











摘要"堿礦渣再生混凝土是以堿激發膠凝材料替代水泥、再生骨料取代天然石子制備而成的新型混凝土,能有效降低波特蘭水泥用量,提高廢棄混凝土利用率,但尚未見對其力學性能的相關研究。為研究堿礦渣再生混凝土的基本力學性能,以鋼纖維取代率和再生骨料取代率為主要試驗參數,進行抗壓試驗、劈裂抗拉試驗和抗折試驗。研究結果表明:隨著再生粗骨料取代率的增加,堿礦渣再生混凝土的抗壓強度fcu、劈裂抗拉強度ft和抗折強度fw均降低,再生粗骨料取代率為100%時的降低幅度分別為30%、10%、15%;堿礦渣再生混凝土抗壓強度和劈裂抗拉強度隨鋼纖維體積取代率增加先提高后降低,鋼纖維體積取代率為0.6%時,抗壓強度和抗折強度達到最大值;堿礦渣再生混凝土抗折強度隨鋼纖維體積取代率增加而增加。
關鍵詞"再生骨料混凝土;"抗壓強度;"抗拉強度;"抗折強度;"鋼纖維;"體積取代率
水泥生產消耗大量的化石燃料,排放大量的二氧化碳,據統計,水泥生產碳排放量約占全球碳排放總量的7%,因此,尋找可替代水泥的建筑材料具有極大的工程應用價值[1-3]。堿礦渣混凝土(alkali-activated slag concrete,AASC)是以廢棄礦渣為膠凝材料,以氫氧化鈉和水玻璃等為堿性激發劑制備而成的混凝土[4-5]。堿礦渣混凝土可以有效利用廢棄礦渣,是綠色建材未來的發展趨勢之一[6-8]。混凝土廢塊經過破碎、清洗和篩分等工序后,制成再生粗骨料。由再生粗骨料制作而成的混凝土稱為再生混凝土(recycled aggregate concrete,RAC)。RAC用于工程建設,既可以緩解天然骨料短缺的問題,又可以對建筑廢棄物進行合理利用,符合建筑業綠色、環保、可持續的發展方向[9-10]。堿礦渣再生混凝土(alkali-activated slag recycled aggregate concrete,AAS-RAC)是以堿激發礦渣為膠凝材料,以再生骨料為粗骨料制備而成的新型混凝土,可充分利用堿礦渣膠凝材料和再生骨料的優勢,是可持續發展的綠色建材之一。
與普通混凝土相比,AASC具有凝結速度快、早期強度高、熱穩定強、耐火性能強[11]、耐久性好的優點[12-14]。Laskar等[15]研究表明,AASC的凝結速度遠快于普通硅酸鹽水泥,其初凝時間和終凝時間分別為11、21 min。Atis等[16]發現,AASC具有早強和快硬的特點,在115 ℃熱養護的條件下,AASC的24 h強度最高可達120 MPa。Pan等[17]研究發現,AASC在200 ℃和400 ℃下抗壓強度增加約22%和15%。Palomo等[18]指出,堿礦渣砂漿在浸入各種侵蝕性溶液(去離子水、硫酸鈉溶液和硫酸)中時性能非常穩定。雖然AASC具有諸多優勢,但其同樣存在收縮大、韌性差的缺點[19]。Duran等[20]研究發現,堿礦渣砂漿的收縮是普通硅酸鹽水泥的3~6倍。這是由于AAS生成的水化硅酸鈣(C-S-H)密度較高,使得AASC試件的體積變小,多余水分流失,進而增加了AASC干燥收縮[21]。AASC由于其材料內部廣泛存在微裂縫,表現出較高的脆性[22]。為降低AASC收縮,增加其延性,研究者做了大量的努力,通常的做法為在AASC中摻入纖維[23-24]。Zhou等[25]研究表明,玄武巖纖維對強度提高效果優于聚丙烯纖維。Zhang等[26]將0.5%含量的聚丙烯纖維摻入后,試件的早期抗壓強度在第1天和第3天分別提高至68%和20%。Bernal等[27]將SF摻入AASC內,其研究表明,當SF體積含量為1.5%時,AASC的抗拉強度和抗折強度分別提高了24%和38%。與天然骨料相比,再生骨料內部存在更多的孔隙,其表觀密度更低,壓碎值更高[28],因此,與普通混凝土相比,RAC的強度明顯降低。為了改善RAC的力學性能,提高其在工程中的泛用性,許多學者進行了嘗試。肖建莊等[29]采用熱處理去除再生骨料表層黏附的殘留砂漿,研究表明,處理后再生骨料的殘留砂漿含量、吸水率和壓碎指標分別降低了8.2%、1.9%和4.3%。Katkhuda等[30]利用酸處理去除其表面附著的砂漿,同時加入玄武巖纖維,RAC的劈裂抗拉強度和抗折強度分別提高了40.17%和82.65%。
