-711.
[96] DOUGKA G,BRIASSOULIS D. Load carrying capacity of greenhouse covering films under wind action:Optimising the supporting systems of greenhouse films[J]. Biosystems Engineering,2020,192:199-214.
[97] KUZNETSOV S,POSPISIL S. Full-scale measurements of local wind loads on a high-rise building using wind tunnel based predictions[J]. IOP Conference Series:Materials Science and Engineering,2019,471:052053.
[98] KIM R W,LEE I B,YEO U H,LEE S Y. Evaluation of various national greenhouse design standards for wind loading[J]. Biosystems Engineering,2019,188:136-154.
[99] 竇宗信,李寬瑩,龐勇,王寶春,徐鑒民,李冠男,王永旭. 北方設施葡萄發展現狀與對策探析[J]. 南方農機,2023,54(8):17-19.
DOU Zongxin,LI Kuanying,PANG Yong,WANG Baochun,XU Jianmin,LI Guannan,WANG Yongxu. Present situation and development countermeasures of protected grape in North China[J]. China Southern Agricultural Machinery,2023,54(8):17-19.
[100] 牟德生,郭艷蘭,張斌,王鑫,趙連鑫,李強,馬尚有,陳巖輝. 河西走廊設施葡萄產業現狀及高質量發展對策建議[J]. 中外葡萄與葡萄酒,2024(3):114-118.
MU Desheng,GUO Yanlan,ZHANG Bin,WANG Xin,ZHAO Lianxin,LI Qiang,MA Shangyou,CHEN Yanhui. Current situation and high quality development countermeasures of facility grape industry in Hexi Corridor[J]. Sino-Overseas Grapevine amp; Wine,2024(3):114-118.
[101] 田躍,姚冠新. 江蘇省設施果樹產業發展現狀、問題及對策[J]. 中國果樹,2022(3):98-102.
TIAN Yue,YAO Guanxin. The current situation, problems and countermeasures of the development of protected fruit industry in Jiangsu Province[J]. China Fruits,2022(3):98-102.
[102] 鄭寧寧. 物聯網技術在溫室大棚中推廣問題與對策研究[J]. 山東農業工程學院學報,2022,39(6):28-31.
ZHENG Ningning. Research on the problems and countermeasures of popularization of internet of things technology in greenhouses[J]. The Journal of Shandong Agriculture and Engineering University,2022,39(6):28-31.
[103] 劉秀先. 提高設施果樹栽培光照效果的樹形研究[J]. 農業開發與裝備,2022(2):235-237.
LIU Xiuxian. Research on tree shapes to improve lighting effects in protected fruit tree cultivation[J]. Agricultural Development amp; Equipments,2022(2):235-237.
[104] 陳建,張文河. 北方果樹設施栽培的現狀及展望[J]. 現代農業研究,2021,27(7):115-116.
CHEN Jian,ZHANG Wenhe. Present situation and prospect of fruit tree cultivation facilities in North China[J]. Modern Agriculture Research,2021,27(7):115-116.
[105] 王婷. 探究果樹設施栽培發展現狀與展望[J]. 現代園藝,2020(10):10-11.
WANG Ting. Exploration of the current status and prospects for development of protected cultivation of fruit trees[J]. Xiandai Horticulture,2020(10):10-11.
[106] 齊飛,李愷,李邵,何芬,周新群. 世界設施園藝智能化裝備發展對中國的啟示研究[J]. 農業工程學報,2019,35(2):183-195.
QI Fei,LI Kai,LI Shao,HE Fen,ZHOU Xinqun. Development of intelligent equipment for protected horticulture in world and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):183-195.
[107] 趙立虹,薛梅. 智能化農機裝備助力設施園藝發展探析[J]. 農業裝備與車輛工程,2021,59(9):153-155.
ZHAO Lihong,XUE Mei. Analysis on development of protected horticulture with intelligent agricultural machinery equipment[J]. Agricultural Equipment amp; Vehicle Engineering,2021,59(9):153-155.
[108] 古寧寧. “農藝-農機-設施” 深度融合推動設施園藝高效發展[J]. 農業工程技術,2024,44(3):12-14.
GU Ningning. Deep integration of agronomy,agricultural machinery, and facilities to promote efficient development of facility horticulture[J]. Agricultural Engineering Technology,2024,44(3):12-14.
[109] 宋衛堂,李明. 以“農藝-農機-設施” 深度融合推動設施園藝高效發展[J]. 農業工程技術,2020,40(1):44-47.
SONG Weitang,LI Ming. Promote the efficient development of protected horticulture through the deep integration of agriculture-agricultural machinery-facilities[J]. Agricultural Engineering Technology,2020,40(1):44-47.
[110] 王連泉,王旭東. 智能化機械裝備在設施農業中的應用及創新[J]. 中國農機裝備,2024(7):66-68.
WANG Lianquan,WANG Xudong. Application and innovation of intelligent machinery and equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):66-68.
[111] 郭娜,田素博,須暉,關旭生,李天來. 設施園藝植保裝備及其精準施藥技術研究進展[J]. 農機化研究,2022,44(11):1-10.
GUO Na,TIAN Subo,XU Hui,GUAN Xusheng,LI Tianlai. Research progress on precision spraying technology and equipment of protected horticulture[J]. Journal of Agricultural Mechanization Research,2022,44(11):1-10.