AAS-RAC具有AASC和RAC優勢的同時,也存在脆性較大和強度較低的問題。筆者通過摻入鋼纖維來改善AAS-RAC的力學性能,制備了8組共72個不同配比的AAS-RAC試件,研究再生骨料取代率和鋼纖維體積取代率對AAS-RAC立方體抗壓強度fcu、劈裂抗拉強度ft和抗折強度fw的影響。
1"試驗準備
?;郀t礦渣的比表面積和比重分別為440"m2/kg和2.45,平均粒徑為2.4 μm,其化學成分和粒度分布圖分別見表1和圖1。粗骨料采用再生骨料。細骨料選用河沙,細度模量為2.6,容重為2 480 kg/m3。天然粗骨料選用碎石,粒徑范圍為5~25 mm,容重為2 620 kg/m3。試驗中的水均采用天津市自來水。
堿激發劑由液態硅酸鈉、固體氫氧化鈉組成,激發劑中SiO2和Na2O的摩爾比為1.7,堿激發劑中含水量為56%。固體NaOH的純度為96%。試驗選取鋼纖維以用來改善堿礦渣再生骨料混凝土的力學性能。鋼纖維由蘇州史尉康金屬制品有限公司提供,纖維的詳細力學性能如表2所示。
1.2"試件設計及配合比
制作8種不同配比的堿礦渣再生混凝土試件。試件設計考慮了鋼纖維體積取代率(0、0.3%、0.6%、0.9 %)和再生骨料取代率(0、25%、50%、75%、100%)的影響。具體試件設計及配合比如表3所示,表中組別由3部分組成:纖維/鋼纖維體積取代率/再生骨料取代率。以S/0.3/100為例,表示鋼纖維體積取代率為0.3%,再生骨料取代率為100%。每組試件的抗壓強度、劈裂抗拉強度和抗折強度均取3個同條件試件的平均值。
AAS-RAC試件制備時,首先將再生骨料與部分水混合,進行預濕處理;其次將液態Na2SiO3、固態NaOH和水按比例均勻混合;再次將預濕后再生骨料、礦粉、砂置于攪拌機中均勻攪拌60 s;隨后加入堿性激發劑,并均勻攪拌60 s;最后將混合物置于試模內,放在振動臺上振動30 s。為防止試件中的水分蒸發影響試件性能,將試件用塑料薄膜完全密封,放于溫度(20±2)℃、相對濕度(90±2)%的養護室,直至試驗開始。
對AAS-RAC的立方體抗壓強度、劈裂抗拉強度和抗折強度進行了測試。立方體受壓試件尺寸為100 mm×100 mm×100 mm,劈裂抗拉強度試驗試件尺寸為100 mm×100 mm×100 mm,抗折強度試驗試件尺寸為100 mm×100 mm×400 mm。試驗按《混凝土物理力學性能試驗方法標準》(GB/T 50081—2019)[31]進行,立方體抗壓試驗加載速率為0.6 MPa/s,劈裂抗拉試驗和抗折試驗加載速率為0.06 MPa/s。
2"試驗結果與討論
2.1.1"再生骨料取代率的影響
再生骨料取代率對AAS-RAC立方體抗壓強度的影響如圖2所示。當再生骨料取代率為100%時,AAS-RAC立方體抗壓強度最低,為47.7 MPa。以天然骨料為粗骨料的堿礦渣混凝土的立方體抗壓強度最高,為67.4 MPa。且隨著再生骨料取代率的增加,AAS-RAC的立方體抗壓強度降低。再生骨料取代率為25%、50%、75%、100%時,AAS-RAC的立方體抗壓強度分別比天然骨料混凝土低7.2%、10.5%、24.8%、30.3%。這是由于再生骨料的強度低于天然骨料,隨著低強度骨料的摻入,AAS-RAC的立方體抗壓強度降低。Nazarimofrad等[32]研究指出,再生骨料強度對RAC抗壓強度影響較為顯著。再生骨料在制作時,材料內部會出現微裂縫,這使得RAC孔隙率增大,受壓時在裂縫空隙處產生應力集中[33],進而降低了AAS-RAC的立方體抗壓強度。
2.1.2"鋼纖維體積取代率的影響
試驗研究表明,鋼纖維的摻入可有效增加AAS-RAC立方體抗壓強度。為研究鋼纖維體積取代率對AAS-RAC立方體抗壓強度的影響,將不同鋼纖維體積取代率試件立方體抗壓強度列于圖3??梢钥闯觯S鋼纖維體積取代率的提高,AAS-RAC立方體抗壓強度先增加后降低,相比未摻纖維AAS-RAC立方體抗壓強度,鋼纖維體積取代率為0.3%、0.6%、0.9%時,立方體抗壓強度的提高37%、51%、41%。適量的鋼纖維可以提高立方體抗壓強度,過量則會降低。主要原因為適量的鋼纖維可有效抑制AAS-RAC試件內部微裂縫發展,進而增加了混凝土強度。過多的鋼纖維摻入易在混凝土內部成團,無法均勻分布,成團的鋼纖維周圍存在空隙,進而降低了堿礦渣再生骨料的立方體抗壓強度[34]。
2.2"AAS-RAC劈裂抗拉強度
2.2.1"再生骨料取代率的影響
再生骨料取代率對AAS-RAC劈裂抗拉強度的影響如圖4所示??梢钥闯觯c沒有摻入再生骨料的AAS-RAC相比,再生骨料取代率為25%、50%、75%和100%時,AAS-RAC劈裂抗拉強度分別降低了0.5%、1.8%、1.9%和9.7%。對混凝土廢塊進行二次處理過程中,再生骨料內部會產生許多微裂縫,進而降低了AAS-RAC劈裂抗拉強度[35]。隨著再生骨料取代率的增加,AAS-RAC的劈裂抗拉強度減小,這是由于骨料強度降低,從而降低了AAS-RAC劈裂抗拉強度,但減小幅度不大。張麗娟[36]對不同配比的鋼纖維再生混凝土進行研究,結果表明,再生骨料取代率對劈裂抗拉強度影響最小,鋼纖維體積率對劈裂抗拉強度影響顯著。
2.2.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對AAS-RAC劈裂抗拉強度的影響如圖5所示??梢钥闯觯c無鋼纖維的AAS-RAC相比,鋼纖維體積取代率為0.3%、0.6%、0.9%的AAS-RAC的劈裂抗拉強度分別提高了10%、60%、43%。章文嬌等[37]試驗表明,將鋼纖維摻入再生混凝土中,可顯著增強其劈裂抗拉強度,當摻量為117 kg/m3時,抗拉強度增強率達49.2%。Afroughsabet等[38]試驗發現,將1%的鋼纖維分別摻入再生混凝土和普通混凝土中,鋼纖維的摻入對RAC劈裂強度的提升效果更為顯著,這是由于鋼纖維與再生骨料之間產生了更強的黏結力。但過量加入鋼纖維會對AAS-RAC的強度產生負面影響,這與鋼纖維對AAS-RAC抗壓強度的影響類似?;炷猎谕獠亢奢d作用下產生縱向和橫向變形,隨著外部荷載增加,試件中部的橫向變形達到混凝土的極限值產生縱向裂紋,當試件中部混凝土拉應變達到極限拉應變混凝土發生破壞[39]。而混凝土劈裂抗拉破壞同樣為試件劈裂中截面混凝土受拉破壞[40],因此,鋼纖維對AAS-RAC的抗壓強度和劈裂抗拉強度有類似的影響。
2.3"AAS-RAC抗折強度
2.3.1"再生骨料取代率的影響
再生骨料取代率對AAS-RAC抗折強度的影響如圖6所示??梢钥闯觯偕橇先〈实脑黾訒笰AS-RAC抗折強度降低。再生骨料取代率為25%、50%、75%、100%時,AAS-RAC抗折強度分別降低了6.7%、9.7%、11.7%、15.3%。這是因為再生骨料的強度遠低于天然骨料,這與再生骨料對AAS-RAC抗壓強度的影響相似。秦紅杰 [41]研究指出,再生混凝土試件的破壞裂縫通常穿過再生骨料發展,再生骨料的初始損傷使再生骨料強度較天然骨料低,當構件出現裂縫時,裂縫會貫穿再生骨料,導致再生混凝土抗折強度降低。
2.3.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對AAS-RAC抗折強度的影響如圖7所示。可以觀察到,隨著鋼纖維體積取代率的增加,AAS-RAC抗折強度增加。當鋼纖維體積取代率為0.9%時,抗折強度最大為5.16 MPa,比無纖維AAS-RAC提高22.9%?;艨》嫉?sup>[42]研究發現,RAC的抗折強度隨著鋼纖維體積取代率的增加而增加,當鋼纖維體積取代率分別為0.5%、1.5%、2%時,抗折強度分別增加17.0%、26.4%、34.0%。鋼纖維可以有效抑制堿礦渣再生骨料混凝土試件內部裂縫的產生,同時鋼纖維可橋接于AAS-RAC材料內部微裂縫兩側,進而限制了微裂縫的發展和延伸,提高AAS-RAC抗折強度[43-44]。
2.4"機理分析
2.4.1"再生骨料取代率的影響
再生骨料取代率對AAS-RAC基本力學性能的影響如圖8所示,其中,f為試件的強度,fN0為再生骨料取代率為0時試件的強度。從圖8可以看出,3條曲線的趨勢較為一致,立方體抗壓強度、劈裂抗拉強度和抗折強度均隨著再生骨料取代率的增加而降低。這是由于AAS-RAC與普通混凝土的破壞形態存在一定差異,普通混凝土的破壞為界面過渡區微裂縫開展及延伸導致的最終破壞。而再生粗骨料力學性能弱于天然粗骨料,導致堿礦渣再生混凝土除界面過渡區微裂縫破壞,還存在大量貫穿粗骨料材料內部的破壞。同時可以看出,再生粗骨料取代率對AAS-RAC抗壓強度影響最為顯著,對劈裂抗拉強度影響最小,當再生粗骨料取代率為100%時,抗壓強度和劈裂抗拉強度分別降低了30.3%和9.7%。
2.4.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對AAS-RAC基本力學性能的影響如圖9所示,其中f為試件的強度,fS0為未摻鋼纖維試件的強度。從圖9可以看出,鋼纖維體積取代率對AAS-RAC的立方體抗壓強度和劈裂抗拉強度的影響效果較為一致,均為先增加后降低。適量的鋼纖維可橋接于裂縫兩側,有效抑制AAS-RAC試件內部微裂縫發展延伸,進而增加了混凝土強度[45]。當摻入過多的鋼纖維時,鋼纖維在AAS-RAC內部出現成團的現象,成團的鋼纖維使得混凝土中孔洞的數量和大小增加,進而降低了AAS-RAC的立方體抗壓強度和劈裂抗拉強度??拐蹚姸入S鋼纖維體積取代率的增加而增加。主要原因是鋼纖維的抗拉強度遠高于混凝土,而抗折破壞的實質為試件受拉區混凝土受拉破壞導致,高強度、高彈模的鋼纖維搭接于開裂混凝土兩側,混凝土開裂后可繼續承擔拉應力,進而增加了AAS-LWAC抗折強度。同時可以看出,鋼纖維體積取代率對立方體抗壓強度影響最為顯著,對抗折強度的影響最小,雖然纖維的摻入會使AAS-RAC的抗折強度不斷增加,但在鋼纖維體積取代率為0.9%時,抗折強度的增加幅度小于劈裂抗拉強度和立方體抗壓強度。
3nbsp;結論
研究了堿礦渣再生粗骨料混凝土抗壓性能、劈裂抗拉性能和抗折性能,考慮了再生粗骨料取代率和鋼纖維體積取代率對其力學性能影響,主要結論如下:
1)AAS-RAC抗壓強度fcu、劈裂抗拉強度ft和抗折強度fw均隨再生粗骨料取代率增加而降低。這是由于再生粗骨料內部存在原始界面過渡區,表面存在大量微裂縫,這使得再生粗骨料力學性能較弱,進而降低了AAS-RAC力學性能。
2)適量鋼纖維會提高AAS-RAC抗壓強度fcu和劈裂抗拉強度ft,但過量鋼纖維反而會降低AAS-RAC的fcu和ft。這是由于適量鋼纖維可橋接于荷載作用下產生的微裂縫兩側,進而抑制了微裂縫發展及延伸,提高了AAS-RAC強度。過量鋼纖維易在混凝土材料內部產生團簇效應,進而降低了AAS-RAC強度。
3)與鋼纖維對AAS-RAC抗壓強度fcu和劈裂抗拉強度ft影響不同,鋼纖維體積取代率小于0.9%時,AAS-RAC抗折強度fw隨鋼纖維體積取代率的增加而提高。這是由于AAS-RAC抗折破壞為試件受拉區混凝土受拉失效破壞,發展較為迅速,而受拉區鋼纖維橋接于裂縫兩側,抑制受拉區裂縫開展,同時可替代受拉區開裂混凝土承受部分拉應力,進而提高了AAS-RAC的抗折強度fw。
4)再生粗骨料取代率對AAS-RAC的抗壓強度fcu的影響最為顯著,而對劈裂抗拉強度ft的影響最弱。鋼纖維體積取代率對AAS-RAC抗壓強度fcu的影響最為顯著,其次為劈裂抗拉強度ft,而對抗折強度fw影響最弱。
參考文獻
1 FLOWER D J M,"SANJAYAN J G."Green house gas emissions due to concrete manufacture [J]. The International Journal of Life Cycle Assessment,"2007,"12(5):"282-288.
2 VISHWAKARMA V,"RAMACHANDRAN D."Green Concrete mix using solid waste and nanoparticles as alternatives-A review [J]. Construction and Building Materials,"2018,"162:"96-103.
3 MALHOTRA V M."Introduction: Sustainable development and concrete technology [J]. Concrete International,"2002,"24(7):"22.
4 PROVIS J L,"VAN DEVENTER J S J."Alkali activated materials [M]. Dordrecht:"Springer Netherlands,"2014.
5 DAS S,"SAHA P,"JENA S P,"et al."Geopolymer concrete: Sustainable green concrete for reduced greenhouse gas emission-A review [J]. Materials Today: Proceedings,"2022,"60:"62-71.
6 AMER I,"SAHA P,"JENA S P,"et al."A review on alkali-activated slag concrete [J]. Ain Shams Engineering Journal,"2021,"12(2):"1475-1499.
7 PROVIS J L."Alkali-activated materials [J]. Cement and Concrete Research,"2018,"114:"40-48.
8 SANDANAYAKE M,"GUNASEKARA C,"LAW D,"et al."Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction [J]. Journal of Cleaner Production,"2018,"204:"399-408.
9 SILVA R V,"DE BRITO J,"DHIR R K."Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production [J]. Construction and Building Materials,"2014,"65(1):"201-217.
10 EGUCHI K,"TERANISHI K,"NAKAGOMEA,"et al."Application of recycled coarse aggregate by mixture to concrete construction [J]. Construction and Building Materials,"2007,"21(7):"1542-1551.
11 HOSAN A,"HAQUE S,"SHAIKH F."Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study [J]. Journal of Building Engineering,"2016,"8:"123-130.
12 MONTICELLI C,"NATALI M E,"BALBO A,"et al."Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization [J]. Cement and Concrete Research,"2016,"80:"60-68.
13 BABAEE M."Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete [J]. Cement and Concrete Research,"2016,"88:"96-107.
14 FERNANDEZ-JIMENEZ A,"GARCíA-LODEIRO I,"PALOMO A."Durability of alkali-activated fly ash cementitious materials [J]. Journal of Materials Science,"2007,"42(9):"3055-3065.
15 LASKAR S M,"TALUKDAR S."Development of ultrafine slag-based geopolymer mortar for use as repairing mortar [J]. Journal of Materials in Civil Engineering,"2017,"29(5):"04016292.
16 ATI? C D,"G?RüR E B,"KARAHAN O,"et al."Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration [J]. Construction and Building Materials,"2015,"96:"673-678.
17 PAN Z,"SANJAYAN J G."Stress-strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures [J]. Cement and Concrete Composites,"2010,"32(9):"657-664.
18 PALOMO A,"BLANCO-VARELA M T,"GRANIZO M L,"et al."Chemical stability of cementitious materials based on metakaolin [J]. Cement and Concrete Research,"1999,"29(7):"997-1004.
19 COLLINS F,"SANJAYAN J G."Effect of pore size distribution on drying shrinking of alkali-activated slag concrete [J]. Cement and Concrete Research,"2000,"30(9):"1401-1406.
20 DURAN ATI? C,"BILIM C,"?ELIK ?,"et al."Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar [J]. Construction and Building Materials,"2009,"23(1):"548-555.
21 THOMAS J J,"ALLEN A J,"JENNINGS H M."Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage [J]. Cement and Concrete Research,"2012,"42(2):"377-383.
22 COLLINS F,"SANJAYAN J G."Microcracking and strength development of alkali activated slag concrete [J]. Cement and Concrete Composites,"2001,"23(4/5):"345-352.
23 RANJBAR N,"ZHANG M."Fiber-reinforced geopolymer composites: A review [J]. Cement and Concrete Composites,"2020,"107:"103498.
24 ALOMAYRI T,"SHAIKH F U A,"LOW I M."Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites [J]. Composites Part B: Engineering,"2014,"60:"36-42.
25 ZHOU X Y,"ZENG Y S,"CHEN P,"et al."Mechanical properties of basalt and polypropylene fibre-reinforced alkali-activated slag concrete [J]. Construction and Building Materials,"2021,"269:"121284.
26 ZHANG Z H,"YAO X,"ZHU H J,"et al."Preparation and mechanical properties of polypropylene fiber reinforced calcined Kaolin-fly ash based geopolymer [J]. Journal of Central South University of Technology,"2009,"16(1):"49-52.
27 BERNAL S,"DE GUTIERREZ R,"DELVASTO S,nbsp;et al."Performance of an alkali-activated slag concrete reinforced with steel fibers [J]. Construction and Building Materials,"2010,"24(2):"208-214.
28 SOARES D,"DE BRITO J,"FERREIRA J,"et al."Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance [J]. Construction and Building Materials,"2014,"71:"263-272.
29 肖建莊,"吳磊,"范玉輝."微波加熱再生粗骨料改性試驗[J]."混凝土,"2012(7):"55-57.
XIAO J Z,"WU L,"FAN Y H."Test on modification of recycled coarse aggregate by microwave heating [J]. Concrete,"2012(7):"55-57."(in Chinese)
30 KATKHUDA H,"SHATARAT N."Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment [J]. Construction and Building Materials,"2017,"140:"328-335.
31 混凝土物理力學性能試驗方法標準:"GB/T 50081—2019 [S]. 北京:"中國建筑工業出版社,"2019.
Standard for test methods of concrete physical and mechanical properties:"GB/T 50081—2019 [S]. Beijing:"China Architecture amp; Building Press,"2019."(in Chinese)
32 NAZARIMOFRAD E,"SHAIKH F U A,"NILI M."Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete [J]. Journal of Sustainable Cement-Based Materials,"2017,"6(1):"54-68.
33 郭樟根,"陳晨,"范秉杰,"等."再生粗細骨料混凝土基本力學性能試驗研究[J]."建筑結構學報,"2016,"37(Sup2):"94-102.
GUO Z G,"CHEN C,"FAN B J,"et al."Experimental research on mechanical behavior of concrete made of coarse and fine recycled aggregates [J]. Journal of Building Structures,"2016,"37(Sup2):"94-102."(in Chinese)
34 ANIKE E E,"SAIDANI M,"OLUBANWO A O,"et al."Effect of mix design methods on the mechanical properties of steel fibre-reinforced concrete prepared with recycled aggregates from precast waste [J]. Structures,"2020,"27:"664-672.
35 陳會凡,"管巧艷,"劉洪波."礦渣再生骨料混凝土力學性能研究[J]."混凝土,"2012(5):"91-93.
CHEN H F,"GUAN Q Y,"LIU H B."Study on the mechanical behavior of concrete containing slag and recycled concrete aggregate [J]. Concrete,"2012(5):"91-93."(in Chinese)
36 張麗娟."鋼纖維再生混凝土配合比設計及其性能計算方法[D]."鄭州:"鄭州大學,"2017.
ZHANG L J."Mixture design and performance calculation method of steel fiber reinforced recycled concrete [D]. Zhengzhou:"Zhengzhou University,"2017."(in Chinese)
37 章文姣,"鮑成成,"孔祥清,"等."混雜纖維摻量對再生混凝土力學性能的影響研究[J]."科學技術與工程,"2016,"16(13):"106-112, 123.
ZHANG W J,"BAO C C,"KONG X Q,"et al."Experimental study on mechanical properties of hybrid fiber basic of recycled concrete [J]. Science Technology and Engineering,"2016,"16(13):"106-112, 123."(in Chinese)
38 AFROUGHSABET V,"BIOLZI L,"OZBAKK-ALOGLU T."Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete [J]. Composite Structures,"2017,"181:"273-284.
39 張義順,"金祖權,"李小雷."混凝土在受壓下的破壞機理研究[J]."焦作工學院學報(自然科學版),"2002,"21(2):"123-126.
ZHANG Y S,"JIN Z Q,"LI X L."Study on the destruction mechanism of concrete under the pressure [J]. Journal of Jiaozuo Institute of Technology,"2002,"21(2):"123-126."(in Chinese)
40 程文瀼,"王鐵成,"顏德姮,"等."混凝土結構[M]."3版."北京:"中國建筑工業出版社,"2005:"10.
CHENG W R,"WANG T C,"YAN D H."Concrete structure [M]. Beijing:"China Architecture amp; Building Press,"2005:"10."(in Chinese)
41 秦紅杰."再生混凝土抗折強度尺寸效應的試驗研究及細觀數值模擬[D]."長沙:"湖南大學,"2020.
QIN H J."Experimental study and mesoscopic numerical simulation on the size effect of flexural strength of recycled aggregate concrete [D]. Changsha:"Hunan University,"2020."(in Chinese)
42 霍俊芳,"白笑笑,"姜鵬飛,"等."鋼纖維和聚丙烯纖維再生混凝土力學性能研究[J]."混凝土,"2019(8):"92-95, 99.
HUO J F,"BAI X X,"JIANG P F,"et al."Research on mechanical properties of steel fiber and polypropylene fiber recycled concrete [J]. Concrete,"2019(8):"92-95, 99."(in Chinese)
43 張學兵,"匡成鋼,"方志,"等."鋼纖維粉煤灰再生混凝土強度正交試驗研究[J]."建筑材料學報,"2014,"17(4):"677-684, 694.
ZHANG X B,"KUANG C G,"FANG Z,"et al."Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete [J]. Journal of Building Materials,"2014,"17(4):"677-684, 694."(in Chinese)
44 楊粉,"陳愛玖,"王靜,"等."鋼纖維再生混凝土劈拉、抗折強度試驗研究[J]."混凝土,"2012(12):"11-14.
YANG F,"CHEN A J,"WANG J,"et al."Experiments of splitting tensile and flexural strength mechanical properties of steel fiber recycled concrete [J]. Concrete,"2012(12):"11-14."(in Chinese)
45 SHAH S F A,"CHEN B,"ODERJI S Y,"et al."Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar [J]. Construction and Building Materials,"2020,"243:"118221.